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Moment Generating Function

Definition Let X = (X, ..
t=(t1,...
defined by

., X,)T be a random vector and
,tn)T € R™. The moment generating function (MGF) is

Mx (t) = E(et X)
for all ¢ for which the expectation exists (i.e., finite).
Remarks:
o Mx(t) = E(exi=1t%)
e For 0= (0,...,0)T, we have Mx(0) = 1.
o If X is a discrete random variable with finitely many values, then
Mx(t) = E(etTX) is always finite for all t € R"™.
@ We will always assume that the distribution of X is such that
Mx (t) is finite for all t € (—tq, tp)™ for some tg > 0.
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The single most important property of the MGF is that is uniquely Connection with moments
determines the distribution of a random vector: o Let ki, ..., k, be nonnegative integers and k — ki + - - - + k.. Then
k k
Theorem 1 9 Mx(t) = 9 (e XattinXn)
Assume Mx (t) and My (t) are the MGFs of the random vectors X and otk othn otk .. othn
Y and such that Mx (t) = My (t) for all t € (—to,t0)™. Then _ E( oF et1X1+---+tan)
Fx(2) = Fy (2) for all z € R or - Oty
'x (2) = Fy (2) for all z ,
_ E(Xfl X’Zn (et1X1+ +tn,Xn))
where F'x and Fy are the joint cdfs of X and Y .
X Y J Setting t =0 = (0,...,0)7, we get
Remarks: oF k k
. otk ... gtk ]V[X(t)}tzo :E(Xll "'Xnn)
@ Fx(z)= Fy(z) for all z € R" clearly implies Mx (t) = My (t). 1 n
Thus Mx(t) = My(t) — Fx<z) = Fy(z>
@ Most often we will use the theorem for random variables instead of ® For a (scalar) random variable X' we obtain the kth moment of X:
random vectors. In this case, Mx (t) = My (t) for all t € (—to, o) g
implies Fix(z) = Fy (z) for all z € R. d?MX(t”t:o = B(X")
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Theorem 2

Assume X 1,...,X,, are independent random vectors in R™ and let
X=X:+---+X,,. Then

My () = ] ] M, (2
i=1
Proof:
MX(t> - E(etTX) — E(etT(Xl'f’"'Janl))

_ E(etTXl metTXm)
_ E(etTXl) _”E(etTXm)
= Mx,(t)---Mx,(t) O

Note: This theorem gives us a powerful tool for determining the
distribution of the sum of independent random variables.
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Example: MGF for X ~ Gamma(r, A\) and X7 + - - - + X, where the X;

are independent and X; ~ Gamma(r;, \).

Example: MGF for X ~ Poisson(\) and X + - - - + X,,, where the X;
are independent and X; ~ Gamma(\;). Also, use the MGF to find
E(X), BE(X?), and Var(X).
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Theorem 3

Assume X is a random vector in R™, A is an m x n real matrix and
b e R™. Then the MGF of Y = AX + b is given at t € R™ by

My (t) = ¢ ®Mx (ATt)
Proof:

My (t) = E(etTY) :E(etT(AX+b))

ethE(etTAX) _ ethE(e(ATt)TX)

= "My (ATY) O

Note: In the scalar case Y = aX + b we obtain

My (t) = et Mx (at)
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Applications to Normal Distribution

Let X ~ N(0,1). Then

o0 1 2
Mx(t) = E(etX):/ et ——e "2 4y

oo 2T

[ g [T L],

—oo V2T oo V2T

_ t2/2/°° L @2
= e e 2 dx
Coo V2T

—_——

N (t,1) pdf

2
2

We obtain that for all t € R

Mx(t)=e€"/?
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Moments of a standard normal random variable

Recall the power series expansion e = Y 72 % valid for all z € R.
Apply this to z =tX
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Matching the coefficient of t*, for k = 1,2, ... we obtain

Sum of independent normal random variables

@ Recall that if X ~ N(0,1) and Y = 0 X + u, where o > 0, then
Y ~ N(u,c?%). Thus the MGF of a N(u,0?) random variable is

My (t) = et“MX(mf)zet“e("t)z/2

2 2
_ etu—i—t o°/2

e Let X1,...,X,, be independent r.v.'s with X; ~ N(u;,0?) and set
X=X+ -+ X,, Then

m m

() = [Tt = [ evoreetn = ()52
i=1 i=1

This implies

m m
T XN (LY o?)
— even, — —
E(X*) = { 2F/2(k/2)! =1 =1
0, k odd. i.e., X1+ -+ X,, is normal with mean pux = > ", p; and
: 2 _\ym 2
variance o5 =Y ;" 0.
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Multivariate Normal Distributions For any nonnegative definite n x n matrix C' the following hold:
Linear Algebra Review (1) C has n nonnegative eigenvalues A1, ..., )\, (counting multiplicities)

@ Recall that an n x n real matrix C' is called nonnegative definite if it and corresponding 7 orthogonal unit-length eigenvectors bi, ..., by:

is symmetric and Cb: — \b,. i—=1 n
1 T 1Y - P
zTCx > 0 for all z € R? - -
where b; b;=1,i=1,...,nand b; b; =0 if i # ;.
and positive definite if it is symmetric and
P Y (2) (Spectral decomposition) C' can be written as
x”Cx > 0 for all x € R™ such that  # 0
C =BDB"
. . T 4 -

@ Let A be an arbitrary n x n real matrix. Then C'= A" A is where D = diag(\y, ..., \,) is the diagonal matrix of the
nonnegative definite. If A is nonsingular (invertible), then C'is eigenvalues of C, and B is the orthogonal matrix whose ith column
positive definite. is by, e, B [by...by.

Proof: AT A is symmetric since (A7 A)T = (A7)(AT)" = AT A, (3) C is positive definite <= C'is nonsingular <= all the eigenvalues
Thus it is nonnegative definite since \; are positive
2T (AT A)x = 2T AT Ax = (Az)T (Az) = |Az|> >0 O
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(4) C has a unique nonnegative definite square root C'/? ie., there

exists a unique nonnegative definite A such that

C=AA

Proof: We only prove the existence of A. Let
D'/? = diag()&m, . )\71/2) and note that D'/2D'/? = D. Let
A=BD'?BT. Then A is nonnegative definite and

A? = AA=(BDY?*BTyBDY?BT)
= C O
Remarks:

o If C is positive definite, then so is A.
o If we don't require that A be nonnegative definite, then in
general there are infinitely many solutions A for AA” = C.

Lemma 4

If ¥ is the covariance matrix of some random vector
X = (Xy1,...,X,)7T, then it is nonnegative definite.

Proof: We know that ¥ = Cov(X) is symmetric. Let b € R" be
arbitrary. Then

b"2b = b Cov(X)b = Cov(b" X) = Var(b” X) >0

so 3 is nonnegative definite

Remark: It can be shown that an n x n matrix 3 is nonnegative definite
if and only if there exists a random vector X = (X1,..., X,,)7 such that

Cov(X) =X.
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Defining the Multivariate Normal Distribution Definition Let 1 € R™ and let X be an n x n nonnegative definite
matrix. A random vector X = (Xi,...,X,,) is said to have a
Let Z1,...,Z, be independent r.v.'s with Z; ~ N(0,1). The multivariate normal distribution with parameters p and X if its
multivariate MGF of Z = (Z,...,Z,)T is multivariate MGF is
tT7 noyg. n t. 7. M (t)— tT/.L-l-%tTEt
Mz(t) = E(e'?) = E(eXi=7) = [ E(e"?) x(t)=e
i=1
n
= [ = et o
bt} Notation: X ~ N(pu, ).
Remarks:
Now let i € R™ and A an n x n real matrix. Then the MGF of o If Z=(Z,..., Zn)T with Z; ~ N(0,1), i =1,...,n, then
X=AZ+pis Z ~ N(0,I), where I is the n x n identity matrix.
M) = etT”Mz(ATt) AT HATHT (AT o We saw t;at if Z~ N(0,I),then X = AZ + p~ N(u,X), where
3 = AA". One can show the following:
X ~ N(u,X) ifand only if X = AZ + p for a random n-vector
. . o T
where 3 = AAT. Note that 3 is nonnegative definite. Z ~ N(0,1) and some n x n matrix A with £ = AA".
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Mean and covariance for multivariate normal distribution

Consider first Z ~ N(0,1), i.e., Z = (Zy,...,
independent N(0,1) random variables. Then

Zn)T, where the Z; are

If X ~ N(p,X), then X = AZ + p for a random n-vector
Z ~ N(0,I) and some n x n matrix A with & = AAT.

T
E(Z) = (E(2Zy),...,E(Z,))" = (0,---,0)T We have
E(AZ+p)=AE(Z)+p=p
and Also,
1 ifi=yjy,
E((Z; — E(Z:)))(Z; — B(Z;))) = E(Z;Z;) = J Cov(AZ + p) = Cov(AZ) = ACov(Z)AT = AAT =%
0 ifi#j
Thus
Thus (BE(X)=p, Cov(X)=3]
(B(Z)=0, Cov(Z)=1|
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Theorem 6
int pdf f Itivariat | distributi
Joint pdf for multivariate normal distribution If X = (X1,...,Xn)T ~ N(u,X), where X is nonsingular, then it has a
Lemma 5 Joint pdf given by
If a random vector X = (X1,...,X,)T has covariance matrix X that is 1
. : - fx(z) = e~ 3@—wTET (@) L c R
not of full rank (i.e., singular), then X does not have a joint pdf. X Cmnrdet = )
Proof sketch: If X .is singular, then the.re exis;s be R"nsuch that b# 0 Proof: We know that X = AZ + p where
and 3b = 0. Consider the random variable b* X = """ | b; X;: Z = (Z1,...,Z,)T ~ N(0,I) and A is an n x n matrix such that
T . . . . . .
Var(b” X) = Cov(b” X) = b” Cov(X)b=b"Zb =0 AA1 = 3. Since X is nonsingular, A must be nonsingular with inverse
A~ ". Thus the mapping
Therefore P(b” X = ¢) = 1 for some constant ¢. If X had a joint pdf h(z) = Az + p
f(x), then for B = {x : b’ & = ¢} we should have )
is invertible with inverse g(x) = A™ " (xz — p) whose Jacobian is
L= PE"X =) =P(X e B) = [ [ flono i) do-oda, J,() = det A1
B By the multivariate transformation theorem
But this is-impo-ssible since B is an (n — 1)—.dimensiona/ hyperplane Fx(@) = f2(g(@))| ()] = fz(A_l(ilﬁ _ u))|det A_l\
whose n-dimensional volume is zero, so the integral must be zero. O
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Proof cont'd: Since Z = (Z1, ..
N(0,1) random variables, we have

n
1 2 1 1 n 2 1 1.7
— —ZV/Q _ ——Zv: z: —=z'z
z) = — e i = — e 2 =1 —| ——— e 2
fZ( ) ilzll( /27_[_) (271_)11 (277')”

.+ Zn)T, where the Z; are independent

Special case: bivariate normal

For n = 2 we have

n= H1 and X =
H1

2

o7 pPO102
2

pPo102 (o)

so we get where 11, = E(X;), 0 = Var(X;), i = 1,2, and
_ 1 X, X
fx(@) = fz(A '@ - p)|det A7 b= p(X1, Xa) = %
-l AT @) AT @) gep A
v/ (2m)n Thus the bivariate normal distribution is determined by five scalar
_ 1 6_%(m_H)T(A—1)TA71(m_“)‘det A_1| parameters ji1, U2, U%, a%, and p.
\/ (2m)n - . .
(2m) 3 is positive definite <= 3 is invertible <= det 3 > O:
- e~ 3(@—m) = (@—p)
V/(27)" det X5 det ¥ = (1 - p?)ofos >0 <= |p|<1andoios >0
1 . . . .
since |det A7 = WSS and (A"HTA™! = 27! (exercisel) O so a bivariate normal random variable (X1, X5) has a pdf if and only if
et the components X; and X3 have positive variances and |p| < 1.
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Thus the joint pdf of (X1, X2)T ~ N(p,X) is
We have
1 1 1 (m1—51>2+<m2752>2_2p<m17513<w2—u2>
sl _ o? pPO102 _ 1 o3 —po102 flay,m0) = 5 - : 20— )( o3 o3 192 )
pPO102 o5 detX | —poios o3 o102 —r
and

(—p)' Sz —p)
_ [m _ oy } 1 o3 —po102 T1— 1
17 HL, T27 (1= p?)oios | —poios o? To — 41

_ 1 [xl s a ,u1} o5(x1 — p1) — poroa(za — p2)
(1 —p?)oios ’ o (xg — p2) — porog(x1 — i)
1
= W(ﬁ(fﬂl — 1) = 2poroa(xy — ) (w2 — p2) + 0 (22 — p2)?)
1 (z1 — p1)? n (w2 — p2)®  2p(z1 — ) (22 — pio)
(1—p?) o? o3 0102
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Remark: If p =0, then

w2 (o —in)2
f( 1 %(( 1051) 4 2052) )
$1;$2) = e 1 3
2mo109
1 (w1 —pp)? 1 (wp—pg)?
= — ¢ 207 . e 203
oV 2 ooV 2T

= fx, (1) fx,(72)

Therefore X; and X5 are independent. It is also easy to see that
fz1,22) = fx,(x1) fx,(x2) for all z; and zo implies p = 0. Thus we
obtain

Two jointly normal random variables X; and X5 are independent if and

only if they are uncorrelated.
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In general, the following important facts can be proved using the
multivariate MGF:

(i) F X =(X1,...,X)T ~ N(u,X), then X1, Xo,... X, are
independent if and only if they are uncorrelated, i.e.,
Cov(X;, X;)=0if i # j, i.e., X is a diagonal matrix.

(i) Assume X = (X1,...,X,)T ~ N(u, %) and let

X =(X1,...,Xp)7, X9 = (Xpg1,..., X)7

Then X7 and X are independent if and only if
Cov(X 1, X2) = Oy (n—r), the k x (n — k) matrix of zeros, i.e., X
can be partitioned as

where 317 = Cov(X 1) and Xgs = Cov(Xs).

Marginals of multivariate normal distributions

Let X = (le---
b c R™, then

, X)) ~ N(u,X). If Aisanm x n matrix and

Y=AX+b

is a random m-vector. Its MGF at t € R™ is
My (t) = ¥ P Mx (ATt)

i T 1T .
Since Mx (1) =e™ #t27 =7 for all 7 € R, we obtain
My (t) = ethe(ATt)Tqu%(ATt)TE(ATt)
etT(b+Au)+%tTA2ATt

This means that Y ~ N(b+ Ap, AEAT), i.e., Y is multivariate normal

with mean b+ Ap and covariance AX AT

Example: Let aq,...,a, € R and determine the distribution of
Y = CL1X1 +--- CLan.

STAT/MTHE 353: 5 — MGF & Multivariate Normal Distribution 25/ 34 STAT/MTHE 353: 5 — MGF & Multivariate Normal Distribution 26 / 34
Note the following:
For some 1 <m < n let {i1,...,4m} C {1,...,n} such that iy
i1 <ip <o <ipm. Lete; =(0,...,0,1,0,...,0)" be the jth unit Ap=| :
vector in R™ and define the m x n matrix A by i
Tm
T . T .
€ and the (j, k)th entry of AX A" is
A=
T (Ax AT, = (A x (irth column of 2))j
Cim
= (E)zﬂk = COV(Xij,XZ'k)
Then
6;—11 X1 Xi1
AX = | ¢ = . _ T _ N\ _
: : ; Thus if X = (Xq,...,X,)" ~ N(w,X), then (X;,,...,X;,, )" is mul
63:,1 Xn X, tivariate normal whose mean and covariance are obtained by picking out
the corresponding elements of p and X.
; ; T ~ T . .
Thus (Xi,,..., Xs,.) N(Ap, AZAT). Special case: For m = 1 we obtain that X; ~ N(u;,0?), where
wi = E(X;) and 07 = Var(X;), foralli=1,...,n.
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Conditional distributions

Let X = (X1,...,Xn)T ~ N(u,X) and for 1 < m < n define

X, =(Xq,..., X7, Xo=Xpmyt,.-, Xn)T

We know that X1 ~ N(uq,311) and Xo ~ N (o, Xo2) where
M, = E(XZ), E“ = COV(Xi), 1= 1,2

Then @ and X can be partitioned as

where X;; = Cov(X,;, X;), 4,7 = 1,2. Note that X1 is m x m, Xy is

(n—m) x (n—m), Xigis m X (n—m), and Xoq is (n —m) x m. Also,

¥ =3k

We assume that 311 is nonsingular and we want to determine the
conditional distribution of X5 given X = ;.

Recall that X = AZ + p for some Z = (Zy,...,Z,)T where the Z; are
independent N(0,1) random variables and A is such that AA” = 3.

Let Z, = (Z1,..., Zw)T and Zy = (Zyns1, .-+ Zy)T. We want to
determine such A in a partitioned form with dimensions corresponding to
the partitioning of 3:

A= B Orixnm)
¢, D

We can write ¥ = AAT as

200w | [ Bio...|[ BT icT
o1 ‘ DI - C: D 0 m)xm ‘ DT
| BB": BC”
CcB" | cc” + DD"
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Since B is invertible, given X = x;, we have Z; = B '(z, — . So

We want to solve for B, C and D. First consider BBT = X;;. We . & ! ! . . 1, . (@1 = 1)

. . . given X1 = x1, we have that the conditional distribution of X5 and the

choose B to be the unique positive definite square root of X1: N .

conditional distribution of
_ wl/2
B =37 CB 'z —p,) + DZs+ py

Recall that B is symmetric and it is invertible since 317 is. Then are the same.

Yo = CBT = implies o . .
But Z, is independent of X1, so given X1 = x1, the conditional

C=3,(B")'=3%, B! distribution of CB~!(x; — p;) + DZ5 + p, is the same as its

unconditional distribution.

Then 395 = CCT + DD gives N o , _
We conclude that the conditional distribution of X5 given X1 = x; is

DDT = ¥y, -cCct =3, — 2213*13*1(221)T multivariate normal with mean
- -1
= 3 — 5 (BB) 'S = Ty — 9131 Ty E(Xs|X1=x1) = py+CB Yx1— )
_ —1p-1 _
Now note that X = AZ + u gives =+ ZnB B (#1 - )
= | po+ DBy (21— py)
X1=B21+/L1, XQ:CZ1+DZ2+M2
and covariance matrix 222|1 = DD = Yoo — 2212f11212
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Special case: bivariate normal

Suppose X = (X1, X2)T ~ N(u, X) with

p= " and == ot p01202 ]
H1 pPO102 a5
We have
p2 + To1 37, (21 — pa) = po + p%(m — 1)
and ) o s
Y2 — Y1877 T12 = 05 — P 01202 =021 —p?)

01
Thus the conditional distribution of X5 given X; = z; is normal with

(conditional) mean

g
E(Xo| X1 =21) = pa + P;j(l"l — )

and variance

‘Var(X2|X1 =) =05(1 - p?) ‘
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Equivalently, the conditional distribution of X5 given X7 = x is

ag
N (pz + P;j(ﬂfl — ), 05(1 = p?))

If |p| < 1, then the conditional pdf exists and is given by

2
o
(m2*u2*pﬁ(m1*u1))

1 - %

Tolr) = ————c¢ 2050-p
fX2|X1( 2| 1) o 271_(1_’02)

Remark: Note that E(Xo|X1 = z1) = po + p%(zl — p1) is a linear

(affine) function of 7.

Example: Recall the MMSE estimate problem for X ~ N(0,0%) from
the observation Y = X + Z, where Z ~ N(0,0%) and X and Z are
independent. Use the above the find g*(y) = E[X|Y = y] and compute
the minimum mean square error E[(X — g*(Y))?].
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