The single most important property of the MGF is that it uniquely determines the distribution of a random vector:

Theorem 1

Assume $M_X(t)$ and $M_Y(t)$ are the MGFs of the random vectors X and Y and such that $M_X(t) = M_Y(t)$ for all $t \in (-t_0, t_0)^n$. Then

$$F_X(z) = F_Y(z) \text{ for all } z \in \mathbb{R}^n$$

where F_X and F_Y are the joint cdfs of X and Y.

Remarks:

- $F_X(z) = F_Y(z)$ for all $z \in \mathbb{R}^n$ clearly implies $M_X(t) = M_Y(t)$.
- Thus $M_X(t) = M_Y(t) \iff F_X(z) = F_Y(z)$
- Most often we will use the theorem for random variables instead of random vectors. In this case, $M_X(t) = M_Y(t)$ for all $t \in (-t_0, t_0)$ implies $F_X(z) = F_Y(z)$ for all $z \in \mathbb{R}$.

Moment Generating Function

Definition Let $X = (X_1, \ldots, X_n)^T$ be a random vector and $t = (t_1, \ldots, t_n)^T \in \mathbb{R}^n$. The *moment generating function* (MGF) is defined by

$$M_X(t) = E(e^{t^T X})$$

for all t for which the expectation exists (i.e., finite).

Remarks:

- $M_X(t) = E(\sum_{i=1}^n t_i X_i)$
- For $0 = (0, \ldots, 0)^T$, we have $M_X(0) = 1$.
- If X is a discrete random variable with finitely many values, then $M_X(t) = E(e^{t^T X})$ is always finite for all $t \in \mathbb{R}^n$.
- We will always assume that the distribution of X is such that $M_X(t)$ is finite for all $t \in (-t_0, t_0)^n$ for some $t_0 > 0$.

Connection with moments

- Let k_1, \ldots, k_n be nonnegative integers and $k = k_1 + \cdots + k_n$. Then

$$\frac{\partial^k}{\partial t_1^{k_1} \cdots \partial t_n^{k_n}} M_X(t) = \frac{\partial^k}{\partial t_1^{k_1} \cdots \partial t_n^{k_n}} E(e^{t_1 X_1 + \cdots + t_n X_n})$$

$$= E\left(\frac{\partial^k}{\partial t_1^{k_1} \cdots \partial t_n^{k_n}} e^{t_1 X_1 + \cdots + t_n X_n} \right)$$

$$= E\left(X_1^{k_1} \cdots X_n^{k_n} (e^{t_1 X_1 + \cdots + t_n X_n}) \right)$$

Setting $t = 0 = (0, \ldots, 0)^T$, we get

$$\frac{\partial^k}{\partial t_1^{k_1} \cdots \partial t_n^{k_n}} M_X(t) \bigg|_{t=0} = E\left(X_1^{k_1} \cdots X_n^{k_n} \right)$$

- For a (scalar) random variable X we obtain the *kth moment* of X:

$$\frac{d^k}{dt^k} M_X(t) \bigg|_{t=0} = E(X^k)$$
Theorem 2
Assume \(X_1, \ldots, X_m\) are independent random vectors in \(\mathbb{R}^n\) and let \(X = X_1 + \cdots + X_m\). Then
\[
M_X(t) = \prod_{i=1}^{m} M_{X_i}(t)
\]

Proof:
\[
M_X(t) = E(e^{t^T X}) = E(e^{t^T(X_1 + \cdots + X_m)})
\]
\[
= E(e^{t^T X_1} \cdots e^{t^T X_m})
\]
\[
= E(e^{t^T X_1}) \cdots E(e^{t^T X_m})
\]
\[
= M_{X_1}(t) \cdots M_{X_m}(t)
\]

Note: This theorem gives us a powerful tool for determining the distribution of the sum of independent random variables.

Theorem 3
Assume \(X\) is a random vector in \(\mathbb{R}^n\), \(A\) is an \(m \times n\) real matrix and \(b \in \mathbb{R}^m\). Then the MGF of \(Y = AX + b\) is given at \(t \in \mathbb{R}^m\) by
\[
M_Y(t) = e^{t^T b} M_X(A^T t)
\]

Proof:
\[
M_Y(t) = E(e^{t^T Y}) = E(e^{t^T (AX + b)})
\]
\[
= e^{t^T b} E(e^{t^T AX}) = e^{t^T b} E(e^{(A^T t)^T X})
\]
\[
= e^{t^T b} M_X(A^T t)
\]

Note: In the scalar case \(Y = aX + b\) we obtain
\[
M_Y(t) = e^{tb} M_X(at)
\]

Example: MGF for \(X \sim \text{Gamma}(r, \lambda)\) and \(X_1 + \cdots + X_m\) where the \(X_i\) are independent and \(X_i \sim \text{Gamma}(r_i, \lambda_i)\). Also, use the MGF to find \(E(X), E(X^2), \text{ and } \text{Var}(X)\).

Applications to Normal Distribution
Let \(X \sim N(0, 1)\). Then
\[
M_X(t) = E(e^{tX}) = \int_{-\infty}^{\infty} e^{tx} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx
\]
\[
= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x^2 - 2tx)} dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}[(x-t)^2 - t^2]} dx
\]
\[
= e^{t^2/2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x-t)^2} dx
\]
\[
= e^{t^2/2} \quad \text{N}(t, 1) \text{ pdf}
\]
We obtain that for all \(t \in \mathbb{R}\)
\[
M_X(t) = e^{t^2/2}
\]
Moments of a standard normal random variable

Recall the power series expansion \(e^z = \sum_{k=0}^{\infty} \frac{z^k}{k!} \) valid for all \(z \in \mathbb{R} \). Apply this to \(z = tX \)

\[
M_X(t) = E(e^{tX}) = E\left(\sum_{k=0}^{\infty} \frac{(tX)^k}{k!}\right) = \sum_{k=0}^{\infty} \frac{E((tX)^k)}{k!} = \sum_{k=0}^{\infty} \frac{E(X^k)}{k!} t^k
\]

and to \(z = t^2/2 \)

\[
M_X(t) = e^{t^2/2} = \sum_{i=0}^{\infty} \frac{(t^2/2)^i}{i!}
\]

Matching the coefficient of \(t^k \), for \(k = 1, 2, \ldots \) we obtain

\[
E(X^k) = \begin{cases} \frac{k!}{2^{k/2}(k/2)!}, & \text{k even,} \\ 0, & \text{k odd.} \end{cases}
\]

Multi-Linear Algebra Review

- Recall that an \(n \times n \) real matrix \(C \) is called **nonnegative definite** if it is symmetric and

\[
x^T C x \geq 0 \text{ for all } x \in \mathbb{R}^n
\]

and **positive definite** if it is symmetric and

\[
x^T C x > 0 \text{ for all } x \in \mathbb{R}^n \text{ such that } x \neq 0
\]

- Let \(A \) be an arbitrary \(n \times n \) real matrix. Then \(C = A^T A \) is nonnegative definite. If \(A \) is nonsingular (invertible), then \(C \) is positive definite.

Proof: \(A^T A \) is symmetric since \((A^T A)^T = (A^T)^T(A^T)^T = A^T A \). Thus it is nonnegative definite since

\[
x^T (A^T A) x = x^T A^T A x = (Ax)^T (Ax) = \|Ax\|^2 \geq 0
\]

Sum of independent normal random variables

- Recall that if \(X \sim N(0, 1) \) and \(Y = \sigma X + \mu \), where \(\sigma > 0 \), then \(Y \sim N(\mu, \sigma^2) \). Thus the MGF of a \(N(\mu, \sigma^2) \) random variable is

\[
M_Y(t) = e^{\mu t} M_X(\sigma t) = e^{\mu t} e^{(\sigma t)^2/2} = e^{\mu t + \sigma^2 t^2/2}
\]

- Let \(X_1, \ldots, X_m \) be independent r.v.'s with \(X_i \sim N(\mu_i, \sigma_i^2) \) and set

\[
X = X_1 + \cdots + X_m.
\]

Then

\[
M_X(t) = \prod_{i=1}^{m} M_{X_i}(t) = \prod_{i=1}^{m} e^{\mu_i t + \sigma_i^2 t^2/2} = e^{(\sum_{i=1}^{m} \mu_i) + (\sum_{i=1}^{m} \sigma_i^2) t^2/2}
\]

This implies

\[
X \sim N\left(\sum_{i=1}^{m} \mu_i, \sum_{i=1}^{m} \sigma_i^2\right)
\]

i.e., \(X_1 + \cdots + X_m \) is normal with mean \(\mu_X = \sum_{i=1}^{m} \mu_i \) and variance \(\sigma_X^2 = \sum_{i=1}^{m} \sigma_i^2 \).

For any nonnegative definite \(n \times n \) matrix \(C \) the following hold:

1. \(C \) has \(n \) nonnegative eigenvalues \(\lambda_1, \ldots, \lambda_n \) (counting multiplicities) and corresponding \(n \) orthogonal unit-length eigenvectors \(b_1, \ldots, b_n \):

\[
Cc_i = \lambda_i b_i, \quad i = 1, \ldots, n
\]

where \(b_i^T b_i = 1, \ i = 1, \ldots, n \) and \(b_i^T b_j = 0 \) if \(i \neq j \).

2. (Spectral decomposition) \(C \) can be written as

\[
C = BDB^T
\]

where \(D = \text{diag}(\lambda_1, \ldots, \lambda_n) \) is the diagonal matrix of the eigenvalues of \(C \), and \(B \) is the orthogonal matrix whose \(i \)-th column is \(b_i \), i.e., \(B = [b_1 \ldots b_n] \).

3. \(C \) is positive definite \(\iff \) \(C \) is nonsingular \(\iff \) all the eigenvalues \(\lambda_i \) are positive.
(4) C has a unique nonnegative definite square root $C^{1/2}$, i.e., there exists a unique nonnegative definite A such that

$$C = AA$$

Proof: We only prove the existence of A. Let $D^{1/2} = \text{diag}(\lambda_1^{1/2}, \ldots, \lambda_n^{1/2})$ and note that $D^{1/2}D^{1/2} = D$. Let $A = BD^{1/2}B^T$. Then A is nonnegative definite and

$$A^2 = AA = (BD^{1/2}B^T)(BD^{1/2}B^T) = BD^{1/2}B^T BD^{1/2}B^T = BD^{1/2}D^{1/2}B^T = C \quad \square$$

Remarks:
- If C is positive definite, then so is A.
- If we don’t require that A be nonnegative definite, then in general there are infinitely many solutions A for $AA^T = C$.

Defining the Multivariate Normal Distribution

Let Z_1, \ldots, Z_n be independent r.v.’s with $Z_i \sim N(0, 1)$. The multivariate MGF of $Z = (Z_1, \ldots, Z_n)^T$ is

$$M_Z(t) = E(e^{t^T Z}) = E(e^{\sum_{i=1}^n t_i Z_i}) = \prod_{i=1}^n E(e^{t_i Z_i}) = \prod_{i=1}^n e^{t_i^2/2} = e^{\sum_{i=1}^n t_i^2/2} = e^{\frac{1}{2} t^T t}$$

Now let $\mu \in \mathbb{R}^n$ and A an $n \times n$ real matrix. Then the MGF of $X = AZ + \mu$ is

$$M_X(t) = e^{t^T \mu} M_Z(A^T t) = e^{t^T \mu} e^{\frac{1}{2} (A^T t)^T (A^T t)} = e^{t^T \mu} e^{\frac{1}{2} t^T A A^T t} = e^{t^T \mu + \frac{1}{2} t^T \Sigma t}$$

where $\Sigma = AA^T$. Note that Σ is nonnegative definite.

Lemma 4

If Σ is the covariance matrix of some random vector $X = (X_1, \ldots, X_n)^T$, then it is nonnegative definite.

Proof: We know that $\Sigma = \text{Cov}(X)$ is symmetric. Let $b \in \mathbb{R}^n$ be arbitrary. Then

$$b^T \Sigma b = b^T \text{Cov}(X) b = \text{Cov}(b^T X) = \text{Var}(b^T X) \geq 0$$

so Σ is nonnegative definite.

Remark: It can be shown that an $n \times n$ matrix Σ is nonnegative definite if and only if there exists a random vector $X = (X_1, \ldots, X_n)^T$ such that $\text{Cov}(X) = \Sigma$.

Definition Let $\mu \in \mathbb{R}^n$ and let Σ be an $n \times n$ nonnegative definite matrix. A random vector $X = (X_1, \ldots, X_n)$ is said to have a **multivariate normal distribution** with parameters μ and Σ if its multivariate MGF is

$$M_X(t) = e^{t^T \mu + \frac{1}{2} t^T \Sigma t}$$

Notation: $X \sim N(\mu, \Sigma)$.

Remarks:
- If $Z = (Z_1, \ldots, Z_n)^T$ with $Z_i \sim N(0, 1), i = 1, \ldots, n$, then $Z \sim N(0, I)$, where I is the $n \times n$ identity matrix.
- We saw that if $Z \sim N(0, I)$, then $X = AZ + \mu \sim N(\mu, \Sigma)$, where $\Sigma = AA^T$. One can show the following:

$$X \sim N(\mu, \Sigma) \text{ if and only if } X = AZ + \mu \text{ for a random } n \text{-vector}$$

$$Z \sim N(0, I) \text{ and some } n \times n \text{ matrix } A \text{ with } \Sigma = AA^T.$$
Mean and covariance for multivariate normal distribution

Consider first $Z \sim \mathcal{N}(0, I)$, i.e., $Z = (Z_1, \ldots, Z_n)^T$, where the Z_i are independent $\mathcal{N}(0, 1)$ random variables. Then

$$E(Z) = (E(Z_1), \ldots, E(Z_n))^T = (0, \ldots, 0)^T$$

and

$$E((Z_i - E(Z_i))(Z_j - E(Z_j))) = E(Z_i Z_j) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j \end{cases}$$

Thus

$$E(Z) = 0, \quad \text{Cov}(Z) = I$$

Joint pdf for multivariate normal distribution

Lemma 5

If a random vector $X = (X_1, \ldots, X_n)^T$ has covariance matrix Σ that is not of full rank (i.e., singular), then X does not have a joint pdf.

Proof sketch: If Σ is singular, then there exists $b \in \mathbb{R}^n$ such that $b \neq 0$ and $\Sigma b = 0$. Consider the random variable $b^T X = \sum_{i=1}^n b_i X_i$;

$$\text{Var}(b^T X) = \text{Cov}(b^T X) = b^T \text{Cov}(X)b = b^T \Sigma b = 0$$

Therefore $P(b^T X = c) = 1$ for some constant c. If X had a joint pdf $f(x)$, then for $B = \{x : b^T x = c\}$ we should have

$$1 = P(b^T X = c) = P(X \in B) = \int_B \cdots \int f(x_1, \ldots, x_n) \, dx_1 \cdots dx_n$$

But this is impossible since B is an $(n-1)$-dimensional hyperplane whose n-dimensional volume is zero, so the integral must be zero. □

If $X \sim \mathcal{N}(\mu, \Sigma)$, then $X = AZ + \mu$ for a random n-vector $Z \sim \mathcal{N}(0, I)$ and some $n \times n$ matrix A with $\Sigma = AA^T$.

We have

$$E(AZ + \mu) = AE(Z) + \mu = \mu$$

Also,

$$\text{Cov}(AZ + \mu) = \text{Cov}(AZ) = A \text{Cov}(Z)A^T = AA^T = \Sigma$$

Thus

$$E(X) = \mu, \quad \text{Cov}(X) = \Sigma$$

Theorem 6

If $X = (X_1, \ldots, X_n)^T \sim \mathcal{N}(\mu, \Sigma)$, where Σ is nonsingular, then it has a joint pdf given by

$$f_X(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1} (x-\mu)}, \quad x \in \mathbb{R}^n$$

Proof: We know that $X = AZ + \mu$ where

$Z = (Z_1, \ldots, Z_n)^T \sim \mathcal{N}(0, I)$ and A is an $n \times n$ matrix such that $AA^T = \Sigma$. Since Σ is nonsingular, A must be nonsingular with inverse A^{-1}. Thus the mapping

$$h(z) = Az + \mu$$

is invertible with inverse $g(x) = A^{-1}(x - \mu)$ whose Jacobian is

$$J_g(x) = \det A^{-1}$$

By the multivariate transformation theorem

$$f_X(x) = f_Z(g(x)) |J_g(x)| = f_Z(A^{-1}(x - \mu)) |\det A^{-1}|$$
Proof cont’d: Since $Z = (Z_1, \ldots, Z_n)^T$, where the Z_i are independent $N(0, 1)$ random variables, we have

$$f_Z(z) = \prod_{i=1}^n \left(\frac{1}{\sqrt{2\pi}} \right) e^{-\frac{z_i^2}{2}} = \frac{1}{(2\pi)^{n/2}} e^{-\frac{1}{2} \sum_{i=1}^n z_i^2} = \frac{1}{(2\pi)^{n/2}} e^{-\frac{1}{2} z^T z}$$

so we get

$$f_X(x) = f_Z(A^{-1}(x - \mu) | \det A^{-1} |$$

$$= \frac{1}{(2\pi)^{n/2}} e^{-\frac{1}{2} (A^{-1}(x - \mu))^T A^{-1}(x - \mu)} | \det A^{-1} |$$

$$= \frac{1}{(2\pi)^{n/2}} e^{-\frac{1}{2} (x - \mu)^T A^{-1} A^{-1} (x - \mu)} | \det A^{-1} |$$

$$= \frac{1}{(2\pi)^{n/2}} \det A e^{-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)}$$

since $| \det A^{-1} | = \frac{1}{\det A}$ and $(A^{-1})^T A^{-1} = \Sigma^{-1}$ (exercise!)

Special case: bivariate normal

For $n = 2$ we have

$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \quad \text{and} \quad \Sigma = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$$

where $\mu_i = E(X_i)$, $\sigma_i^2 = \text{Var}(X_i)$, $i = 1, 2$, and

$$\rho = \rho(X_1, X_2) = \frac{\text{Cov}(X_1, X_2)}{\sigma_1 \sigma_2}$$

Thus the bivariate normal distribution is determined by five scalar parameters $\mu_1, \mu_2, \sigma_1^2, \sigma_2^2$, and ρ.

Σ is positive definite $\iff \Sigma$ is invertible $\iff \det \Sigma > 0$:

$$\det \Sigma = (1 - \rho^2)\sigma_1^2 \sigma_2^2 > 0 \iff |\rho| < 1 \text{ and } \sigma_1^2 \sigma_2^2 > 0$$

so a bivariate normal random variable (X_1, X_2) has a pdf if and only if the components X_1 and X_2 have positive variances and $|\rho| < 1$.

Thus the joint pdf of $(X_1, X_2)^T \sim N(\mu, \Sigma)$ is

$$f(x_1, x_2) = \frac{1}{2\pi \sigma_1 \sigma_2 \sqrt{1 - \rho^2}} e^{\frac{1}{2(1 - \rho^2)} \left(\frac{(x_1 - \mu_1)^2 + (x_2 - \mu_2)^2 - 2\rho(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1^2 \sigma_2^2} \right)}$$

Remark: If $\rho = 0$, then

$$f(x_1, x_2) = \frac{1}{2\pi \sigma_1 \sigma_2} e^{\frac{1}{2\sigma_1^2} \left(\frac{(x_1 - \mu_1)^2 + (x_2 - \mu_2)^2}{\sigma_1^2} \right)}$$

$$= \frac{1}{\sigma_1 \sqrt{2\pi}} e^{\frac{(x_1 - \mu_1)^2}{2\sigma_1^2}} \cdot \frac{1}{\sigma_2 \sqrt{2\pi}} e^{\frac{(x_2 - \mu_2)^2}{2\sigma_2^2}}$$

$$= f_{X_1}(x_1) f_{X_2}(x_2)$$

Therefore X_1 and X_2 are independent. It is also easy to see that $f(x_1, x_2) = f_{X_1}(x_1) f_{X_2}(x_2)$ for all x_1 and x_2 implies $\rho = 0$. Thus we obtain

Two jointly normal random variables X_1 and X_2 are independent if and only if they are uncorrelated.
In general, the following important facts can be proved using the multivariate MGF:

(i) If \(X = (X_1, \ldots, X_n)^T \sim N(\mu, \Sigma) \), then \(X_1, X_2, \ldots, X_n \) are independent if and only if they are uncorrelated, i.e., \(\text{Cov}(X_i, X_j) = 0 \) if \(i \neq j \), i.e., \(\Sigma \) is a diagonal matrix.

(ii) Assume \(X = (X_1, \ldots, X_n)^T \sim N(\mu, \Sigma) \) and let

\[
X_1 = (X_1, \ldots, X_k)^T, \quad X_2 = (X_{k+1}, \ldots, X_n)^T
\]

Then \(X_1 \) and \(X_2 \) are independent if and only if \(\text{Cov}(X_1, X_2) = 0_{k \times (n-k)} \), the \(k \times (n-k) \) matrix of zeros, i.e., \(\Sigma \) can be partitioned as

\[
\Sigma = \begin{bmatrix}
\Sigma_{11} & 0_{k \times (n-k)} \\
0_{(n-k) \times k} & \Sigma_{22}
\end{bmatrix}
\]

where \(\Sigma_{11} = \text{Cov}(X_1) \) and \(\Sigma_{22} = \text{Cov}(X_2) \).

For some \(1 \leq m < n \) let \(\{i_1, \ldots, i_m\} \subset \{1, \ldots, n\} \) such that \(i_1 < i_2 < \cdots < i_m \). Let \(e_j = (0, \ldots, 0, 1, 0, \ldots, 0)^T \) be the \(j \)th unit vector in \(\mathbb{R}^n \) and define the \(m \times n \) matrix \(A \) by

\[
A = \begin{bmatrix}
e_{i_1}^T \\
e_{i_2}^T \\
\vdots \\
e_{i_m}^T
\end{bmatrix}
\]

Then

\[
AX = \begin{bmatrix}
e_{i_1}^T \\
e_{i_2}^T \\
\vdots \\
e_{i_m}^T
\end{bmatrix} \begin{bmatrix}
X_1 \\
X_2 \\
\vdots \\
X_n
\end{bmatrix} = \begin{bmatrix}
X_{i_1} \\
X_{i_2} \\
\vdots \\
X_{i_m}
\end{bmatrix}
\]

Thus \((X_{i_1}, \ldots, X_{i_m})^T \sim N(A\mu, \Sigma A^T) \).

Marginals of multivariate normal distributions

Let \(X = (X_1, \ldots, X_n)^T \sim N(\mu, \Sigma) \). If \(A \) is an \(m \times n \) matrix and \(b \in \mathbb{R}^m \), then

\[
Y = AX + b
\]

is a random \(m \)-vector. Its MGF at \(t \in \mathbb{R}^m \) is

\[
M_Y(t) = e^{t^Tb}M_X(At)
\]

Since \(M_X(\tau) = e^{\tau^T\mu + \frac{1}{2}\tau^T\Sigma t} \) for all \(\tau \in \mathbb{R}^n \), we obtain

\[
M_Y(t) = e^{t^Tb}M_X(At) = e^{t^T(b + A\mu) + \frac{1}{2}t^T \Sigma A^T t}
\]

This means that \(Y \sim N(b + A\mu, \Sigma A^T A) \), i.e., \(Y \) is multivariate normal with mean \(b + A\mu \) and covariance \(\Sigma A^T A \).

Example: Let \(a_1, \ldots, a_n \in \mathbb{R} \) and determine the distribution of \(Y = a_1X_1 + \cdots + a_nX_n \).

Note the following:

\[
A\mu = \begin{bmatrix}
\mu_{i_1} \\
\vdots \\
\mu_{i_m}
\end{bmatrix}
\]

and the \((j, k)\)th entry of \(\Sigma A^T \) is

\[
(A\Sigma A^T)_{jk} = \text{cov}(X_{i_j}, X_{i_k})
\]

Thus if \(X = (X_1, \ldots, X_n)^T \sim N(\mu, \Sigma) \), then \((X_{i_1}, \ldots, X_{i_m})^T \) is multivariate normal whose mean and covariance are obtained by picking out the corresponding elements of \(\mu \) and \(\Sigma \).

Special case: For \(m = 1 \) we obtain that \(X_i \sim N(\mu_i, \sigma_i^2) \), where \(\mu_i = E(X_i) \) and \(\sigma_i^2 = \text{Var}(X_i) \), for all \(i = 1, \ldots, n \).
Conditional distributions

Let \(X = (X_1, \ldots, X_n)^T \sim N(\mu, \Sigma) \) and for \(1 \leq m < n \) define

\[
X_1 = (X_1, \ldots, X_m)^T, \quad X_2 = (X_{m+1}, \ldots, X_n)^T
\]

We know that \(X_1 \sim N(\mu_1, \Sigma_{11}) \) and \(X_2 \sim N(\mu_2, \Sigma_{22}) \) where \(\mu_1 = E(X_i), \Sigma_{1i} = \text{Cov}(X_i), i = 1, 2. \)

Then \(\mu \) and \(\Sigma \) can be partitioned as

\[
\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}
\]

where \(\Sigma_{ij} = \text{Cov}(X_i, X_j), i, j = 1, 2. \) Note that \(\Sigma_{11} \) is \(m \times m, \Sigma_{22} \) is \((n-m) \times (n-m), \Sigma_{12} \) is \(m \times (n-m), \) and \(\Sigma_{21} \) is \((n-m) \times m. \) Also, \(\Sigma_{21} = \Sigma_{12}. \)

We assume that \(\Sigma_{11} \) is nonsingular and we want to determine the conditional distribution of \(X_2 \) given \(X_1 = x_1. \)

\[
\text{Recall that } X = AZ + \mu \text{ for some } Z = (Z_1, \ldots, Z_n)^T \text{ where the } Z_i \text{ are independent } N(0, 1) \text{ random variables and } A \text{ is such that } AA^T = \Sigma.
\]

Let \(Z_1 = (Z_1, \ldots, Z_m)^T \) and \(Z_2 = (Z_{m+1}, \ldots, Z_n)^T. \) We want to determine such \(A \) in a partitioned form with dimensions corresponding to the partitioning of \(\Sigma. \)

\[
A = \begin{bmatrix} B & 0_{m \times (n-m)} \\ C & D \end{bmatrix}
\]

We can write \(\Sigma = AA^T \) as

\[
\begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} = \begin{bmatrix} B & 0_{m \times (n-m)} \\ C & D \end{bmatrix} \begin{bmatrix} B^T & C^T \\ 0_{(n-m) \times m} & D^T \end{bmatrix} = \begin{bmatrix} BB^T & BCT \\ CB^T & CC^T + DD^T \end{bmatrix}
\]

Since \(B \) is invertible, given \(X_1 = x_1, \) we have \(Z_1 = B^{-1}(x_1 - \mu_1). \) So given \(X_1 = x_1, \) we have that the conditional distribution of \(X_2 \) and the conditional distribution of

\[
CB^{-1}(x_1 - \mu_1) + DZ_2 + \mu_2
\]

are the same.

But \(Z_2 \) is independent of \(X_1, \) so given \(X_1 = x_1, \) the conditional distribution of \(CB^{-1}(x_1 - \mu_1) + DZ_2 + \mu_2 \) is the same as its unconditional distribution.

We conclude that the conditional distribution of \(X_2 \) given \(X_1 = x_1 \) is multivariate normal with mean

\[
E(X_2 | X_1 = x_1) = \mu_2 + \Sigma_{21}B^{-1}(x_1 - \mu_1) = \mu_2 + \Sigma_{21}B^{-1}B^{-1}(x_1 - \mu_1)
\]

and covariance matrix

\[
\Sigma_{22|1} = DD^T = \Sigma_{22} - \Sigma_{21}\Sigma^{-1}_{11}\Sigma_{12}
\]
Special case: bivariate normal

Suppose \(\mathbf{X} = (X_1, X_2)^T \sim \mathcal{N}(\mu, \Sigma) \) with

\[
\begin{bmatrix}
\mu_1 \\
\mu_1
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
\sigma_1^2 & \rho \sigma_1 \sigma_2 \\
\rho \sigma_1 \sigma_2 & \sigma_2^2
\end{bmatrix}
\]

We have

\[\mu_2 + \Sigma_{21} \Sigma_{11}^{-1} (x_1 - \mu_1) = \mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x_1 - \mu_1) \]

and

\[\Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12} = \sigma_2^2 - \rho^2 \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2} = \sigma_2^2 (1 - \rho^2) \]

Thus the conditional distribution of \(X_2 \) given \(X_1 = x_1 \) is normal with (conditional) mean

\[E(X_2|X_1 = x_1) = \mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x_1 - \mu_1) \]

and variance

\[\text{Var}(X_2|X_1 = x_1) = \sigma_2^2 (1 - \rho^2) \]

Equivalently, the conditional distribution of \(X_2 \) given \(X_1 = x_1 \) is

\[\mathcal{N}(\mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x_1 - \mu_1), \sigma_2^2 (1 - \rho^2)) \]

If \(|\rho| < 1\), then the conditional pdf exists and is given by

\[
\begin{aligned}
\frac{1}{\sigma_2 \sqrt{2\pi (1 - \rho^2)}} e^{-\frac{(x_2 - \mu_2 - \rho \frac{\sigma_2}{\sigma_1} (x_1 - \mu_1))^2}{2\sigma_2^2 (1 - \rho^2)}}
\end{aligned}
\]

Remark: Note that \(E(X_2|X_1 = x_1) = \mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x_1 - \mu_1) \) is a linear (affine) function of \(x_1 \).

Example: Recall the MMSE estimate problem for \(X \sim \mathcal{N}(0, \Sigma_X) \) from the observation \(Y = X + Z \), where \(Z \sim \mathcal{N}(0, \Sigma_Z) \) and \(X \) and \(Z \) are independent. Use the above to find \(g^\star(y) = E[X|Y = y] \) and compute the minimum mean square error \(E[(X - g^\star(Y))^2] \).