Queen's University
Department of Mathematics and Statistics
MTHE/STAT 353
Midterm Examination 2021

- THE SOLUTIONS ARE TO BE UPLOADED TO CROWDMARK. You should have received an invitation from Crowdmark to submit your solutions.
- Duration $=120$ minutes +30 minutes to prepare your solutions for upload to Crowdmark and to submit your solutions to Crowdmark.
- Write your solutions using your own paper. A tablet such as an ipad is not allowed. Use a dark lead pencil or pen to write your solutions. Solutions which cannot be read because they are too faint will not be marked.
- Write your student number at the start of each solution and number each solution.
- Total points $=30$. Each question is worth 10 marks. Marks per part question are shown in brackets at the right.
- This is a closed book exam.
- One 8.5 by 11 inch sheet of notes, written on both sides, is permitted.
- A simple calculator is permitted.
- SHOW YOUR WORK CLEARLY. Correct answers without clear work showing how you got there will not receive full marks.

1. Let X_{1}, X_{2}, X_{3} be independent and identically distributed discrete random variables with common pmf $p_{X}(x)=\left(\frac{1}{2}\right)^{y+1}$ for $x=0,1,2, \ldots$ and $p_{X}(x)=0$ otherwise (the mean of this distribution is 1 and the variance is 2$)$. Consider the points $\left(X_{1}, X_{2}\right)$ and $\left(X_{2}, X_{3}\right)$ in the $x y$-plane.
(a) Find the probability that neither of the points $\left(X_{1}, X_{2}\right)$ or $\left(X_{2}, X_{3}\right)$ fall on the line $y=x$. (I want you to write out an appropriate triple sum and evaluate it).
(b) Find the expected squared Euclidean distance between the points $\left(X_{1}, X_{2}\right)$ and $\left(X_{2}, X_{3}\right)$.
2. Let $X_{1}, X_{2} . X_{3}$ be independent and identically distributed continuous random variables with common pdf $f_{X}(x)=\frac{1}{x^{2}}$ for $x \geq 1$ and $f_{X}(x)=0$ for $x<1$. Find $P\left(X_{1} X_{2} X_{3} \leq e\right)$, where $e=\exp (1)$. (I want you to write out the appropriate 3-dimensional integral and evaluate it. Here's a fact you may find useful: $\left.\frac{d}{d x} \frac{(\ln x)^{2}}{2}=\frac{\ln x}{x}\right)$.
[10]
3. The times to failure of components are independent exponentially distributed random variables with parameter λ (the $\operatorname{Exponential}(\lambda)$ distribution has pdf $f(t)=\lambda e^{-\lambda t}$ for $t>0$ and $f(t)=0$ for $t \leq 0$; df $F(t)=1-e^{-\lambda t}$ for $t>0$ and $F(t)=0$ for $t \leq 0$; and mean $\frac{1}{\lambda}$). Suppose system A consists of two components and fails as soon as one component failes, while system B consists of two components and fails as soon as both components fail. Suppose both systems start with brand new components. Let X denote the lifetime of system A and Y denote the lifetime of system B.
(a) Find $E[X-Y]$.
(b) Find the probability that system B lasts at least twice as long as system A.
