Queen's University
 Department of Mathematics and Statistics
 MTHE/STAT 353
 Midterm Examination Solutions 2021

- THE SOLUTIONS ARE TO BE UPLOADED TO CROWDMARK. You should have received an invitation from Crowdmark to submit your solutions.
- Duration $=120$ minutes +30 minutes to prepare your solutions for upload to Crowdmark and to submit your solutions to Crowdmark.
- Write your solutions using your own paper. A tablet such as an ipad is not allowed. Use a dark lead pencil or pen to write your solutions. Solutions which cannot be read because they are too faint will not be marked.
- Write your student number at the start of each solution and number each solution.
- Total points $=30$. Each question is worth 10 marks. Marks per part question are shown in brackets at the right.
- This is a closed book exam.
- One 8.5 by 11 inch sheet of notes, written on both sides, is permitted.
- A simple calculator is permitted.
- SHOW YOUR WORK CLEARLY. Correct answers without clear work showing how you got there will not receive full marks.

1. Let X_{1}, X_{2}, X_{3} be independent and identically distributed discrete random variables with common pmf $p_{X}(x)=\left(\frac{1}{2}\right)^{y+1}$ for $x=0,1,2, \ldots$ and $p_{X}(x)=0$ otherwise (the mean of this distribution is 1 and the variance is 2). Consider the points $\left(X_{1}, X_{2}\right)$ and $\left(X_{2}, X_{3}\right)$ in the $x y$-plane.
(a) Find the probability that neither of the points $\left(X_{1}, X_{2}\right)$ or $\left(X_{2}, X_{3}\right)$ fall on the line $y=x$. (I want you to write out an appropriate triple sum and evaluate it).
(b) Find the expected squared Euclidean distance between the points $\left(X_{1}, X_{2}\right)$ and $\left(X_{2}, X_{3}\right)$.

Solution:

(a) We want $P\left(\left\{X_{1} \neq X_{2}\right\} \cap\left\{X_{2} \neq X_{3}\right\}\right)$. By independence, the joint pmf of $\left(X_{1}, X_{2}, X_{3}\right)^{T}$ is $p_{X}\left(x_{1}, x_{2}, x_{3}\right)=\left(\frac{1}{2}\right)^{x_{1}+1}\left(\frac{1}{2}\right)^{x_{2}+1}\left(\frac{1}{2}\right)^{x_{3}+1}$ for $x_{1}, x_{2}, x_{3}=0,1,2, \ldots$ and $p_{X}\left(x_{1}, x_{2}, x_{3}\right)=$ 0 otherwise. Summing $p_{X}\left(x_{1}, x_{2}, x_{3}\right)$ over all $\left(x_{1}, x_{2}, x_{3}\right)$ satisfying $x_{1} \neq x_{2}$ and $x_{2} \neq x_{3}$ (it's most convenient to sum over x_{2} in the outer sum), we have

$$
\begin{aligned}
P\left(X_{1} \neq X_{2}, X_{2} \neq X_{3}\right) & =\sum_{x_{2}=0}^{\infty} \sum_{\substack{x_{1}=0 \\
x_{1} \neq x_{2}}}^{\infty} \sum_{x_{3}=0}^{\infty}\left(\frac{1}{2}\right)^{x_{3}=x_{2}} \substack{\left.x_{1}+1 \\
2\\
\right)^{2} \\
x_{2}+1} \\
& =\sum_{x_{2}=0}^{\infty} \sum_{\substack{x_{1}=0 \\
x_{1} \neq x_{2}}}^{\infty}\left(\frac{1}{2}\right)^{x_{1}+1}\left(\frac{1}{2}\right)^{x_{3}+1}\left(1-\left(\frac{1}{2}\right)^{x_{2}+1}\right) \\
& =\sum_{x_{2}=0}^{\infty}\left(\frac{1}{2}\right)^{x_{2}+1}\left(1-\left(\frac{1}{2}\right)^{x_{2}+1}\right)^{2} \\
& =\sum_{x_{2}=0}^{\infty}\left[\left(\frac{1}{2}\right)^{x_{2}+1}-2\left(\frac{1}{2}\right)^{2 x_{2}+2}+\left(\frac{1}{2}\right)^{3 x_{2}+3}\right] \\
& =1-2\left(\frac{1}{2}\right)^{2} \frac{1}{1-1 / 4}+\left(\frac{1}{2}\right)^{3} \frac{1}{1-1 / 8}=1-\frac{2}{3}+\frac{1}{7}=\frac{10}{21} .
\end{aligned}
$$

(b) We want to compute $E\left[\left(X_{1}-X_{2}\right)^{2}+\left(X_{2}-X_{3}\right)^{2}\right]=E\left[\left(X_{1}-X_{2}\right)^{2}\right]+E\left[\left(X_{2}-X_{3}\right)^{2}\right]=$ $2 E\left[\left(X_{1}-X_{2}\right)^{2}\right]$, where the last equality follows because $\left(X_{1}, X_{2}\right)$ and $\left(X_{2}, X_{3}\right)$ are identically distributed. So we can compute the answer as

$$
\begin{aligned}
2 E\left[\left(X_{1}-X_{2}\right)^{2}\right] & \left.=2\left(E\left[X_{1}^{2}\right]-2 E\left[X_{1} X_{2}\right]+E\left[X_{2}^{2}\right]\right)\right) \\
& =2\left(2 E\left[X_{1}^{2}\right]-2 E\left[X_{1}\right] E\left[X_{2}\right]\right) \quad \text { (since } X_{1}, X_{2} \text { are i.i.d.) } \\
& =4 \operatorname{Var}\left(X_{1}\right) \quad\left(\text { since } E\left[X_{1}\right]=E\left[X_{2}\right]\right) \\
& =4 \times 2=8 .
\end{aligned}
$$

2. Let $X_{1}, X_{2} . X_{3}$ be independent and identically distributed continuous random variables with common pdf $f_{X}(x)=\frac{1}{x^{2}}$ for $x \geq 1$ and $f_{X}(x)=0$ for $x<1$. Find $P\left(X_{1} X_{2} X_{3} \leq e\right)$, where $e=\exp (1)$. (I want you to write out the appropriate 3-dimensional integral and evaluate it. Here's a fact you may find useful: $\left.\frac{d}{d x} \frac{(\ln x)^{2}}{2}=\frac{\ln x}{x}\right)$.
[10]

Solution: Since X_{1}, X_{2}, X_{3} are independent with common marginal pdf $f_{X}(x)$, the joint pdf of $\left(X_{1}, X_{2}, X_{3}\right)^{T}$ is $f_{X}\left(x_{1}\right) f_{X}\left(x_{2}\right) f_{X}\left(x_{3}\right)=\frac{1}{x_{1}^{2} x_{2}^{2} x_{3}^{2}}$ for $x_{1}, x_{2}, x_{3} \geq 1$, and is equal to 0 otherwise. $P\left(X_{1} X_{2} X_{3} \leq e\right)$ is found by integrating the joint pdf over all $\left(x_{1}, x_{2}, x_{3}\right)^{T} \in \mathbb{R}^{3}$ that satisfy $x_{1} x_{2} x_{3} \leq e$. This triple integral is evaluated as

$$
\begin{aligned}
P\left(X_{1} X_{2} X_{3} \leq e\right) & =\int_{1}^{e} \int_{1}^{e / x_{3}} \int_{1}^{e /\left(x_{2} x_{3}\right)} \frac{1}{x_{1}^{2}} \frac{1}{x_{2}^{2}} \frac{1}{x_{3}^{2}} d x_{1} d x_{2} d x_{3} \\
& =\int_{1}^{e} \int_{1}^{e / x_{3}}\left[-\left.\frac{1}{x_{1}}\right|_{1} ^{e /\left(x_{2} x_{3}\right)}\right] \frac{1}{x_{2}^{2}} \frac{1}{x_{3}^{2}} d x_{2} d x_{3} \\
& =\int_{1}^{e} \int_{1}^{e / x_{3}}\left(1-\frac{x_{2} x_{3}}{e}\right) \frac{1}{x_{2}^{2}} \frac{1}{x_{3}^{2}} d x_{2} d x_{3} \\
& =\int_{1}^{e}\left[-\left.\frac{1}{x_{2}}\right|_{1} ^{e / x_{3}}\right] \frac{1}{x_{3}^{2}} d x_{3}-\frac{1}{e} \int_{1}^{e}\left[\left.\ln x_{2}\right|_{1} ^{e / x_{3}}\right] \frac{1}{x_{3}} d x_{3} \\
& =\int_{1}^{e}\left(1-\frac{x_{3}}{e}\right) \frac{1}{x_{3}^{2}} d x_{3}-\frac{1}{e} \int_{1}^{e} \ln \left(\frac{e}{x_{3}}\right) \frac{1}{x_{3}} d x_{3} \\
& =1-\frac{1}{e}-\frac{1}{e} \ln e-\frac{1}{e}\left[(\ln e)(\ln e)-\int_{1}^{e} \frac{\ln x_{3}}{x_{3}} d x_{3}\right] \\
& =1-\frac{1}{e}-\frac{1}{e}-\frac{1}{e}+\frac{1}{e} \frac{(\ln e)^{2}}{2}=1-\frac{2.5}{e} \approx .0803 .
\end{aligned}
$$

3. The times to failure of components are independent exponentially distributed random variables with parameter λ (the Exponential (λ) distribution has pdf $f(t)=\lambda e^{-\lambda t}$ for $t>0$ and $f(t)=0$ for $t \leq 0$; df $F(t)=1-e^{-\lambda t}$ for $t>0$ and $F(t)=0$ for $t \leq 0$; and mean $\frac{1}{\lambda}$). Suppose system A consists of two components and fails as soon as one component fails, while system B consists of two components and fails as soon as both components fail. Suppose both systems start with brand new components. Let X denote the lifetime of system A and Y denote the lifetime of system B.
(a) Find $E[X-Y]$.
(b) Find the probability that system B lasts at least twice as long as system A.

Solution:

(a) We wish to find $E[X]$ and $E[Y]$. Let X_{1}, X_{2} denote the lifetimes of the components in system A and let Y_{1}, Y_{2} denote the lifetimes of the components in system B. Then $X=\min \left(X_{1}, X_{2}\right)$ and $Y=\max \left(Y_{1}, Y_{2}\right)$. Since $X_{1}, X_{2}, Y_{1}, Y_{2}$ are independent exponentially distributed random variables with parameter λ, we have that X has pdf $f_{X}(x)=2 f(x)(1-F(x))=2 \lambda e^{-\lambda x} e^{-\lambda x}=2 \lambda e^{-2 \lambda x}$ for $x>0$ and $f_{X}(x)=0$ for $x \leq 0$. The pdf of Y is $f_{Y}(y)=2 f(y) F(y)=2 \lambda e^{-\lambda y}\left(1-e^{-\lambda y}\right)$ for $y>0$ and $f_{Y}(y)=0$ for $y \leq 0$. Note that $X \sim \operatorname{Exponential}(2 \lambda)$ so $E[X]=\frac{1}{2 \lambda}$. The expected value of Y is

$$
E[Y]=\int_{0}^{\infty} y 2 \lambda e^{-\lambda y}\left(1-e^{-\lambda y}\right) d y=\frac{2}{\lambda}-\frac{1}{2 \lambda}=\frac{3}{2 \lambda} .
$$

Then $E[X-Y]=E[X]-E[Y]=\frac{1}{2 \lambda}-\frac{3}{2 \lambda}=-\frac{1}{\lambda}$.
(b) Note that X and Y are independent, so their joint pdf is the product of their marginal pdfs. We want $P(Y \geq 2 X)$. This is the two-dimensional integral

$$
\begin{aligned}
P(Y \geq 2 X) & =\int_{0}^{\infty} \int_{2 x}^{\infty} f_{X}(x) f_{Y}(y) d y d x=\int_{0}^{\infty} f_{X}(x) \int_{2 x}^{\infty} f_{Y}(y) d y d x \\
& =\int_{0}^{\infty} f_{X}(x)\left(1-F_{Y}(2 x)\right) d x=\int_{0}^{\infty} 2 \lambda e^{-2 \lambda x}\left(1-\left(1-e^{-2 \lambda x}\right)^{2}\right) d x \\
& =\int_{0}^{\infty} 2 \lambda e^{-2 \lambda x}\left(2 e^{-2 \lambda x}-e^{-4 \lambda x}\right) d x=\int_{0}^{\infty} 4 \lambda e^{-4 \lambda x} d x-\frac{1}{3} \int_{0}^{\infty} 6 \lambda e^{-6 \lambda x} d x \\
& =1-\frac{1}{3}=\frac{2}{3} .
\end{aligned}
$$

where $F_{Y}(\cdot)$ is the df of Y, given by

$$
F_{Y}(y)=P(Y \leq y)=\left\{\begin{array}{cl}
\left(1-e^{-\lambda y}\right)^{2} & \text { for } y>0 \\
0 & \text { for } y \leq 0
\end{array}\right.
$$

