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STAT/MTHE 353: Probability II

Administrative details

Instructor: Tamas Linder

Email: linder@mast.queensu.ca

O�ce: Je↵ery 401

Phone: 613-533-2417

O�ce hours: Tuesday 10–11 am

Class web site: http://www.mast.queensu.ca/⇠stat353

All homework and solutions will be posted here.

Check frequently for new announcements
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Text: Fundamentals of Probability with Stochastic Processes, 3rd

ed., by S. Ghahramani, Prentice Hall.

Lecture slides will be posted on the class web site. The slides are not

self-contained; they only cover parts of the material.

Homework: 9 HW assignments.

Homework due Friday in class.

No late homework will be accepted!

Evaluation: the better of

Homework 20%, midterm 20%, final exam 60%

Homework 20%, final exam 80%

Midterm Exam: Friday, February 17 in class (9:30 - 10:30 am)
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Review

S is the sample space;

P is a probability measure on S: P is a function from a collection of

subsets of S (called the events) to [0, 1]. P satisfies the axioms of

probability;

A random variable is a function X : S ! R. The distribution of X

is the probability measure associated with X:

P (X 2 A) = P ({s : X(s) 2 A}), for any “reasonable” A ⇢ R.
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Here are the usual ways to describe the distribution of X:

Distribution function: F : R ! [0, 1] defined by

F

X

(x) = P (X  x).

It is always well defined.

Probability mass function, or pmf: If X is a discrete random

variable, then its pmf p
X

: R ! [0, 1] is

p

X

(x) = P (X = x), for all x 2 R.

Note: : since X is discrete, there is a countable set X ⇢ R such

that p
X

(x) = 0 if x /2 X .

Probability density function, or pdf: If X is a continuous random

variable, then its pdf f
X

: R ! [0,1) is a function such that

P (X 2 A) =

Z

A

f(x) dx for all reasonable A ⇢ R.
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Joint Distributions

If X1, . . . , Xn

are random variables (defined on the same probability

space), we can think of

X = (X1, . . . , Xn

)T

as a random vector. (In this course (x1, . . . , xn

) is a row vector and

its transpose, (x1, . . . , xn

)T , is a column vector.)

Thus X is a function X : S ! Rn.

Distribution of X: For “reasonable” A ⇢ Rn, we define

P (X 2 A) = P ({s : X(s) 2 A}).

X is called a random vector or vector random variable.
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We usually describe the distribution of X by a function on Rn:

Joint cumulative distribution function (jcdf) is a the function defined

for x = (x1, . . . , xn

) 2 Rn by

F

X

(x) = F

X1,...,Xn(x1, . . . , xn

)

= P (X1  x1, X2  x2, . . . , Xn

 x

n

)

= P ({X1  x1} \ {X2  x2} \ · · · \ {X
n

 x

n

})

= P

⇣
X 2

nQ
i=1

(�1, x

i

]
⌘

If X1, . . . , Xn

are all discrete random variables, then their joint

probability mass function (jpmf) is

p

X

(x) = P (X = x)

= P (X1 = x1, X2 = x2, . . . , Xn

= x

n

), x 2 Rn

The finite or countable set of x values such that p
X

(x) > 0 is called

the support of the distribution of X.
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Properties of joint pmf:

(1) 0  p

X

(x)  1 for all x 2 Rn.

(2)
X

x2X
p

X

(x) = 1, where X is the support of X.

If X1, . . . , Xn

are continuous random variables and there exists

f

X

: Rn ! [0,1) such that for any “reasonable” A ⇢ Rn,

P (X 2 A) =

Z
· · ·
Z

A

f

X

(x1, . . . , xn

) dx1 · · · dxn

then

The X1, . . . , Xn

are called jointly continuous;

f

X

(x) = f

X1,...,Xn(x1, . . . , xn

) is called the joint probability density

function (jpdf) of X.
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Comments:

(a) The joint pdf can be redefined on any set in Rn that has zero

volume. This will not change the distribution of X.

(b) The joint pdf may not exists even when each X1, . . . , Xn

are all

(individually) continuous random variables.

Example: . . .
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Properties of joint pdf:

(1) f

X

(x) � 0 for all x 2 Rn

(2)

Z

Rn

f

X

(x) dx =

Z
· · ·
Z

Rn

f

X

(x1, . . . , xn

) dx1 · · · dxn

= 1

The distributions for the various subsets of {X1, . . . , Xn

} can be

recovered from the joint distribution.

These distributions are called the joint marginal distributions (here

“marginal” is relative to the full set {X1, . . . , Xn

}.
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Marginal joint probability mass functions

Assume X1, . . . , Xn

are discrete. Let 0 < k < n and

{i1, . . . , ik} ⇢ {1, . . . , n}

Then the marginal joint pmf of (X
i1 , . . . , Xik) can be obtained from

p

X

(x) = p

X1,...,Xn(x1, . . . , xn

) as

p

Xi1 ,...,Xik
(x

i1 , . . . , xik)

= P (X
i1 = x

i1 , . . . , Xik = x

ik)

= P (X
i1 = x

i1 , . . . , Xik = x

ik , Xj1 2 R, . . . , X
jn�k 2 R)

where {j1, . . . , jn�k

} = {1, . . . , n} \ {i1, . . . , ik}

=
X

xj1

· · ·
X

xjn�k

p

X1,...,Xn(x1, . . . , xn

)

Thus the joint pmf of X
i1 , . . . , Xik is obtained by summing p

X1,...,Xn

over all possible values of the complementary variables x
j1 , . . . , xjn�k .
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Example: In an urn there are n

i

objects of type i for i = 1, . . . , r. The

total number of objects is n1 + · · ·+ n

r

= N . We randomly draw n

objects (n  N) without replacement. Let X
i

= # of objects of type i

drawn. Find the joint pmf of (X1, . . . , Xr

). Also find the marginal

distribution of each X

i

, i = 1, . . . , r.

Solution: . . .
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Marginal joint probability density functions

Let X1, . . . , Xn

be jointly continuous with pdf f
X

= f . As before, let

{i1, . . . , ik} ⇢ {1, . . . , n}, {j1, . . . , jn�k

} = {1, . . . , n} \ {i1, . . . , ik}

Let B ⇢ Rk. Then

P

�
(X

i1 , . . . , Xik) 2 B

�

= P

✓
(X

i1 , . . . , Xik) 2 B, X

j1 2 R, . . . , X
jn�k 2 R

◆

=

Z
· · ·
Z

B

0

@
Z

· · ·
Z

Rn�k

f(x1, . . . , xn

) dx
j1 · · · dxjn�k

1

A
dx

i1 · · · dxik

That is, we “integrate out” the variables complementary to x

i1 , . . . , xik .
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In conclusion, for {i1, . . . , ik} ⇢ {1, . . . , n},

f

Xi1 ,...,Xik
(x

i1 , . . . , xik) =

Z
· · ·
Z

Rn�k

f(x1, . . . , xn

) dx
j1 · · · dxjn�k

where {j1, . . . , jn�k

} = {1, . . . , n} \ {i1, . . . , ik},

Note: In both the discrete and continuous cases it is important to always

know where the joint pmf p and joint pdf f are zero and where they are

positive. The latter set is called the support of p or f .
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Example: Suppose X1, X2, X3 are jointly continuous with jpdf

f(x1, x2, x3) =

8
<

:
1 if 0  x

i

 1, i = 1, 2, 3

0 otherwise

Find the marginal pdfs of X
i

, i = 1, 2, 3, and the marginal jpdfs of

(X
i

, X

j

), i 6= j.

Solution: . . .

Example: With X1, X2, X3 as in the previous problem, consider the

quadratic equation

X1y
2 +X2y +X3 = 0

in the variable y. Find the probability that both roots are real.

Solution: . . .
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Marginal joint cumulative distribution functions

In all cases (discrete, continuous, or mixed),

F

Xi1 ,...,Xik
(x

i1 , . . . , xik)

= P (X
i1  x

i1 , . . . , Xik  x

ik)

= P (X
i1  x

i1 , . . . , Xik  x

ik , Xj1 < 1, . . . , X

jn�k < 1)

= lim
xj1!1

· · · lim
xjn�k

!1
F

X1,...,Xn(x1, . . . , xn

)

That is, we let the variables complementary to x

i1 , . . . , xik converge

to 1
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Independence

Definition The random variables X1, . . . , Xn

are independent if for all

“reasonable” A1, . . . , An

⇢ R,

P (X1 2 A1, . . . , Xn

2 A

n

) = P (X1 2 A1)⇥ · · ·⇥ P (X
n

2 A

n

)

Remarks:

(i) Independence among X1, . . . , Xn

usually arises in a probability

model by assumption. Such an assumption is reasonable if the

outcome of X
i

“has no e↵ect” on the outcomes of the other X
j

’s.

(ii) The also definition applies to any n random quantities X1, . . . , Xn

.

E.g., each X

i

can itself be a vector r.v. In this case the A

i

’s have to

be appropriately modified.

STAT/MTHE 353: Multiple Random Variables 17 / 34

(iii) Suppose g

i

: R ! R, i = 1, . . . , n are “reasonable” functions. Then

if X1, . . . , Xn

are independent, then so are g1(X1), . . . , gn(Xn

).

Proof For A1, . . . , An

⇢ R,

P

�
g1(X1) 2 A1, . . . , gn(Xn

) 2 A

n

�

= P

�
X1 2 g

�1
1 (A1), . . . , Xn

2 g

�1(A
n

)
�

where g

�1
i

(A
i

) = {x
i

: g
i

(x
i

) 2 A

i

}

= P

�
X1 2 g

�1
1 (A1)

�
⇥ · · ·⇥ P

�
X

n

2 g

�1(A
n

)
�

= P

�
g1(X1) 2 A1

�
⇥ · · ·⇥ P

�
g

n

(X
n

) 2 A

n

)

Since the sets A
i

were arbitrary, we obtain that g1(X1), . . . , gn(Xn

)

are independent.

Note: If we only know that X
i

and X

j

are independent for all i 6= j, it

does not follow that X1, . . . , Xn

are independent.
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Independence and cdf, pmf, pdf

Theorem 1

Let F be the joint cdf of the random variables X1, . . . , Xn

. Then

X1, . . . , Xn

are independent if and only if F is the product of the

marginal cdfs of the X

i

, i.e., for all (x1, . . . , xn

) 2 Rn,

F (x1, . . . , xn

) = F

X1(x1)FX2(x2) · · ·FXn(xn

)

Proof: If X1, . . . , Xn

are independent, then

F (x1, . . . , xn

) = P (X1  x1, X2  x2, . . . , Xn

 x

n

)

= P (X1  x1)P (X2  x2) · · ·P (X
n

 x

n

)

= F

X1(x1)FX2(x2) · · ·FXn(xn

)

The converse that F (x1, . . . , xn

) =
nQ

i=1
F

Xi(xi

) for all (x1, . . . , xn

) 2 Rn

implies independence is out the the scope of this class. ⇤
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Theorem 2

Let X1, . . . , Xn

be discrete r.v.’s with joint pmf p. Then X1, . . . , Xn

are

independent if and only if p is the product of the marginal pmfs of the

X

i

, i.e., for all (x1, . . . , xn

) 2 Rn,

p(x1, . . . , xn

) = p

X1(x1)pX2(x2) · · · pXn(xn

)

Proof: If X1, . . . , Xn

are independent, then

p(x1, . . . , xn

) = P (X1 = x1, X2 = x2, . . . , Xn

= x

n

)

= P (X1 = x1)P (X2 = x2) · · ·P (X
n

= x

n

)

= p

X1(x1)pX2(x2) · · · pXn(xn

)
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Proof cont’d: Conversely, suppose that p(x1, . . . , xn

) =
nQ

i=1
p

Xi(xi

) for

any x1, . . . , xn

. Then, for any A1, A2, . . . , An

⇢ R,

P (X1 2 A1, . . . , Xn

2 A

n

) =
X

x12A1

· · ·
X

xn2An

p(x1, . . . , xn

)

=
X

x12A1

· · ·
X

xn2An

p

X1(x1) · · · pXn(xn

)

=

 
X

x12A1

p

X1(x1)

! 
X

x22A2

p

X2(x2)

!
· · ·
 
X

xn2An

p

Xn(xn

)

!

= P (X1 2 A1)P (X2 2 A2) · · ·P (X
n

2 A

n

)

Thus X1, . . . , Xn

are independent. ⇤
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Theorem 3

Let X1, . . . , Xn

be jointly continuous r.v.’s with joint pdf f . Then

X1, . . . , Xn

are independent if and only if f is the product of the

marginal pdfs of the X

i

, i.e., for all (x1, . . . , xn

) 2 Rn,

f(x1, . . . , xn

) = f

X1(x1)fX2(x2) · · · fXn(xn

).

Proof: Assume f(x1, . . . , xn

) =
nQ

i=1
f

Xi(xi

) for any x1, . . . , xn

.Then for

any A1, A2, . . . , An

⇢ R,

P (X1 2 A1, . . . , Xn

2 A

n

) =

Z

A1

· · ·
Z

An

f(x1, . . . , xn

) dx1 · · · dxn

=

Z

A1

· · ·
Z

An

f

X1(x1) · · · fXn(xn

) dx1 · · · dxn

=

 Z

A1

f

X1(x1) dx1

!
· · ·
 Z

An

f

Xn(xn

) dx
n

!

= P (X1 2 A1)P (X2 2 A2) · · ·P (X
n

2 A

n

)

so X1, . . . , Xn

are independent.
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Proof cont’d: For the converse, note that

F (x1, . . . , xn

) = P (X1  x1, X2  x2, . . . , Xn

 x

n

)

=

Z
x1

�1
· · ·
Z

xn

�1
f(t1, . . . , tn) dt1 · · · dtn

By the fundamental theorem of calculus

@

n

@x1 · · · @xn

F (x1, . . . , xn

) = f(x1, . . . , xn

)

(assuming f is “nice enough”).

If X1, . . . , Xn

are independent, then F (x1, . . . , xn

) =
nQ

i=1
F

Xi(xi

). Thus

f(x1, . . . , xn

) =
@

n

@x1 · · · @xn

F (x1, . . . , xn

)

=
@

n

@x1 · · · @xn

F

X1(x1) · · ·FXn(xn

)

= f

X1(x1) · · · fXn(xn

) ⇤
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Example: . . .
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Expectations Involving Multiple Random Variables

Recall that the expectation of a random variable X is

E(X) =

8
>><

>>:

X

x

xp(x) if X is discrete

Z 1

�1
xf(x) dx if X is continuous

if the sum or the integral exist in the sense that
P

x

|x|p(x) < 1 orR1
�1 |x|f(x) dx < 1.

Example: . . .
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If X = (X1, . . . , Xn

)T is a random vector, we sometimes use the

notation

E(X) =
�
E(X1), . . . , E(X

n

)
�
T

For X1, . . . , Xn

discrete, we still have E(X) =
P

x

xp(x) with the

understanding that

X

x

xp(x) =
X

(x1,...,xn)

(x1, . . . , xn

)T p(x1, . . . , xn

)

=
⇣X

x1

x1pX1(x1),
X

x2

x2pX2(x2), . . . ,
X

xn

x

n

p

Xn(xn

)
⌘
T

=
�
E(X1), . . . , E(X

n

)
�
T

Similarly, for jointly continuous X1, . . . , Xn

,

E(X) =

Z

Rn

xf(x) dx

=

Z

Rn

(x1, . . . , xn

)T f(x1, . . . , xn

) dx1 · · · dxn
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Theorem 4 (“Law of the unconscious statistician”)

Suppose Y = g(X) for some function g : Rn ! Rk. Then

E(Y ) =

8
>><

>>:

X

x

g(x)p(x) if X1, . . . , Xn

are discrete

Z

Rn

g(x)f(x) dx if X1, . . . , Xn

are jointly continuous

Proof: We only prove the discrete case. Since X = (X1, . . . , Xn

) can

only take a countable number of values with positive probability, the

same is true for

(Y1, . . . , Yk

)T = Y = g(X)

so Y1, . . . , Yk

are discrete random variables.
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Proof cont’d: Thus

E(Y ) =
X

y

yP (Y = y) =
X

y

yP (g(X) = y)

=
X

y

y

X

x:g(x)=y

P (X = x)

=
X

y

X

x:g(x)=y

g(x)P (X = x)

=
X

x

g(x)P (X = x)

=
X

x

g(x)p(x) ⇤

Example: Linearity of expectation. . .

E(a0 + a1X1 + · · · a
n

X

n

) = a0 + a1E(X1) + · · ·+ a

n

E(X
n

)
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Example: Expected value of a binomial random variable. . .

Example: Suppose we have n bar magnets, each having negative polarity

at one end and positive polarity at the other end. Line up the magnets

end-to-end in such a way that the orientation of each magnet is random

(the two choices are equally likely independently of the others). On the

average, how many segments of magnets that stick together do we

obtain?

Solution: . . .
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Transformation of Multiple Random Variables

Suppose X1, . . . , Xn

are jointly continuous with joint pdf

f(x1, . . . , xn

).

Let h : Rn ! Rn be a continuously di↵erentiable and one-to-one

(invertible) function whose inverse g is also continuously

di↵erentiable. Thus h is given by (x1, . . . , xn

) 7! (y1, . . . , yn), where

y1 = h1(x1, . . . , xn

), y2 = h2(x1, . . . , xn

), . . . , y

n

= h

n

(x1, . . . , xn

)

We want to find the joint pdf of the vector Y = (Y1, . . . , Yn

)T ,

where
Y1 = h1(X1, . . . , Xn

)

Y2 = h2(X1, . . . , Xn

)
...

Y

n

= h

n

(X1, . . . , Xn

)
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Let g : Rn ! Rn denote the inverse of h. Let B ⇢ Rn be a “nice” set.

We have

P

�
(Y1, . . . , Yn

) 2 B

�
= P

�
h(X) 2 B

�
= P

�
(X1, . . . , Xn

) 2 A

�

where A = {x 2 Rn : h(x) 2 B} = h

�1(B) = g(B).

The multivariate change of variables formula for x = g(y) implies that

P

�
(X1, . . . , Xn

) 2 A

�
=

Z
· · ·
Z

g(B)

f(x1, . . . , xn

) dx1 · · · dxn

=

Z
· · ·
Z

B

f

�
g1(y1, . . . , yn), . . . , gn(y1, . . . , yn)

�
|J

g

(y1, . . . , yn)| dy1 · · · dyn

=

Z
· · ·
Z

B

f(g(y))|J
g

(y)| dy

where J

g

is the Jacobian of the transformation g.
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We have shown that for “nice” B ⇢ Rn

P

�
(Y1, . . . , Yn

) 2 B

�
=

Z

B

f(g(y))|J
g

(y)| dy

This implies the following:

Theorem 5 (Transformation of Multiple Random Variables)

Suppose X1, . . . , Xn

are jointly continuous with joint pdf f(x1, . . . , xn

).

Let h : Rn ! Rn be a continuously di↵erentiable and one-to-one

function with continuously di↵erentiable inverse g. Then the joint pdf of

Y = (Y1, . . . , Yn

)T = h(X) is

f

Y

(y1, . . . , yn) = f

�
g1(y1, . . . , yn), . . . , gn(y1, . . . , yn)

�
|J

g

(y1, . . . , yn)|.
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Example: Suppose X = (X1, . . . , Xn

)T has joint pdf f and let

Y = AX, where A is an invertible n⇥ n (real) matrix. Find f

Y

.

Solution: . . .

Often we are interested in the pdf of just a single function of

X1, . . . , Xn

, say Y1 = h1(X1, . . . , Xn

).

(1) Define Y

i

= h

i

(X1, . . . , Xn

), i = 2, . . . , n in such a way that the

mapping h = (h1, . . . , hn

) satisfies the conditions of the theorem (h

has an inverse g which is continuously di↵erentiable).

Then the theorem gives the joint pdf f
Y

(y1, . . . , yn) and we obtain

f

Y1(y1) by “integrating out” y2, . . . , yn:

f

Y1(y1) =

Z
· · ·
Z

Rn�1

f

Y

(y1, . . . , yn) dy2 . . . dyn

A common choice is Y
i

= X

i

, i = 2, . . . , n.
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(2) Often it is easier to directly compute the cdf of Y1:

F

Y1(y) = P (Y1  y) = P

�
h1(X1, . . . , Xn

)  y

�

= P

�
(X1, . . . , Xn

) 2 A

y

�

where A

y

= {(x1, . . . , xn

) : h(x1, . . . , xn

)  y}

=

Z
· · ·
Z

Ay

f(x1, . . . , xn

) dx1 · · · dxn

Di↵erentiating F

Y1 we obtain the pdf of Y1.

Example: Let X1, . . . , Xn

be independent with common distribution

Uniform(0, 1). Determine the pdf of Y = min(X1, . . . , Xn

).

Solution: . . .
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