Queen's University
 Department of Mathematics and Statistics
 MTHE/STAT 353
 Midterm Examination Solutions 2021

- THE SOLUTIONS ARE TO BE UPLOADED TO CROWDMARK. You should have received an invitation from Crowdmark to submit your solutions.
- Duration $=120$ minutes +30 minutes to prepare your solutions for upload to Crowdmark and to submit your solutions to Crowdmark.
- Write your solutions using your own paper. A tablet such as an ipad is not allowed. Use a dark lead pencil or pen to write your solutions. Solutions which cannot be read because they are too faint will not be marked.
- Write your student number at the start of each solution and number each solution.
- Total points $=30$. Each question is worth 10 marks. Marks per part question are shown in brackets at the right.
- This is a closed book exam.
- One 8.5 by 11 inch sheet of notes, written on both sides, is permitted.
- A simple calculator is permitted.
- SHOW YOUR WORK CLEARLY. Correct answers without clear work showing how you got there will not receive full marks.

1. Let $Y_{1}, \ldots, Y_{n}(n \geq 2)$ be independent and identically distributed discrete random variables with common pmf $f_{Y}(y)=\left(\frac{1}{2}\right)^{y+1}$ for $y=0,1,2, \ldots$ and $f_{Y}(y)=0$ otherwise (the mean of this distribution is 1$)$. Let $X=\sum_{k=1}^{n-1}\left|Y_{k+1}-Y_{k}\right|(|\cdot|$ is absolute value $)$.
(a) Find $P(X=0)$.
(b) Find $E[X]$.

Solution:

(a) The event $\{X=0\}$ is the same as the event $\left\{Y_{1}=\ldots=Y_{n}\right\}$. Since Y_{1}, \ldots, Y_{n} are independent their joint pmf is the product of their marginal pmfs. Thus, we have

$$
\begin{aligned}
P(X=0) & =P\left(Y_{1}=\ldots=Y_{n}\right) \\
& =\sum_{y=0}^{\infty} P\left(Y_{1}=y, \ldots, Y_{n}=y\right) \\
& =\sum_{y=0}^{\infty} P\left(Y_{1}=y\right)^{n} \quad\left(\text { since the } Y_{i} \text { s are i.i.d. }\right) \\
& =\sum_{y=0}^{\infty}\left(\left(\frac{1}{2}\right)^{y+1}\right)^{n} \\
& =\left(\frac{1}{2}\right)^{n} \sum_{y=0}^{\infty}\left(\left(\frac{1}{2}\right)^{n}\right)^{y}=\left(\frac{1}{2}\right)^{n} \frac{1}{1-(1 / 2)^{n}}=\frac{1}{2^{n}-1} .
\end{aligned}
$$

(b) By linearity of expectation $E[X]=\sum_{k=1}^{n-1} E\left[\left|Y_{k+1}-Y_{k}\right|\right]$. To compute $E\left[\left|Y_{k+1}-Y_{k}\right|\right]$ we divide the set of possible $\left(y_{k}, y_{k+1}\right)$ pairs into those for which $y_{k+1}>y_{k}$ and those for which $y_{k+1}<y_{k}$ (those for which $y_{k+1}=y_{k}$ will not enter into the expectation as the absolute difference will contribute 0). Also, by symmetry, the sums over these 2 sets will be the same. We have

$$
\begin{aligned}
E\left[\left|Y_{k+1}-Y_{k}\right|\right] & =2 \sum_{y_{k}=0}^{\infty} \sum_{y_{k+1}=y_{k}+1}^{\infty}\left(y_{k+1}-y_{k}\right)\left(\frac{1}{2}\right)^{y_{k}+1}\left(\frac{1}{2}\right)^{y_{k+1}+1} \\
& =2 \sum_{y_{k}=0}^{\infty}\left(\frac{1}{2}\right)^{y_{k}+1} \sum_{j=1}^{\infty} j\left(\frac{1}{2}\right)^{y_{k}+1+j} \quad\left(j=y_{k+1}-y_{k}\right) \\
& =2 \sum_{y_{k}=0}^{\infty}\left(\frac{1}{2}\right)^{2 y_{k}+1} \quad \text { (the remaining sum is equal to } 1 \text {) } \\
& =\sum_{y_{k}=0}^{\infty}\left(\frac{1}{4}\right)^{y_{k}}=\frac{1}{1-1 / 4}=\frac{4}{3} .
\end{aligned}
$$

Since this does not depend on k we have $E[X]=\frac{4(n-1)}{3}$.
2. Let $X_{1}, X_{2} \cdot X_{3}$ be independent and identically distributed Exponential (λ) random variables (the Exponential (λ) distribution has pdf $f_{X}(x)=\lambda e^{-\lambda x}$ for $x>0$ and $f_{X}(x)=0$ for $x \leq 0$, and df $F_{X}(x)=1-e^{-\lambda x}$ for $x>0$ and $F_{X}(x)=0$ for $\left.x \leq 0\right)$. Find $P\left(X_{1}+X_{2}+X_{3} \leq \frac{3}{2}\right)$. (I want you to write out the appropriate 3-dimensional integral and evaluate it).
[10]
Solution: The appropriate 3-dimensional integral is (by symmetry every order in which the integrations are done is equally easy)

$$
\begin{aligned}
& P\left(X_{1}+X_{2}+X_{3} \leq \frac{3}{2}\right) \\
= & \int_{0}^{3 / 2} \int_{0}^{3 / 2-x_{3}} \int_{0}^{3 / 2-x_{2}-x_{3}} f_{X}\left(x_{1}\right) f_{X}\left(x_{2}\right) f_{X}\left(x_{3}\right) d x_{1} d x_{2} d x_{3} \\
= & \int_{0}^{3 / 2} \int_{0}^{3 / 2-x_{3}} f_{X}\left(x_{2}\right) f_{X}\left(x_{3}\right)\left(1-e^{-\lambda\left(3 / 2-x_{2}-x_{3}\right)}\right) d x_{2} d x_{3} \\
= & \int_{0}^{3 / 2} \lambda e^{-\lambda x_{3}} \int_{0}^{3 / 2-x_{3}}\left[\lambda e^{-\lambda x_{2}}-\lambda e^{-\lambda\left(3 / 2-x_{3}\right)}\right] d x_{2} d x_{3} \\
= & \int_{0}^{3 / 2} \lambda e^{-\lambda x_{3}}\left[1-e^{-\lambda\left(3 / 2-x_{3}\right)}-\lambda\left(\frac{3}{2}-x_{3}\right) e^{-\lambda\left(3 / 2-x_{3}\right)}\right] d x_{3} \\
= & 1-e^{-3 \lambda / 2}-\frac{3 \lambda}{2} e^{-3 \lambda / 2}-\left(\frac{3 \lambda}{2}\right)^{2} e^{-3 \lambda / 2}+\lambda^{2} e^{-3 \lambda / 2} \frac{(3 / 2)^{2}}{2} \\
= & 1-e^{-3 \lambda / 2}\left[1+\frac{3 \lambda}{2}+\frac{1}{2}\left(\frac{3 \lambda}{2}\right)^{2}\right] .
\end{aligned}
$$

3. Let $Y_{1}, \ldots, Y_{n}, Z_{1}, \ldots, Z_{n}$ be independent and identically distributed continuous random variables with common pdf f, where $f(t)=\frac{1}{t^{2}} e^{-1 / t}$ for $t>0$ and $f(t)=0$ for $t \leq 0$. Let $X=\min \left\{\max \left(Y_{1}, Z_{1}\right), \ldots, \max \left(Y_{n}, Z_{n}\right)\right\}$.
(a) Find the pdf of X.
(b) The median of the distribution of X is that value m satisfying $P(X \leq m)=\frac{1}{2}$. Find the median when $n=5$.

Solution:

(a) First, the common df of the Y_{i} 's and Z_{i} 's is $F(t)=e^{-1 / t}$ for $t>0$ and $F(t)=0$ for $t \leq 0$. Let $W_{i}=\max \left(Y_{i}, Z_{i}\right)$, for $i=1, \ldots, n$. Then W_{i} has df $F_{W}(t)=$ $F(t)^{2}=e^{-2 / t}$ for $t>0$ and $F_{W}(t)=0$ for $t \leq 0$. The pdf of W_{i} is then $f_{W}(t)=\frac{2}{t^{2}} e^{-2 / t}$ for $t>0$ and $f_{W}(t)=0$ for $t \leq 0$. Next, note that W_{1}, \ldots, W_{n} are mutually independent. Then the pdf of $X=\min \left(W_{1}, \ldots, W_{n}\right)$ is

$$
f_{X}(x)=n f_{W}(x)\left(1-F_{W}(x)\right)^{n-1}=\frac{2 n}{x^{2}} e^{-2 / x}\left(1-e^{-2 / x}\right)^{n-1}
$$

for $x>0$ and $f_{X}(x)=0$ for $x \leq 0$.
(b) The df of X is $F_{X}(x)=1-\left(1-F_{W}(x)\right)^{n}=1-\left(1-e^{-2 / x}\right)^{n}$ for $x>0$ and $F_{X}(x)=0$ for $x \leq 0$. The median m of the distribution of X when $n=5$ satisfies

$$
\begin{aligned}
1-\left(1-e^{-2 / m}\right)^{5}=\frac{1}{2} & \Leftrightarrow\left(\frac{1}{2}\right)^{1 / 5}=1-e^{-2 / m} \\
& \Leftrightarrow e^{-2 / m}=1-\left(\frac{1}{2}\right)^{1 / 5} \\
& \Leftrightarrow \frac{2}{m}=-\ln \left(1-\left(\frac{1}{2}\right)^{1 / 5}\right) \\
& \Leftrightarrow m=\frac{2}{-\ln \left(1-.5^{1 / 5}\right)} \approx .978
\end{aligned}
$$

