Queen's University

Department of Mathematics and Statistics
MTHE/STAT 353
Midterm Examination February 26, 2021

- THE SOLUTIONS ARE TO BE UPLOADED TO CROWDMARK. You should have received an invitation from Crowdmark to submit your solutions.
- Duration $=120$ minutes +30 minutes to prepare your solutions for upload to Crowdmark and to submit your solutions to Crowdmark.
- Write your solutions using your own paper. A tablet such as an ipad is not allowed. Use a dark lead pencil or pen to write your solutions. Solutions which cannot be read because they are too faint will not be marked.
- Write your student number at the start of each solution and number each solution.
- Total points $=30$. Each question is worth 10 marks. Marks per part question are shown in brackets at the right.
- This is a closed book exam.
- One 8.5 by 11 inch sheet of notes, written on both sides, is permitted.
- A simple calculator is permitted.
- SHOW YOUR WORK CLEARLY. Correct answers without clear work showing how you got there will not receive full marks.

1. Let $Y_{1}, \ldots, Y_{n}(n \geq 2)$ be independent and identically distributed discrete random variables with common pmf $f_{Y}(y)=\left(\frac{1}{2}\right)^{y+1}$ for $y=0,1,2, \ldots$ and $f_{Y}(y)=0$ otherwise (the mean of this distribution is 1$)$. Let $X=\sum_{k=1}^{n-1}\left|Y_{k+1}-Y_{k}\right|(|\cdot|$ is absolute value $)$.
(a) Find $P(X=0)$.
(b) Find $E[X]$.
2. Let $X_{1}, X_{2} . X_{3}$ be independent and identically distributed Exponential (λ) random variables (the Exponential (λ) distribution has pdf $f_{X}(x)=\lambda e^{-\lambda x}$ for $x>0$ and $f_{X}(x)=0$ for $x \leq 0$, and df $F_{X}(x)=1-e^{-\lambda x}$ for $x>0$ and $F_{X}(x)=0$ for $\left.x \leq 0\right)$. Find $P\left(X_{1}+X_{2}+X_{3} \leq \frac{3}{2}\right)$. (I want you to write out the appropriate 3 -dimensional integral and evaluate it).
3. Let $Y_{1}, \ldots, Y_{n}, Z_{1}, \ldots, Z_{n}$ be independent and identically distributed continuous random variables with common pdf f, where $f(t)=\frac{1}{t^{2}} e^{-1 / t}$ for $t>0$ and $f(t)=0$ for $t \leq 0$. Let $X=\min \left\{\max \left(Y_{1}, Z_{1}\right), \ldots, \max \left(Y_{n}, Z_{n}\right)\right\}$.
(a) Find the pdf of X.
(b) The median of the distribution of X is that value m satisfying $P(X \leq m)=\frac{1}{2}$. Find the median when $n=5$.
