Queen's University

Department of Mathematics and Statistics
 MTHE/STAT 353
 Midterm Examination March 2, 2018

- Total points $=30$. Duration $=60$ minutes.
- This is a closed book exam.
- One 8.5 by 11 inch sheet of notes, written on both sides, is permitted.
- A simple calculator is permitted.
- Write the answers in the space provided, continue on the backs of pages if needed.
- SHOW YOUR WORK CLEARLY. Correct answers without clear work showing how you got there will not receive full marks.
- Marks per part question are shown in brackets at the right margin.
- The last page contains formulas you may find useful. Please check this page first.

Marks: Please do not write in the space below.
Problem 1 [10]

Problem 2 [10]

Problem 3 [10]

Total: [30] \qquad

1. Let $X_{i j}, i=1,2,3$ and $j=1,2,3$, be mutually independent $\operatorname{Uniform}(0,1)$ random variables. Let $X_{(2), j}$ be the sample median of $X_{1 j}, X_{2 j}, X_{3 j}$, for $j=1,2,3$. Find the probability that exactly one of $X_{(2), 1}, X_{(2), 2}$, and $X_{(2), 3}$ is in the interval $[0,1 / 3)$, exactly one is in $[1 / 3,2 / 3)$, and exactly one is in $[2 / 3,1)$.

Solution: The pdf of $X_{(2), j}$, which is the second order statistic of $X_{1 j}, X_{2 j}$, and $X_{3 j}$ is given by

$$
f_{2}(x)=\left\{\begin{array}{cl}
6 x(1-x) & \text { for } x \in[0,1] \\
0 & \text { otherwise }
\end{array}\right.
$$

Note that $X_{(2), 1}, X_{(2), 2}$, and $X_{(2), 3}$ are independent and identically distributed. The cdf of $X_{(2), j}$ is then

$$
F_{2}(x)=\left\{\begin{array}{cl}
3 x^{2}-2 x^{3} & \text { for } x \in[0,1] \\
0 & \text { for } x<0 \\
1 & \text { for } x>1
\end{array}\right.
$$

Then

$$
\begin{aligned}
P\left(X_{(2), j} \in[0,1 / 3)\right) & =F_{2}(1 / 3)=\frac{3}{9}-\frac{2}{27}=\frac{7}{27} \\
P\left(X_{(2), j} \in[1 / 3,2 / 3)\right) & =F_{2}(2 / 3)-F_{2}(1 / 3)=\frac{4}{3}-\frac{16}{27}-\frac{7}{27}=\frac{13}{27} \\
P\left(X_{(2), j} \in[2 / 3,1)\right) & =F_{2}(1)-F_{2}(2 / 3)=1-\frac{20}{27}=\frac{7}{27} .
\end{aligned}
$$

Finally, if we let N_{1} be the number of the sample medians that fall in the interval $[0,1 / 3)$, N_{2} the number that fall in $[1 / 3,2 / 3)$, and N_{3} the number that fall in $[2 / 3,1)$, then $\left(N_{1}, N_{2}, N_{3}\right)$ will follow a Multinomial distribution with parameters $n=3, p_{1}=7 / 27$, $p_{2}=13 / 27$, and $p_{3}=7 / 27$. The probability we want is

$$
\begin{aligned}
P\left(N_{1}=1, N_{2}=1, N_{3}=1\right) & =\frac{3!}{1!1!1!} p_{1} p_{2} p_{3} \\
& =6 \times \frac{7}{27} \times \frac{13}{27} \times \frac{7}{27} \\
& =\frac{1274}{6561} \approx 0.194
\end{aligned}
$$

2. Let X and Y be jointly continuous random variables with joint pdf

$$
f(x, y)=\left\{\begin{array}{cl}
3|x| y & \text { for }-1 \leq x \leq 1 \text { and } x^{2} \leq y \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find $f_{X}(x)$ and $f_{Y}(y)$, the marginal pdfs of X and Y, respectively, as well as $E[X]$ and $E[Y]$.
[10]

Solution: For $x \in[-1,1]$, the marginal pdf of X is given by

$$
f_{X}(x)=\int_{x^{2}}^{1} 3|x| y d y=\left.3|x| \frac{y^{2}}{2}\right|_{x^{2}} ^{1}=\frac{3}{2}|x|\left(1-x^{4}\right) .
$$

For $x \notin[-1,1], f_{X}(x)=0$. For $y \in[0,1]$ the marginal pdf of Y is

$$
f_{Y}(y)=3 y \int_{-\sqrt{y}}^{\sqrt{y}}|x| d x=6 y \int_{0}^{\sqrt{y}} x d x=\left.6 y \frac{x^{2}}{2}\right|_{0} ^{\sqrt{y}}=3 y^{2} .
$$

For $y \notin[0,1], f_{Y}(y)=0 . E[X]=0$ since the pdf of X is symmetric about 0 and the integral is finite. Finally, for $E[Y]$ we have

$$
E[Y]=3 \int_{0}^{1} y^{3} d y=\left.3 \frac{y^{4}}{4}\right|_{0} ^{1}=\frac{3}{4}
$$

3. Suppose an urn contains 52 balls and suppose that 4 of the balls are numbered " 1 ", 4 are numbered " 2 ", ..., 4 are numbered " 13 " (i.e., exactly 4 of the balls are numbered " i ", for $i=1, \ldots, 13$). Suppose all 52 balls are drawn at random, one at a time, without replacement, and the balls are paired up as they are drawn to form 26 pairs (i.e., the i th pair is the two balls drawn on draw $2 i-1$ and draw $2 i$, for $i=1, \ldots, 26)$. Find the expected number of pairs that have the same number on both balls.
[10]

Solution: Let X be the number of pairs that have the same number on both balls and let

$$
X_{i}= \begin{cases}1 & \text { if the } i \text { th pair has the same number on both balls } \\ 0 & \text { if the } i \text { th pair has different numbers on the two balls }\end{cases}
$$

for $i=1, \ldots, 26$. Then $X=X_{1}+\ldots+X_{26}$ and $E[X]=E\left[X_{1}\right]+\ldots+E\left[X_{26}\right]$. We have

$$
E\left[X_{i}\right]=P(i \text { th pair has the same number on both balls }) .
$$

The above probability can be computed by considering all permutations of the balls, which are all equally likely since the drawing is random. There are 52 ! permutations of the balls. It remains to count the number of permutations that have balls with the same number in positions $2 i-1$ and $2 i$. This is a counting task. First, choose a number. There are 13 ways to do this. Next, pick two balls with the chosen number. There are $\binom{4}{2}=6$ ways to do this. Next, place the chosen balls in positions $2 i-1$ and $2 i$. There are 2 ways to do this. Lastly, place the remaining 50 balls in the remaining 50 positions. There are 50 ! ways to do this. Then, the total number of permutations that have balls with the same number in positions $2 i-1$ and $2 i$ is $13 \times 6 \times 2 \times 50$!, and

$$
E\left[X_{i}\right]=\frac{13 \times 6 \times 2 \times 50!}{52!}=\frac{3}{51} .
$$

This is the same for all i. Therefore,

$$
E[X]=\frac{26 \times 3}{51}=\frac{78}{51} \approx 1.53
$$

i

