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Multinomial Distribution

Consider an experiment with r possible outcomes such that the

probability of the ith outcome is pi, i = 1, . . . , r, where

p1 + p2 + · · ·+ pr = 1 (generalization of a Bernoulli trial).

Repeat the experiment independently n times and let

Xi = # of outcomes of type i in the n trials

The random variables (X1, X2, . . . , Xr) are said to have a

multinomial distribution with parameters n and (p1, . . . , pr).

Note that all the Xi take nonnegative integer values and

X1 +X2 + · · ·+Xr = n.
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Joint pmf of multinomial random variables

Let x1, . . . , xr 2 Z+ such that x1 + · · ·+ xr = n. Then

P (X1 = x1, X2 = x2, . . . , Xr = xr) = Cnp
x1
1 px2

2 · · · pxr
r

where Cn is the number of sequences of outcomes of length n that

have x1 outcomes of type 1, x2 outcomes of type 2,. . . , xr

outcomes of type r.

Let’s use the generalized counting principle: There are

�
n
x1

�
ways of

choosing the x1 positions for type 1 outcomes. For each such

choice, there are

�
n�x1

x2

�
ways of choosing the x2 positions for type 2

outcomes, . . . For each choice of the positions of the type 1 . . . r� 1

objects there are

�
n�x1�...�xr�1

xr

�
= 1 ways of choosing the xr

positions for type r outcomes.
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Thus

Cn =

✓
n

x1

◆✓
n� x1

x2

◆
· · ·
✓
n� x1 � . . .� xr�1

xr

◆

=
n!

x1!x2! · · ·xr!

=

✓
n

x1, x2, . . . , xr

◆
(multinomial coe�cient)

We obtain

P (X1 = x1, X2 = x2, . . . , Xr = xr) =

✓
n

x1, x2, . . . , xr

◆
px1
1 px2

2 · · · pxr
r

for any x1, x2, . . . , xr 2 Z+ with x1 + x2 + · · ·+ xn = n.
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Noting that Xr = n�
Pr�1

i=1 Xi, and pr = 1�
Pr�1

i=1 pi we can

equivalently describe the multinomial distribution by the distribution

of (X1, . . . , Xr�1):

P (X1 = x1, . . . , Xr�1 = xr�1)

=
n!

x1! · · ·xr�1!
�
n�

Pr�1
i=1 xi

�
!
px1
1 · · · pxr�1

r�1

�
1�

Pr�1
i=1 pi

�n�Pr�1
i=1 xi

for all x1, . . . , xr�1 2 Z+ with x1 + · · ·+ xr�1  n.

Note: For r = 2 this is the usual way to write the Binomial(n, p)

distribution. In this case p = p1 and p2 = 1� p.
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The joint marginal pmfs can be easily obtained from combinatorial

considerations. For {i1, . . . , ik} ⇢ {1, . . . , r} we want the joint pmf

of (Xi1 , . . . , Xik). Let’s use the common label O for all outcomes

not in {i1, . . . , ik}. Thus we have outcomes i1, . . . , ik, and O with

probabilities pi1 , . . . , pik and pO = 1� pi1 � · · ·� pik .

Then from the second representation of the multinomial pmf:

P (Xi1 = xi1 , . . . , Xik = xik)

=
n!

xi1 ! · · ·xik !
�
n�

Pk
j=1 xij

�pxi1
i1

· · · pxik
ik

�
1�

Pk
j=1pij

�n�Pk
j=1 xij

for all xi1 , . . . , xik 2 Z+ with xi1 + · · ·+ xik  n.

From this we find that the marginal pdf of Xi is Binomial(n, pi):

P (Xi = xi) =
n!

xi!(n� xi)!
pxi
i (1� pi)

n�xi , xi = 0, . . . , n
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Gamma Distribution

Definition A continuous r.v. X is said to have a gamma distribution

with parameters r > 0 and � > 0 if its pdf is given by

f(x) =

8
><

>:

�r

�(r)
xr�1e��x, if x > 0,

0 otherwise.

where �(r) is the gamma function defined for r > 0 by

�(r) =

Z 1

0
yr�1e�y dy.

Notation: X ⇠ Gamma(r,�)
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Properties of the gamma function

(1) �(1/2) =
p
⇡.

Proof:

�(1/2) =

Z 1

0

1
p
y
e�y dy (change of variable y = u2/2)

=

Z 1

0

p
2

u
e�u2/2u du (dy = u du)

=
p
2
p
2⇡

Z 1

0

1p
2⇡

e�u2/2 du

| {z }
P (Z>0)=1/2, where Z ⇠ N(0, 1)

= 2
p
⇡
1

2
=

p
⇡. ⇤
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(2) �(r) = (r � 1)�(r � 1) for r > 1.

Proof:

�(r) =

Z 1

0
yr�1e�y dy (integration by parts:

u = yr�1
, dv = e�y dy)

=
⇥
�yr�1e�y

⇤1
0

+

Z 1

0
(r � 1)yr�2e�y dy

= (r � 1)

Z 1

0
yr�2e�y dy

= (r � 1)�(r � 1). ⇤

Corollary: If r is a positive integer, then �(r) = (r � 1)!

Proof: Noting that �(1) =
R1
0 e�y dy = 1,

�(r) = (r � 1)�(r � 1) = (r � 1)(r � 2)�(r � 2) = . . .

= (r � 1)(r � 2) · · · 2 · 1 · �(1) = (r � 1)! ⇤
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Moments E(Xk): For X ⇠ Gamma(r,�) and k � 1 an integer,

E(Xk) =

Z 1

0
xk

✓
�r

�(r)
xr�1e��x

◆
dx

=
�r

�(r)

Z 1

0
xr+k�1e��x dx

=
�r

�(r)

�(r + k)

�r+k

Z 1

0

�r+k

�(r + k)
xr+k�1e��x dx

=
�(r + k)

�(r)�k
=

(r + k � 1)�(r + k � 1)

�(r)�k

=
(r + k � 1)(r + k � 2) · · · r�(r)

�(r)�k

=
(r + k � 1)(r + k � 2) · · · r

�k

For k = 1 we get E(X) = r
� ; for k = 2, E(X2) = (r+1)r

�2 , so

Var(X) =
(r + 1)r

�2
�
⇣ r
�

⌘2
=

r

�2
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Special Cases

If r = 1, then f(x) = �e��x
, x > 0, so X ⇠ Exp(�), i.e, X has the

exponential distribution with parameter �. Thus

Exp(�) = Gamma(1,�)

If r = k/2 for some positive integer k and � = 1/2, then

f(x) =
(1/2)k/2

�(k/2)
xk/2�1e�x/2, x > 0.

This is called the �2
(chi-squared) distribution with k degrees of

freedom (�2
k).

Example: . . .
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Beta function

Let ↵,� > 0 and consider

�(↵)�(�) =

✓Z 1

0
x↵�1e�x dx

◆✓Z 1

0
y��1e�y dy

◆

=

Z 1

0

Z 1

0
x↵�1y��1e�(x+y) dxdy.

Use change of variables u = x+ y, v = x/(x+ y) with inverse

x = uv, y = u� uv = (1� v)u.

The region {x > 0, y > 0} is mapped onto {u > 0, 0 < v < 1}. The
Jacobian of the inverse is

J(u, v) = det

"
@x
@u

@x
@v

@y
@u

@y
@v

#
= det

"
v u

1� v �u

#
= � vu� (1� v)u = �u
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We obtain

�(↵)�(�) =

Z 1

0

Z 1

0
x↵�1y��1e�(x+y) dxdy

=

Z 1

0

Z 1

0
(uv)↵�1(u(1� v))��1e�u|� u| dudv

=

Z 1

0

Z 1

0
u↵+��1e�uv↵�1(1� v))��1 dudv

=

 Z 1

0
u↵+��1e�u du

| {z }
�(↵+�)

! Z 1

0
v↵�1(1� v)��1 dv

!

Define the beta function of two positive arguments ↵ and � by

B(↵,�) =

Z 1

0
v↵�1(1� v)��1 dv

We have obtained

B(↵,�) =
�(↵)�(�)

�(↵+ �)
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Example: Suppose X1 ⇠ Gamma(r1,�) and X2 ⇠ Gamma(r2,�) are

independent. Find the pdf of U = X1 +X2.

Solution: . . .

Conclusion: the family of gamma distributions with given � is closed

under sums of independent random variables.
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We have seen that if X1 ⇠ Gamma(r1,�) and X2 ⇠ Gamma(r2,�)

are independent, then X1 +X2 ⇠ Gamma(r1 + r2,�).

Inductively, if X1, . . . , Xn are independent with

Xi ⇠ Gamma(ri,�), then

X1 + · · ·+Xn ⇠ Gamma(r1 + · · ·+ rn,�)

Also, we saw that if Z ⇠ N(0, 1), then Z2 ⇠ Gamma(1/2, 1/2) (i.e.,

Z2 ⇠ �2
1).

Combining the above gives that if Z1, . . . , Zn are i.i.d. N(0, 1)

random variables, then

Z2
1 + · · ·+ Z2

n ⇠ Gamma(n/2, 1/2) = �2
n

This result is often used in statistics.
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Let Z1, . . . , Zn be i.i.d. random variables with common mean µ and

variance �2
. The sample mean and sample variance are defined by

Z̄ =
1

n

nX

i=1

Zi, S2 =
1

n� 1

nX

i=1

(Zi � Z̄)2

Example: Show that E(Z̄) = µ and E(S2) = �2
.

An important result in statistics is the following:

Lemma 1

Assume Z1, . . . , Zn are i.i.d. N(0, 1). Then

Z̄ ⇠ N(0, 1/n), (n� 1)S2 ⇠ �2
n�1

and Z̄ and S2
are independent.
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Before proving the lemma, let’s review a few facts about orthogonal

(linear) transformations on Rn
.

An n⇥ n real matrix A is called orthogonal if A

T = A

�1
, i.e.,

AA

T = A

T
A = I (the n⇥ n identity matrix).

An orthogonal A does not change the norm (length) of its argument:

nX

i=1

x2
i = kxk2 = x

T
x = x

T
A

T
Ax = (Ax)T (Ax) = kAxk2

If A is orthogonal, then | detA| = 1.

Now let Z = (Z1, . . . , Zn) have joint pdf f(z). Letting Y = AZ for an

orthogonal A, we have Z = A

�1
Y . By the transformation formula the

pdf fY (y) of Y is

fY (y) = f(A�1
y)|J | = f(A�1

y)
1

| det(A)| = f(AT
y).

STAT/MTHE 353: 3 – Special Distributions 17 / 24

Proof of Lemma: The joint pdf of Z1, . . . , Zn is

f(z) = f(z1, . . . , zn) =
nY

i=1

1p
2⇡

e�z2
i /2 =

⇣ 1p
2⇡

⌘n
e�

1
2

Pn
i=1 z2

i

Let A be an n⇥ n matrix with first row equal to

�
1/

p
n, . . . , 1/

p
n
�
and

choose rows 2, . . . , n in any way so that they have unit length and they

are orthogonal to all other rows. A constructed this way is orthogonal.

The joint pdf of Y = AZ is

fY (y) = f(AT
y) =

⇣ 1p
2⇡

⌘n
e�

1
2

Pn
i=1 y2

i

since A

T
is orthogonal and so kAT

yk2 = kyk2 =
Pn

i=1 y
2
i .

Thus Y1, . . . , Yn are i.i.d. N(0, 1).
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Proof cont’d: From Y = AZ, we have

Y1 =
1p
n

nX

i=1

Zi =
nZ̄p
n
=

p
nZ̄

and

Y 2
2 + · · ·+ Y 2

n =
⇣ nX

i=1

Y 2
i

⌘
� Y 2

1 =
⇣ nX

i=1

Z2
i

⌘
� nZ̄2

= . . . =
nX

i=1

(Zi � Z̄)2 = (n� 1)S2.

Since Z̄ is a function of Y1, S
2
is a function of Y2, . . . , Yn, we get that Z̄

and S2
are independent (since Y1, Y2, . . . , Yn are independent).

Since Z̄ = Yi/
p
n and Yi ⇠ N(0, 1), we obtain Z̄ ⇠ N(0, 1/n).

Since (n� 1)S2 = Y 2
2 + · · ·+ Y 2

n , we have

(n� 1)S2 ⇠ Gamma((n� 1)/2, 1/2) = �2
n�1. ⇤
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Connection with Poisson Process

Recall: If X1 denotes the time of the first event occurring in a

Poisson process with rate �, then X1 ⇠ Exp(�).

The following can be shown: For i = 1, 2, . . . , n let Xi denote the

time between the occurrence of the (i� 1)th and the ith events in a

Poisson process with rate �. Then the random variables X1, . . . , Xn

are independent and Xi ⇠ Exp(�).

Let Sn = X1 + · · ·+Xn, the time till until the nth event. Since

Exp(�) = Gamma(1,�), we obtain that

Sn ⇠ Gamma(n,�).
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Beta Distribution

Definition A continuous r.v. X is said to have a beta distribution with

parameters ↵ > 0 and � > 0 if its pdf is given by

f(x) =

8
<

:

1

B(↵,�)
x↵�1(1� x)��1, if 0 < x < 1,

0 otherwise.

where the beta function B(↵,�) is given by

B(↵,�) =

Z 1

0
y↵�1(1� y)��1 dy =

�(↵)�(�)

�(↵+ �)
.

Notation: X ⇠ Beta(↵,�)
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Moments E(Xk): For X ⇠ Beta(↵,�) and k � 1 an integer,

E(Xk) =

Z 1

0
xk 1

B(↵,�)
x↵�1(1� x)��1 dx

=
�(↵+ �)

�(↵)�(�)

Z 1

0
xk+↵�1(1� x)��1 dx

| {z }
B(k + ↵,�)

=
�(↵+ �)

�(↵)�(�)

�(k + ↵)�(�)

�(k + ↵+ �)

=
(k + ↵� 1) · · ·↵

(k + ↵+ � � 1) · · · (↵+ �)

Letting k = 1, 2 we get E(X) = ↵
↵+� and E(X2) = (↵+1)↵

(↵+�+1)(↵+�) , so

Var(X) =
(↵+ 1)↵

(↵+ � + 1)(↵+ �)
� ↵2

(↵+ �)2
=

↵�

(↵+ � + 1)(↵+ �)2
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Examples:

For ↵ = � = 1 we obtain X ⇠ Uniform(0, 1) having mean 1/2 and

variance 1/12.

Recall that the pdf of the kth order statistics X(k) of random

sample X1, . . . , Xn with common cdf F (x) is

fk(x) =
n!

(k � 1)!(n� k)!
f(x)F (x)k�1

�
1� F (x)

�n�k

If the Xi are sampled from Uniform(0, 1), then F (x) = x for

0 < x < 1 and we get

fk(x) =

8
<

:

n!
(k�1)!(n�k)!x

k�1(1� x)n�k
if 0 < x < 1,

0 otherwise.

Thus X(k) ⇠ Beta(k, n� k + 1).
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The beta distribution is useful as a model for random variables that take

values in a bounded interval, say (a, b).

Example: Let X ⇠ Beta(↵,�) and let Y = (b� a)X + a. Find the pdf

of Y .

Solution: . . .

Example: (Connection with gamma distribution) Assume X1, . . . , Xn are

independent with Xi ⇠ Gamma(ri,↵). Show that

XiPn
j=1 Xj

⇠ Beta(ri, r�i)

where r�i =

✓Pn
j=1 rj

◆
� ri.

Solution: . . .
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