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Expectations of Sums of Random Variables

Recall that if X,...,X,, are random variables with finite expectations,
then

E(Xy+ X+ -+ Xp) = BE(X1) + E(Xp) + -+ + E(Xy)
The X; can be continuous or discrete or of any other type.

@ The expectation on the left-hand-side is with with respect to the
joint distribution of X;,..., X,,.

@ The ith expectation on the right-hand-side is with with respect to
the marginal distribution of X;, i =1,... n.
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Often we can write a r.v. X as a sum of simpler random variables. Then
E(X) is the sum of the expectation of these simpler random variables.

Example: Consider (X1,...,X,) having multinomial distribution with

parameters n and (p1,...,pr). Compute E(X;),i=1,...,r
Solution:

Example: Let (Xq,..
with parameters N and nq,...

., X,) the multivariate hypergeometric distribution
,nr. Compute E(X;), i=1,...,r

Solution:

Example: (Matching problem) If the integers 1,2,...,n are randomly
permuted, what is the probability that integer ¢ is in the ith position?
What is the expected number of integers in the correct position?

Solution:
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Example: We have two urns. Initially Urn 1 contains n red balls and
Urn 2 contains n blue balls. At each stage of the experiment we pick a
ball from Urn 1 at random, also pick a ball from Urn 2 at random, and
then swap the balls. Let X = # of red balls in Urn 1 after k stages.
Compute F(X) for even k.

Solution:
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Conditional Expectation

@ Suppose X = (X1,...,X,)T and Y = (Y1,...,Y,,)7T are two
vector random variables defined on the same probability space.

@ The distributions (joint marginals) of X and Y can be described the
pdfs fx(x) and fy (y) (if both X and Y are continuous) or by the
pmfs px () and py (y) (if both are discrete).

@ The joint distribution of the pair (X,Y") can be described by their
joint pdf fx y(x,y) or joint pmf px v (x,y).

@ The conditional distribution of X given Y = y is described by
either the conditional pdf

Remarks:

(1) In general, X and Y can have different types of distribution (e.g.,
one is discrete, the other is continuous).
Example: Letn=m=1and X =Y + Z, where Y is a
Bernoulli(p) r.v. and Z ~ N(0,0?), and Y and Z are independent.
Determine the conditional pdf of X given Y =0 and Y = 1. Also,
determine the pdf of X.

Solution: ...

(2) Not all random variables are either discrete or continuous. Mixed

Fxty () = Ixvy(z,y) discrete-continuous and even more general distributions are possible,
Xy &y = fr(y) but they are mostly out of the scope of this course.
or the conditional pmf
rxy (%, y)
px|y (zly) = ————
| py (Y)
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Definitions
(1) The conditional expectation of X given Y = y is the mean
(expectation) of the distribution of X given Y = y and is denoted by
E(XY =y). Special case: Assume X and Y are independent. Then (considering the
(2) The conditional variance of X given Y = y is the the variance of the discrete case)
distribution of X given Y =y and is denoted by Var(X|Y = y). pxyy(zly) = px ()
@ If both X and Y are discrete, so that for all y,
BE(X]Y =y) Z‘EPXIY (ly) E(X[Y =y) prxw zly) =Y apx(z) = B(X)
and  Var(X[Y =y) = Z(w - EXY = y)) px|y (z]y) A similar argument shows E(X|Y =y) = E(X) if X and Y are
o In case both X and YV arexcontinuous, we have independent continuous random variables.
BOXY =v)= [ afuy(aly)do
and
o 2
Var(XIY =y) = [ (o= BOXY = 9)* Py (aly) do
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Notation: Let g(y)
E(X|Y) by setting

E(X|Y)=g(Y)
Similarly, letting h(y)

is defined by
Var(X|Y) = h(Y)

For example, if X and Y are independent, then E(X|Y = y)
(constant function), so
E(X|Y)=E(X)

= E(X|Y = y). We define the random variable

= Var(X|Y =y), the random variable Var(X|Y)

= B(X)

The following are important properties of conditional expectation. We

don't prove them formally, but they should be intuitively clear.

Properties

(i) (Linearity of conditional expectation) If X; and X, are random
variables with finite expectations, then for all a,b € R,

| B(aXy +bXo]Y) = aB(X1]Y) + bE(Xa]Y) |

(ii) If g : R — R is a function such that E[g(Y")] is finite, then

E[g(Y)[Y] =g(Y)

and if E[g(Y)X] is finite, then

E[g(Y)X[Y] = g(Y)E(X[|Y)
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Lemma 2 (Variance formula)
Var(X) = F|Var(X|Y)| + Var| E(X|Y
Theorem 1 (Law of total expectation) &0 [Var(X[¥)] [EEXIY)]
E(X) = E[E(X]Y)] Proof: Since Var(X|Y = y) is the variance of the conditional distribution
of X given Y =y,
Proof: Assume both X and Y are discrete. Then Var(X[Y) = E[X2[Y] - (E[X\Y})Q
E[EX|Y)] = ZE XY =y)py(y Z(Z rpx|y (z]y) ) v (y) Taking expectation (with respect to Y),
y
E[Var(X|Y)] = E(E[X?|Y))-E[(E[X|Y))*] = E(X?)-E[(E[X|Y])’
_ Z(prxy ,y> Zprxyxy [ar( | )] ( [(X7Y]) [( [X| ])] (X7) [( [X] ])]
py (y)
On the other hand,
- prX z) = E(X) - 2 2 2 2
- Var(BIX|Y]) = E[(ELXIY])] - (E[ECEY)))? = E[(BXIY])] - (BCX))
Example: Expected value of geometric distribution. . . so
Var(X) = E(X?) — (E(X))? = E[Var(X|Y)] + Var[E(X[Y)] O
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Remarks:

(1) Let A be an event and X the indicator of A:

1 if A occurs

0 if A° occurs

Then E(X) = P(A). Assuming Y is a discrete r.v., we have
E(X|Y =y) = P(A]Y = y) and the law of total expectation states

P(A)=E(X) =Y EX|Y =y)py(y) = Y_ P(A]Y =y)py(y)
Y Y
which is the law of total probability.

For continuous Y we have

oo

P = [ T BXIY = )y (y) dy = [P =iy

— 00
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(2) The law of total expectation says that we can compute the mean of
a distribution by conditioning on another random variable. This
distribution can be a conditional distribution. For example, for r.v.'s
X, Y, and Z,

E(X|Y =y) = E[E(X]Y =y, Z)]Y =y]

so that

E(X|Y) = E[E(X|Y, Z)|Y]

For example, if Z is discrete,

EX|Y =y)

Y E(X)Y =y,Z = 2)pzy (2ly)

N E(X|Y =y, Z=2)P(Z=2Y =y)
4
Exercise: Prove the above statement if X, Y, and Z are discrete.
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Example: Repeatedly flip a biased coin which comes up heads with
probability p. Let X denote the number of flips until 2 consecutive heads
occur. Find E(X).

Solution:

Example: (Simplex algorithm) There are n vertices (points) that are
ranked from best to worst. Start from point j and at each step, jump to
one of the better points at random (with equal probability). What is the
expected number of steps to reach the best point?

Solution:

STAT/MTHE 353: 4 - More on Expectations

15 /37

Minimum mean square error (MMSE) estimation

Suppose a r.v. Y is observed and based on its value we want to “guess”
the value of another r.v. X. Formally, we want to use a function g(Y) of
Y to estimate the unobserved X in the sense of minimizing the mean

Square error
E[(X - g(Y))?]

It turns out that ¢*(Y) = E(X]Y) is the optimal choice.

Theorem 3
Suppose X has finite variance. Then for g*(Y) = E(X|Y) and any

function g
E[(X - g(Y))’] 2 B[(X - g*())?]
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Proof: Use the properties of conditional expectation:

Proof cont’'d

Thus

= Bl(X —g"(Y)+g"(Y) - g(Y))*|Y]
= E[(X —g"(V)* + (¢"(Y) = 9("))* + 2(X = g"("))(g" (V) = g(V))[Y] E[(X - g())*IY] = E[(X = g"(M))*|Y] + (¢"(Y) — 9(V))°
= E[(X —gM)’|Y]+ E[(g*(Y) — g(Y)’|Y
[( g (V)| } [(g (¥) = g(¥))] ] Take expectations on both sides and use the law of total expectation to
+2E[(X = g"())(g" (V) — g(V))|Y] “biain
= B[(X —g"(V)*IY] + (g"(Y) — 9(Y)) BT ] — B o (2] 4 Bl o2
* * — = —g* + * i
+2(g (Y)fg(Y))E[ng (Y)|Y] [( q( )) } [( g ( ) ] [9 ( ) q( )) ]
= BE[(X —g" M)?IY] + (¢"(Y) — g(¥))? Since (g*(Y) — g(¥))* > 0, this implies
+2(g"(Y) — 9(Y)) [E(X]Y) = g" (V)] .
: B[(X - g(¥))?] = E[(X - ¢"(¥))?] 0
= Bl(X —g"(YV)*|Y] + (¢"(Y) = g(Y))?
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Random Sums
Theorem 4 (Wald's equation)
Let X1, X5 ... be iid. rand abl ith . Let N be r.v.
Remark: Note that since g*(y) = E(X|Y = y), we have e- b2 . € n1.d. ran orr-1 v.arla €5 With mean , € € r'v.
with values in {1,2,...} that is independent of the X;'s and has finite
. N
E[Var(X|YV)] = E[(X — ¢*(V))*] mean E(N). Define X =5 ." | X;. Then
i.e., E[Var(X|Y)] is the mean square error of the MMSE estimate of X E(X)=E(N)u
given Y.
Proof:
Example: Suppose X ~ N(0,0%) and Z ~ N(0,0%), where X and Z
are independent. Here X represents a signal sent from a remote location E(X|N=n) = EXi+ - -+Xn|N=n)
which is corrupted by noise Z so that the received signal is Y = X + Z. = E(Xi+ -+ XN =n)
What is the MMSE estimate of X given Y = y?
at is the SE estimate o given y — B(X)|N =n) 4+ E(XaN = n)
(linearity of expectation)
= EXi1)+--+FE(X,) (N and X; are independent)
= n:u
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Proof cont’d: We obtained E(X|N =n) =nu foralln=1,2,..., i.e,
E(X|N) = Nu. By the law of total expectation

E(X) = E[E(X|N)] = E(Nu) = E(N)u 0

Example: (Branching Process) Suppose a population evolves in
generations starting from a single individual (generation 0). Each
individual of the ith generation produces a random number of offsprings;
the collection of all offsprings by generation ¢ individuals forms generation
i+ 1. The number of offsprings born to distinct individuals are
independent random variables with mean . Let X,, be the number of
individuals in the nth generation. Find E(X,,).
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Covariance and Correlation

Covariance

Definition Let X and Y be two random variables with finite variance.

Their covariance is defined by

Cov(X,Y) = E[(X — B(X))(Y — E(Y))]

Properties:

) Cov(X,Y) = E(XY)-E[E(X)Y]-E[XE®Y)]+E[BEX)EY)]
= E(XY)-2E(X)E(Y)+ E(X)E(Y)
= E(XY)-EX)E®Y)

The formula ‘ Cov(X,Y)=E(XY)—-EX)E(Y) ‘ is often useful in

computations.
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(2) Cov(X,Y) = Cov(Y, X).
(3) If X =Y we obtain

Cov(X,Y) = E[(X — E(X))?*)] = Var(X)

(4) For any constants a, b, ¢ and d,

Cov(aX +b,cY +d)
= E[(aX+b—E(aX +b))(cY +d— E(cY +d))]
= Bla(X - BX))e(Y — B(Y))]
= acE[(X — E(X))(Y — E(Y))]
= acCov(X,Y)
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(5) If X and Y are independent, then Cov(X,Y) = 0.

Proof: By independence, E(XY) = E(X)E(Y), so

Cov(X,Y) = E(XY) - E(X)E(Y) =0

Definition Let X7,..., X, be random variables with finite variances.
The covariance matrix of the vector X = (X1,...,X,)T isthe n x n
matrix Cov(X') whose (4, j)th entry is Cov(X;, X;).

Remarks:

@ The ith diagonal entry of Cov(X) is Var(X;), i=1,...,n
e Cov(X) is a symmetric matrix since Cov(X;, X;) = Cov(X;, X;)
for all ¢ and j.
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Some properties of covariance are easier to derive using a matrix

formalism.

o Let V={Y;;5i=1,...,m, j=1,...,n} be an m x n matrix of
random variables having finite expectations. We define E(V') by

taking expectations componentwise:

Lemma 5
Let A be an m x n real matrix and define Y = AX (an m-dimensional
random vector). Then

Cov(Y) = ACov(X)A”

Proof: First note that by the linearity of expectation,

Yii ... Y, E(Y11) E(Yin) E(Y)=E(AX) = AE(X).
Bvy=p| T =T | Ths
Yo oo Yonl  [E(YV) E(Youn) Cov(Y) = E[(Y -EY)(Y - E(Y))]
= FE[(AX — AE(X))(AX — AE(X))"]
e Now notice that the n x n matrix (X — E(X))(X — E(X))T has = E[(A(X - E(X)))(AX (X)))T]
Cov(X) = E[(X — B(X))(X — B(X))"] = AB[(X - E(X))(X - E<X>>>T] A"
= ACov(X)AT O
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On the other hand,
T —
For any m-vector ¢ = (c1,...,¢m)T we also have Cov(@'X +¢) = a'Cov(X)a= lega ia; Cov(X;, X;)
2 J
COV(Y + C) = COV(Y) = Z a? Cov()(i7 Xz) +2 Z a;a; Cov(Xi7 X])
i=1 i<j
since Cov(Y; + ¢;,Y; +¢;) = Cov(Y;, Y)). n =
Thus = Zla? Var(XZ) +2Zaiaj COV(XZ',X]')
1= 1<
Cov(AX + ¢) = ACov(X)AT !
. . . . Hence
Let m = 1 so that ¢ = c is a scalar and A is and 1 x n matrix, i.e., A is
tor A=al = ceey Q). Th ~ -
a row vector a’ = (ai,...,ap). Then Var (Z a; X; + C) - Zaf Var(X;) + QZ a;a; Cov(X;, X;)
n n i=1 i=1 i<j
Cov(aT X + ¢) = Cov <Z a; X; + c) = Var <Z a; X; + c)
=1 =1 Note that if X1,..., X, are independent, then Cov(X;, X;) =0 for
i # 7, and we obtain
Var (Z a; X; + c) = Z a? Var(X.
i=1 i=1
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More generally, let X = (X1,...,X,,)T and Y = (Y1,...,Y,)T and let
Cov(X,Y) be the n x m matrix with (¢, j)th entry Cov(X;,Y;). Note
that

Cov(X,Y) = E[(X — B(X))(Y — E(Y))"]

If Aisak xn matrix, B is an [ X m matrix, ¢ is a k-vector and d is an
l-vector, then

Cov(AX + ¢, BY +d)

= E[(AX +c—E(AX +¢))(BY +d— E(BY +d))"]
= AE[(X - E(X))(Y - E(Y))"|B"

We can now prove the following important property of covariance:

Lemma 6

For any constants a1, ...,a, and by,..., by,

Cov <i a; X, i ijj> = i i azb; Cov(X;, Y5)
1=1 j=1

i=1 j=1

i.e., Cov(X,Y) is bilinear.

Proof: Let k=1=1and A =a’ = (ay,...
B=0b"=(b,...

,ap) and
,bm). Then we have

m

Cov (i: aiXi, Z b]YVJ)
i=1 j=1

Cov(aTX,b"Y) = Cov(AX, BY)

We obtain —  ACov(X,Y)B” = a” Cov(X,Y)b
o T n m
Cov(AX +¢,BY +d)=ACov(X,Y)B _ Zzaibj Cov(X,,Y;) 0
i=1 j=1
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The following property of covariance is of fundamental importance:
Proof cont’d: Thus its discriminant cannot be positive:
Lemma 7
2 2 2
— <
| Cov(X,Y)| < +/Var(X) Var(Y) BV - 4BEUAEV?) <0
so we obtain
([EUV)P < BU?)E(VY)]
Proof: First we prove the Cauchy-Schwarz inequality for random variables Use this with U = X — E(X) and V =Y — E(Y) to get
U and V with finite variances. Let A € R, then
|Cov(X,Y)| = [E[(X - BX)(Y - EY))]
0 < E[(U-\V)* =EU?-2\UV + \*V?)
oo 2 < B[ - B E[(Y - E(Y))
= EU?)=2XE({UV)+ )\ E(V?)
= Var(X) Var(Y) O
This is a quadratic polynomial in A which cannot have two distinct real
roots.
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Correlation

Recall that Cov(aX,bY) = abCov(X,Y). This is an undesirable
property if we want to use Cov(X,Y’) as a measure of association

between X and Y. A proper normalization will solve this problem:

Definition The correlation coefficient between X and Y having nonzero
variances is defined by

Cov(X,Y)

/ Var(X) Var(Y)

p(X,Y) =

Remarks:
e Since Var(aX + b) = a® Var(X),

p(aX +b,aY +d) = p(X,Y)

e Letting ux = E(X), py = E(Y), 0% = Var(X), 02 = Var(Y), we

have
XY X — Y —
p(X,Y) _ COV( ) ): COV( Hx, N’Y)
ox0y 0x0y
X — Y —
= COV( MX, MY)
ox oy

Thus p(X,Y) is the covariance between the standardized versions of
X and Y.

e If X and Y are independent, then Cov(X,Y) =0, so p(X,Y) =0.
On the other hand, p(X,Y) = 0 does not imply that X and Y are

independent.
Remark: If p(X,Y) = 0 we say that X and Y are uncorrelated.

Example: Find random variables X and Y that are uncorrelated but
not independent.

Example: Covariance and correlation for multinomial random variables. . .
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Proof cont’d:
Theorem 8
The correlation always satisfies Conversely, suppose that p(X,Y) = 1. Then

X Y X Y X Y
o) < YHE SR TVE S O
oXx Oy oXx Oy 0Xx Oy
Moreover, |p(X,Y)| =1 if and only if Y = aX + b for some constants a — Var(X> + Var(Y) _9 Cov(X, Y)
and b (a #0), i.e., Y is an affine function of X. oX oy 9x 0y
~ Var(X) . Var(Y') 2Cov(X7Y)
- 2 2
Proof: We know that | Cov(X,Y)| < /Var(X) Var(Y), so _ f)f ,_ O"Y axoy
lp(X,Y)| <1 always holds. x B v B
Let's assume now that Y = aX + b, where a # 0. Then This means that ox oy ¢ for some constant c, so
oy
Cov(X,Y) = Cov(X,aX+b) = Cov(X,aX) = a Cov(X, X) = aVar(X) Y = ;X —oyc
so Var(X) If p(X,Y) = —1, consider Var(% + %) and use the same proof O
a Var a
p(X,Y) = \/Var(X)aQ Var(X) = Va2 ==+l Remark: The previous theorem implies that correlation can be thought
of as a measure of linear association (linear dependence) between X and
Y. Recall the multinomial example. ..
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Example: (Linear MMSE estimation) Let X and Y be random variables
with zero means and finite variances 0% > 0 and 0% > 0. Suppose we
want to estimate X in the MMSE sense using a linear function of Y; i.e.,

we are looking for a € R minimizing
E[(X — av)?

Find the minimizing a and determine the resulting minimum mean square

error. Relate the results to p(X,Y).

Solution:
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