STAT/MTHE 353: 4 - More on Expectations and Variances

T. Linder

Queen's University

Winter 2017

STAT/MTHE 353: 4 - More on Expectations

1 / 37

Often we can write a r.v. X as a sum of simpler random variables. Then E(X) is the sum of the expectation of these simpler random variables.

Example: Consider (X_1, \ldots, X_r) having multinomial distribution with parameters n and (p_1, \ldots, p_r) . Compute $E(X_i)$, $i = 1, \ldots, r$

Solution: ...

Example: Let (X_1, \ldots, X_r) the multivariate hypergeometric distribution with parameters N and n_1, \ldots, n_r . Compute $E(X_i)$, $i = 1, \ldots, r$

Solution: ...

Example: (Matching problem) If the integers $1, 2, \ldots, n$ are randomly permuted, what is the probability that integer i is in the ith position? What is the expected number of integers in the correct position?

Solution: ...

Expectations of Sums of Random Variables

Recall that if X_1, \ldots, X_n are random variables with finite expectations, then

$$E(X_1 + X_2 + \dots + X_n) = E(X_1) + E(X_2) + \dots + E(X_n)$$

The X_i can be continuous or discrete or of any other type.

- The expectation on the left-hand-side is with with respect to the joint distribution of X_1, \ldots, X_n .
- The *i*th expectation on the right-hand-side is with with respect to the marginal distribution of X_i , i = 1, ..., n.

STAT/MTHE 353: 4 - More on Expectations

2 / 37

Example: We have two urns. Initially Urn 1 contains n red balls and Urn 2 contains n blue balls. At each stage of the experiment we pick a ball from Urn 1 at random, also pick a ball from Urn 2 at random, and then swap the balls. Let X=# of red balls in Urn 1 after k stages. Compute E(X) for even k.

Solution: . . .

Conditional Expectation

- Suppose $\boldsymbol{X} = (X_1, \dots, X_n)^T$ and $\boldsymbol{Y} = (Y_1, \dots, Y_m)^T$ are two vector random variables defined on the same probability space.
- The distributions (joint marginals) of X and Y can be described the pdfs $f_X(x)$ and $f_Y(y)$ (if both X and Y are continuous) or by the pmfs $p_X(x)$ and $p_Y(y)$ (if both are discrete).
- The joint distribution of the pair (X,Y) can be described by their joint pdf $f_{X,Y}(x,y)$ or joint pmf $p_{X,Y}(x,y)$.
- ullet The *conditional distribution* of X given Y=y is described by either the conditional pdf

$$f_{\boldsymbol{X}|\boldsymbol{Y}}(\boldsymbol{x}|\boldsymbol{y}) = \frac{f_{\boldsymbol{X},\boldsymbol{Y}}(\boldsymbol{x},\boldsymbol{y})}{f_{\boldsymbol{Y}}(\boldsymbol{y})}$$

or the conditional pmf

$$p_{oldsymbol{X}|oldsymbol{Y}}(oldsymbol{x}|oldsymbol{y}) = rac{p_{oldsymbol{X},oldsymbol{Y}}(oldsymbol{x},oldsymbol{y})}{p_{oldsymbol{Y}}(oldsymbol{y})}$$

STAT/MTHE 353: 4 - More on Expectations

37

Definitions

- (1) The conditional expectation of X given Y=y is the mean (expectation) of the distribution of X given Y=y and is denoted by E(X|Y=y).
- (2) The conditional variance of X given Y=y is the the variance of the distribution of X given Y=y and is denoted by $\mathrm{Var}(X|Y=y)$.
 - If both X and Y are discrete,

$$E(X|Y = y) = \sum_{x} x p_{X|Y}(x|y)$$

and $\operatorname{Var}(X|Y=y) = \sum_{x} (x - E(X|Y=y))^2 p_{X|Y}(x|y)$

• In case both X and Y are continuous, we have

$$E(X|Y = y) = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx$$

and

$$\operatorname{Var}(X|Y=y) = \int_{-\infty}^{\infty} (x - E(X|Y=y))^2 f_{X|Y}(x|y) \, dx$$

Remarks:

(1) In general, X and Y can have different types of distribution (e.g., one is discrete, the other is continuous).

Example: Let n=m=1 and X=Y+Z, where Y is a Bernoulli(p) r.v. and $Z\sim N(0,\sigma^2)$, and Y and Z are independent. Determine the conditional pdf of X given Y=0 and Y=1. Also, determine the pdf of X.

Solution: ...

(2) Not all random variables are either discrete or continuous. Mixed discrete-continuous and even more general distributions are possible, but they are mostly out of the scope of this course.

STAT/MTHE 353: 4 - More on Expectations

6 / 27

Special case: Assume X and Y are *independent*. Then (considering the discrete case)

$$p_{X|Y}(x|y) = p_X(x)$$

so that for all y,

$$E(X|Y = y) = \sum_{x} x p_{X|Y}(x|y) = \sum_{x} x p_{X}(x) = E(X)$$

A similar argument shows E(X|Y=y)=E(X) if X and Y are independent continuous random variables.

Notation: Let g(y) = E(X|Y = y). We define the *random variable* E(X|Y) by setting

$$E(X|Y) = g(Y)$$

Similarly, letting $h(y) = \operatorname{Var}(X|Y=y)$, the random variable $\operatorname{Var}(X|Y)$ is defined by

$$Var(X|Y) = h(Y)$$

For example, if X and Y are independent, then E(X|Y=y)=E(X) (constant function), so

$$E(X|Y) = E(X)$$

STAT/MTHE 353: 4 - More on Expectations

9 / 37

Theorem 1 (Law of total expectation)

$$E(X) = E[E(X|Y)]$$

Proof: Assume both X and Y are discrete. Then

$$E[E(X|Y)] = \sum_{y} E(X|Y=y)p_Y(y) = \sum_{y} \left(\sum_{x} xp_{X|Y}(x|y)\right)p_Y(y)$$

$$= \sum_{y} \left(\sum_{x} x\frac{p_{X,Y}(x,y)}{p_Y(y)}\right)p_Y(y) = \sum_{y} \sum_{x} xp_{X,Y}(x,y)$$

$$= \sum_{x} xp_X(x) = E(X) \qquad \Box$$

Example: Expected value of geometric distribution...

The following are important properties of conditional expectation. We don't prove them formally, but they should be intuitively clear.

Properties

(i) (Linearity of conditional expectation) If X_1 and X_2 are random variables with finite expectations, then for all $a, b \in \mathbb{R}$,

$$E(aX_1 + bX_2|Y) = aE(X_1|Y) + bE(X_2|Y)$$

(ii) If $g: \mathbb{R} \to \mathbb{R}$ is a function such that E[g(Y)] is finite, then

$$E[g(Y)|Y] = g(Y)$$

and if E[g(Y)X] is finite, then

$$E[g(Y)X|Y] = g(Y)E(X|Y)$$

STAT/MTHE 353: 4 - More on Expectations

0 / 37

Lemma 2 (Variance formula)

$$Var(X) = E[Var(X|Y)] + Var[E(X|Y)]$$

Proof: Since ${\rm Var}(X|Y=y)$ is the variance of the conditional distribution of X given Y=y,

$$Var(X|Y) = E[X^{2}|Y] - (E[X|Y])^{2}$$

Taking expectation (with respect to Y),

$$E\big[\mathrm{Var}(X|Y)\big] = E\big(E[X^2|Y]) - E\big[\big(E[X|Y]\big)^2\big] = E(X^2) - E\big[\big(E[X|Y]\big)^2\big]$$

On the other hand,

$$\operatorname{Var} \left(E[X|Y] \right) = E \left[\left(E[X|Y] \right)^2 \right] - \left(E \left[E(X|Y) \right] \right)^2 = E \left[\left(E[X|Y] \right)^2 \right] - \left(E(X) \right)^2$$

SO

$$Var(X) = E(X^2) - (E(X))^2 = E[Var(X|Y)] + Var[E(X|Y)] \qquad \Box$$

Remarks:

(1) Let A be an event and X the indicator of A:

$$X = \begin{cases} 1 & \text{if } A \text{ occurs} \\ 0 & \text{if } A^c \text{ occurs} \end{cases}$$

Then E(X)=P(A). Assuming Y is a discrete r.v., we have E(X|Y=y)=P(A|Y=y) and the law of total expectation states

$$P(A) = E(X) = \sum_{y} E(X|Y = y)p_Y(y) = \sum_{y} P(A|Y = y)p_Y(y)$$

which is the law of total probability.

For continuous Y we have

$$P(A) = \int_{-\infty}^{\infty} E(X|Y = y) f_Y(y) \, dy = \int_{-\infty}^{\infty} P(A|Y = y) f_Y(y) \, dy$$

STAT/MTHE 353: 4 - More on Expectations

13 / 37

Example: Repeatedly flip a biased coin which comes up heads with probability p. Let X denote the number of flips until 2 consecutive heads occur. Find E(X).

Solution:

Example: (Simplex algorithm) There are n vertices (points) that are ranked from best to worst. Start from point j and at each step, jump to one of the better points at random (with equal probability). What is the expected number of steps to reach the best point?

Solution:

(2) The law of total expectation says that we can compute the mean of a distribution by conditioning on another random variable. This distribution can be a conditional distribution. For example, for r.v.'s X, Y, and Z,

$$E(X|Y = y) = E[E(X|Y = y, Z)|Y = y]$$

so that

$$E(X|Y) = E[E(X|Y,Z)|Y]$$

For example, if Z is discrete,

$$E(X|Y=y) = \sum_{z} E(X|Y=y, Z=z) p_{Z|Y}(z|y)$$
$$= \sum_{z} E(X|Y=y, Z=z) P(Z=z|Y=y)$$

Exercise: Prove the above statement if X, Y, and Z are discrete.

STAT/MTHE 353: 4 - More on Expectations

14 / 37

Minimum mean square error (MMSE) estimation

Suppose a r.v. Y is observed and based on its value we want to "guess" the value of another r.v. X. Formally, we want to use a function g(Y) of Y to estimate the unobserved X in the sense of minimizing the mean square error

$$E[(X-g(Y))^2]$$

It turns out that $g^*(Y) = E(X|Y)$ is the optimal choice.

Theorem 3

Suppose X has finite variance. Then for $g^*(Y) = E(X|Y)$ and any function g

$$E[(X - g(Y))^2] \ge E[(X - g^*(Y))^2]$$

Proof: Use the properties of conditional expectation:

$$\begin{split} E \big[(X - g(Y))^2 | Y \big] \\ &= E \big[(X - g^*(Y) + g^*(Y) - g(Y))^2 | Y \big] \\ &= E \big[(X - g^*(Y))^2 + (g^*(Y) - g(Y))^2 + 2(X - g^*(Y))(g^*(Y) - g(Y)) | Y \big] \\ &= E \big[(X - g^*(Y))^2 | Y \big] + E \big[(g^*(Y) - g(Y))^2 | Y \big] \\ &\quad + 2E \big[(X - g^*(Y))(g^*(Y) - g(Y)) | Y \big] \\ &= E \big[(X - g^*(Y))^2 | Y \big] + (g^*(Y) - g(Y))^2 \\ &\quad + 2(g^*(Y) - g(Y)) E \big[X - g^*(Y) | Y \big] \\ &= E \big[(X - g^*(Y))^2 | Y \big] + (g^*(Y) - g(Y))^2 \\ &\quad + 2(g^*(Y) - g(Y)) \underbrace{ \big[E(X | Y) - g^*(Y) \big] }_{=0} \\ &= E \big[(X - g^*(Y))^2 | Y \big] + (g^*(Y) - g(Y))^2 \end{split}$$

STAT/MTHE 353: 4 - More on Expectations

17 / 37

Remark: Note that since $g^*(y) = E(X|Y=y)$, we have

$$E[\operatorname{Var}(X|Y)] = E[(X - g^*(Y))^2]$$

i.e., $E[\operatorname{Var}(X|Y)]$ is the mean square error of the MMSE estimate of X given Y.

Example: Suppose $X \sim N(0, \sigma_X^2)$ and $Z \sim N(0, \sigma_Z^2)$, where X and Z are independent. Here X represents a signal sent from a remote location which is corrupted by noise Z so that the received signal is Y = X + Z. What is the MMSE estimate of X given Y = y?

Proof cont'd

Thus

$$E[(X - g(Y))^{2}|Y] = E[(X - g^{*}(Y))^{2}|Y] + (g^{*}(Y) - g(Y))^{2}$$

Take expectations on both sides and use the law of total expectation to obtain

$$E[(X - g(Y))^{2}] = E[(X - g^{*}(Y))^{2}] + E[g^{*}(Y) - g(Y))^{2}]$$

Since $(g^*(Y) - g(Y))^2 \ge 0$, this implies

$$E[(X - g(Y))^2] \ge E[(X - g^*(Y))^2]$$

STAT/MTHE 353: 4 - More on Expectations

18 / 37

Random Sums

Theorem 4 (Wald's equation)

STAT/MTHE 353: 4 - More on Expectations

Let $X_1, X_2 \ldots$ be i.i.d. random variables with mean μ . Let N be r.v. with values in $\{1, 2, \ldots\}$ that is independent of the X_i 's and has finite mean E(N). Define $X = \sum_{i=1}^{N} X_i$. Then

$$E(X) = E(N)\mu$$

Proof:

$$\begin{split} E(X|N=n) &= E(X_1+\dots+X_N|N=n) \\ &= E(X_1+\dots+X_n|N=n) \\ &= E(X_1|N=n)+\dots+E(X_n|N=n) \\ &\qquad \qquad \qquad \text{(linearity of expectation)} \\ &= E(X_1)+\dots+E(X_n) \quad \text{(N and X_i are independent)} \\ &= n\mu \end{split}$$

Proof cont'd: We obtained $E(X|N=n)=n\mu$ for all $n=1,2,\ldots$, i.e, $E(X|N)=N\mu$. By the law of total expectation

$$E(X) = E[E(X|N)] = E(N\mu) = E(N)\mu \qquad \Box$$

Example: (Branching Process) Suppose a population evolves in generations starting from a single individual (generation 0). Each individual of the ith generation produces a random number of offsprings; the collection of all offsprings by generation i individuals forms generation i+1. The number of offsprings born to distinct individuals are independent random variables with mean μ . Let X_n be the number of individuals in the nth generation. Find $E(X_n)$.

STAT/MTHE 353: 4 - More on Expectations

21 / 37

- (2) Cov(X, Y) = Cov(Y, X).
- (3) If X = Y we obtain

$$Cov(X,Y) = E[(X - E(X))^2] = Var(X)$$

(4) For any constants a, b, c and d,

$$Cov(aX + b, cY + d)$$

$$= E[(aX + b - E(aX + b))(cY + d - E(cY + d))]$$

$$= E[a(X - E(X))c(Y - E(Y))]$$

$$= acE[(X - E(X))(Y - E(Y))]$$

$$= ac Cov(X, Y)$$

Covariance and Correlation

Covariance

Definition Let X and Y be two random variables with finite variance. Their *covariance* is defined by

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$

Properties:

(1)
$$\operatorname{Cov}(X,Y) = E(XY) - E[E(X)Y] - E[XE(Y)] + E[E(X)E(Y)]$$
$$= E(XY) - 2E(X)E(Y) + E(X)E(Y)$$
$$= E(XY) - E(X)E(Y)$$

The formula $\boxed{\mathrm{Cov}(X,Y)=E(XY)-E(X)E(Y)}$ is often useful in computations.

STAT/MTHE 353: 4 - More on Expectations

22 / 37

(5) If X and Y are independent, then Cov(X, Y) = 0.

Proof: By independence, E(XY) = E(X)E(Y), so

$$Cov(X,Y) = E(XY) - E(X)E(Y) = 0$$

Definition Let X_1, \ldots, X_n be random variables with finite variances. The *covariance matrix* of the vector $\mathbf{X} = (X_1, \ldots, X_n)^T$ is the $n \times n$ matrix $\text{Cov}(\mathbf{X})$ whose (i, j)th entry is $\text{Cov}(X_i, X_j)$.

Remarks:

- The *ith* diagonal entry of Cov(X) is $Var(X_i)$, i = 1, ..., n
- Cov(X) is a symmetric matrix since $Cov(X_i, X_j) = Cov(X_j, X_i)$ for all i and j.

Some properties of covariance are easier to derive using a matrix formalism.

• Let $V = \{Y_{ij}; i = 1, \dots, m, j = 1, \dots, n\}$ be an $m \times n$ matrix of random variables having finite expectations. We define E(V) by taking expectations componentwise:

$$E(\mathbf{V}) = E \begin{bmatrix} Y_{11} & \dots & Y_{1n} \\ Y_{21} & \dots & Y_{2n} \\ \vdots & \ddots & \vdots \\ Y_{m1} & \dots & Y_{mn} \end{bmatrix} = \begin{bmatrix} E(Y_{11}) & \dots & E(Y_{1n}) \\ E(Y_{21}) & \dots & E(Y_{2n}) \\ \vdots & \ddots & \vdots \\ E(Y_{m1}) & \dots & E(Y_{mn}) \end{bmatrix}$$

• Now notice that the $n \times n$ matrix $(\boldsymbol{X} - E(\boldsymbol{X}))(\boldsymbol{X} - E(\boldsymbol{X}))^T$ has $(X_i - E(X_i))(X_j - E(X_j))$ in its (i,j)th entry. Thus

$$Cov(\boldsymbol{X}) = E[(\boldsymbol{X} - E(\boldsymbol{X}))(\boldsymbol{X} - E(\boldsymbol{X}))^{T}]$$

STAT/MTHE 353: 4 - More on Expectations

25 / 37

For any m-vector $\boldsymbol{c} = (c_1, \dots, c_m)^T$ we also have

$$Cov(Y + c) = Cov(Y)$$

since $Cov(Y_i + c_i, Y_j + c_j) = Cov(Y_i, Y_j)$.

Thus

$$Cov(\boldsymbol{A}\boldsymbol{X} + \boldsymbol{c}) = \boldsymbol{A} Cov(\boldsymbol{X}) \boldsymbol{A}^T$$

Let m=1 so that $\boldsymbol{c}=c$ is a scalar and \boldsymbol{A} is and $1\times n$ matrix, i.e., \boldsymbol{A} is a row vector $\boldsymbol{A}=\boldsymbol{a}^T=(a_1,\ldots,a_n)$. Then

$$\operatorname{Cov}(\boldsymbol{a}^T \boldsymbol{X} + c) = \operatorname{Cov}\left(\sum_{i=1}^n a_i X_i + c\right) = \operatorname{Var}\left(\sum_{i=1}^n a_i X_i + c\right)$$

Lemma 5

Let A be an $m \times n$ real matrix and define Y = AX (an m-dimensional random vector). Then

$$\operatorname{Cov}(\boldsymbol{Y}) = \boldsymbol{A}\operatorname{Cov}(\boldsymbol{X})\boldsymbol{A}^T$$

Proof: First note that by the linearity of expectation,

$$E(\boldsymbol{Y}) = E(\boldsymbol{A}\boldsymbol{X}) = \boldsymbol{A}E(\boldsymbol{X}).$$

Thus

$$Cov(Y) = E[(Y - E(Y))(Y - E(Y))^{T}]$$

$$= E[(AX - AE(X))(AX - AE(X))^{T}]$$

$$= E[(A(X - E(X)))(A(X - E(X)))^{T}]$$

$$= E[A(X - E(X))(X - E(X)))^{T}A^{T}]$$

$$= AE[(X - E(X))(X - E(X)))^{T}]A^{T}$$

$$= ACov(X)A^{T}$$

TAT/MTHE 353: 4 - More on Expectations

26 / 37

On the other hand,

$$\operatorname{Cov}(\boldsymbol{a}^{T}\boldsymbol{X}+c) = \boldsymbol{a}^{T}\operatorname{Cov}(\boldsymbol{X})\boldsymbol{a} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i}a_{j}\operatorname{Cov}(X_{i}, X_{j})$$

$$= \sum_{i=1}^{n} a_{i}^{2}\operatorname{Cov}(X_{i}, X_{i}) + 2\sum_{i < j} a_{i}a_{j}\operatorname{Cov}(X_{i}, X_{j})$$

$$= \sum_{i=1}^{n} a_{i}^{2}\operatorname{Var}(X_{i}) + 2\sum_{i < j} a_{i}a_{j}\operatorname{Cov}(X_{i}, X_{j})$$

Hence

$$\operatorname{Var}\left(\sum_{i=1}^{n} a_i X_i + c\right) = \sum_{i=1}^{n} a_i^2 \operatorname{Var}(X_i) + 2 \sum_{i < j} a_i a_j \operatorname{Cov}(X_i, X_j)$$

Note that if X_1, \ldots, X_n are *independent*, then $Cov(X_i, X_j) = 0$ for $i \neq j$, and we obtain

$$\operatorname{Var}\left(\sum_{i=1}^{n} a_i X_i + c\right) = \sum_{i=1}^{n} a_i^2 \operatorname{Var}(X_i)$$

STAT/MTHE 353: 4 - More on Expectations

STAT/MTHE 353: 4 - More on Expectations

28 / 3

More generally, let $\boldsymbol{X}=(X_1,\ldots,X_n)^T$ and $\boldsymbol{Y}=(Y_1,\ldots,Y_m)^T$ and let $\mathrm{Cov}(\boldsymbol{X},\boldsymbol{Y})$ be the $n\times m$ matrix with (i,j)th entry $\mathrm{Cov}(X_i,Y_j)$. Note that

$$Cov(\boldsymbol{X}, \boldsymbol{Y}) = E[(\boldsymbol{X} - E(\boldsymbol{X}))(\boldsymbol{Y} - E(\boldsymbol{Y}))^T]$$

If ${\bf A}$ is a $k \times n$ matrix, ${\bf B}$ is an $l \times m$ matrix, ${\bf c}$ is a k-vector and ${\bf d}$ is an l-vector, then

$$Cov(AX + c, BY + d)$$

$$= E[(AX + c - E(AX + c))(BY + d - E(BY + d))^{T}]$$

$$= AE[(X - E(X))(Y - E(Y))^{T}]B^{T}$$

We obtain

$$\operatorname{Cov}(\boldsymbol{A}\boldsymbol{X} + \boldsymbol{c}, \boldsymbol{B}\boldsymbol{Y} + \boldsymbol{d}) = \boldsymbol{A}\operatorname{Cov}(\boldsymbol{X}, \boldsymbol{Y})\boldsymbol{B}^T$$

STAT/MTHE 353: 4 - More on Expectations

29 / 37

The following property of covariance is of fundamental importance:

Lemma 7

$$|\operatorname{Cov}(X,Y)| \le \sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}$$

Proof: First we prove the *Cauchy-Schwarz inequality* for random variables U and V with finite variances. Let $\lambda \in \mathbb{R}$, then

$$0 \leq E[(U - \lambda V)^2] = E(U^2 - 2\lambda UV + \lambda^2 V^2)$$
$$= E(U^2) - 2\lambda E(UV) + \lambda^2 E(V^2)$$

This is a quadratic polynomial in λ which cannot have two distinct real roots.

We can now prove the following important property of covariance:

Lemma 6

For any constants a_1, \ldots, a_n and b_1, \ldots, b_m ,

$$\operatorname{Cov}\left(\sum_{i=1}^{n} a_{i} X_{i}, \sum_{j=1}^{m} b_{j} Y_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j} \operatorname{Cov}(X_{i}, Y_{j})$$

i.e., Cov(X,Y) is bilinear.

Proof: Let
$$k=l=1$$
 and ${\boldsymbol A}={\boldsymbol a}^T=(a_1,\ldots,a_n)$ and ${\boldsymbol B}={\boldsymbol b}^T=(b_1,\ldots,b_m).$ Then we have

$$\operatorname{Cov}\left(\sum_{i=1}^{n} a_{i} X_{i}, \sum_{j=1}^{m} b_{j} Y_{j}\right) = \operatorname{Cov}(\boldsymbol{a}^{T} \boldsymbol{X}, \boldsymbol{b}^{T} \boldsymbol{Y}) = \operatorname{Cov}(\boldsymbol{A} \boldsymbol{X}, \boldsymbol{B} \boldsymbol{Y})$$

$$= \boldsymbol{A} \operatorname{Cov}(\boldsymbol{X}, \boldsymbol{Y}) \boldsymbol{B}^{T} = \boldsymbol{a}^{T} \operatorname{Cov}(\boldsymbol{X}, \boldsymbol{Y}) \boldsymbol{b}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j} \operatorname{Cov}(X_{i}, Y_{j}) \qquad \Box$$

STAT/MTHE 353: 4 - More on Expectations

30 / 37

Proof cont'd: Thus its discriminant cannot be positive:

$$4[E(UV)]^{2} - 4E(U^{2})E(V^{2}) \le 0$$

so we obtain

$$[E(UV)]^2 \le E(U^2)E(V^2)$$

Use this with U = X - E(X) and V = Y - E(Y) to get

$$\begin{split} |\operatorname{Cov}(X,Y)| &= \left| E \left[(X - E(X))(Y - E(Y)) \right] \right| \\ &\leq \sqrt{E \left[(X - E(X))^2 \right] E \left[(Y - E(Y))^2 \right]} \\ &= \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)} \quad \Box \end{split}$$

Correlation

Recall that $\operatorname{Cov}(aX,bY)=ab\operatorname{Cov}(X,Y)$. This is an undesirable property if we want to use $\operatorname{Cov}(X,Y)$ as a measure of association between X and Y. A proper normalization will solve this problem:

Definition The *correlation coefficient* between X and Y having nonzero variances is defined by

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

Remarks:

• Since $Var(aX + b) = a^2 Var(X)$,

$$\rho(aX + b, aY + d) = \rho(X, Y)$$

STAT/MTHE 353: 4 - More on Expectations

33 / 37

Theorem 8

The correlation always satisfies

$$|\rho(X,Y)| \le 1$$

Moreover, $|\rho(X,Y)| = 1$ if and only if Y = aX + b for some constants a and b $(a \neq 0)$, i.e., Y is an affine function of X.

Proof: We know that $|\operatorname{Cov}(X,Y)| \leq \sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}$, so $|\rho(X,Y)| \leq 1$ always holds.

Let's assume now that Y = aX + b, where $a \neq 0$. Then

$$Cov(X, Y) = Cov(X, aX + b) = Cov(X, aX) = a Cov(X, X) = aVar(X)$$

so

$$\rho(X,Y) = \frac{a \operatorname{Var}(X)}{\sqrt{\operatorname{Var}(X)a^2 \operatorname{Var}(X)}} = \frac{a}{\sqrt{a^2}} = \pm 1$$

• Letting $\mu_X=E(X)$, $\mu_Y=E(Y)$, $\sigma_X^2={\rm Var}(X)$, $\sigma_Y^2={\rm Var}(Y)$, we have

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{\operatorname{Cov}(X - \mu_X, Y - \mu_Y)}{\sigma_X \sigma_Y}$$
$$= \operatorname{Cov}\left(\frac{X - \mu_X}{\sigma_X}, \frac{Y - \mu_Y}{\sigma_Y}\right)$$

Thus $\rho(X,Y)$ is the covariance between the *standardized* versions of X and Y.

• If X and Y are independent, then $\mathrm{Cov}(X,Y)=0$, so $\rho(X,Y)=0$. On the other hand, $\rho(X,Y)=0$ does not imply that X and Y are independent.

Remark: If $\rho(X,Y)=0$ we say that X and Y are uncorrelated.

Example: Find random variables X and Y that are uncorrelated but not independent.

Example: Covariance and correlation for multinomial random variables...

STAT/MTHE 353: 4 - More on Expectations

34 / 37

Proof cont'd:

Conversely, suppose that $\rho(X,Y)=1$. Then

$$\operatorname{Var}\left(\frac{X}{\sigma_X} - \frac{Y}{\sigma_Y}\right) = \operatorname{Cov}\left(\frac{X}{\sigma_X} - \frac{Y}{\sigma_Y}, \frac{X}{\sigma_X} - \frac{Y}{\sigma_Y}\right)$$

$$= \operatorname{Var}\left(\frac{X}{\sigma_X}\right) + \operatorname{Var}\left(\frac{Y}{\sigma_Y}\right) - 2\operatorname{Cov}\left(\frac{X}{\sigma_X}, \frac{Y}{\sigma_Y}\right)$$

$$= \frac{\operatorname{Var}(X)}{\sigma_X^2} + \frac{\operatorname{Var}(Y)}{\sigma_Y^2} - 2\frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y}$$

$$= 1 + 1 - 2 = 0$$

This means that $\frac{X}{\sigma_X} - \frac{Y}{\sigma_Y} = c$ for some constant c, so

$$Y = \frac{\sigma_Y}{\sigma_X} X - \sigma_Y c$$

If $\rho(X,Y)=-1$, consider $\mathrm{Var}\big(\frac{X}{\sigma_X}+\frac{Y}{\sigma_Y}\big)$ and use the same proof \square

Remark: The previous theorem implies that correlation can be thought of as a measure of *linear association* (linear dependence) between X and Y. Recall the multinomial example...

Example: (Linear MMSE estimation) Let X and Y be random variables with zero means and finite variances $\sigma_X^2>0$ and $\sigma_Y^2>0$. Suppose we want to estimate X in the MMSE sense using a *linear* function of Y; i.e., we are looking for $a\in\mathbb{R}$ minimizing

$$E[(X - aY)^2]$$

Find the minimizing a and determine the resulting minimum mean square error. Relate the results to $\rho(X,Y)$.

Solution: ...

STAT/MTHE 353: 4 - More on Expectations

37 / 37

