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Moment Generating Function

Definition Let X = (X1, . . . , Xn

)

T be a random vector and

t = (t1, . . . , tn)
T 2 Rn. The moment generating function (MGF) is

defined by

M

X

(t) = E

�
e

t

T

X

�

for all t for which the expectation exists (i.e., finite).

Remarks:

M

X

(t) = E

�
e

P
n

i=1 t

i

X

i

�

For 0 = (0, . . . , 0)

T , we have M

X

(0) = 1.

If X is a discrete random variable with finitely many values, then

M

X

(t) = E

�
e

t

T

X

�
is always finite for all t 2 Rn.

We will always assume that the distribution of X is such that

M

X

(t) is finite for all t 2 (�t0, t0)
n for some t0 > 0.
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The single most important property of the MGF is that is uniquely

determines the distribution of a random vector:

Theorem 1

Assume M

X

(t) and M

Y

(t) are the MGFs of the random vectors X and

Y and such that M

X

(t) = M

Y

(t) for all t 2 (�t0, t0)
n

. Then

F

X

(z) = F

Y

(z) for all z 2 Rn

where F

X

and F

Y

are the joint cdfs of X and Y .

Remarks:

F

X

(z) = F

Y

(z) for all z 2 Rn clearly implies M
X

(t) = M

Y

(t).

Thus M
X

(t) = M

Y

(t) () F

X

(z) = F

Y

(z)

Most often we will use the theorem for random variables instead of

random vectors. In this case, M
X

(t) = M

Y

(t) for all t 2 (�t0, t0)

implies F
X

(z) = F

Y

(z) for all z 2 R.
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Connection with moments

Let k1, . . . , kn be nonnegative integers and k = k1 + · · ·+ k

n

. Then

@

k

@t

k1
1 · · · @tkn

n

M

X

(t) =

@

k

@t

k1
1 · · · @tkn

n

E

�
e

t1X1+···+t

n

X

n

�

= E

✓
@

k

@t

k1
1 · · · @tkn

n

e

t1X1+···+t

n

X

n

◆

= E

�
X

k1
1 · · ·Xk

n

n

�
e

t1X1+···+t

n

X

n

��

Setting t = 0 = (0, . . . , 0)

T , we get

@

k

@t

k1
1 · · · @tkn

n

M

X

(t)

��
t=0

= E

�
X

k1
1 · · ·Xk

n

n

�

For a (scalar) random variable X we obtain the kth moment of X:

d

k

dt

k

M

X

(t)

��
t=0

= E

�
X

k

�
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Theorem 2

Assume X1, . . . ,Xm

are independent random vectors in Rn

and let

X = X1 + · · ·+X

m

. Then

M

X

(t) =

mY

i=1

M

X

i

(t)

Proof:

M

X

(t) = E

�
e

t

T

X

�
= E

�
e

t

T (X1+···+X

m

)
�

= E

�
e

t

T

X1 · · · et
T

X

m

�

= E

�
e

t

T

X1
�
· · ·E

�
e

t

T

X

m

�

= M

X1(t) · · ·MX

m

(t) ⇤

Note: This theorem gives us a powerful tool for determining the

distribution of the sum of independent random variables.
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Example: MGF for X ⇠ Gamma(r,�) and X1 + · · ·+X

m

where the X

i

are independent and X

i

⇠ Gamma(r
i

,�).

Example: MGF for X ⇠ Poisson(�) and X1 + · · ·+X

m

where the X

i

are independent and X

i

⇠ Gamma(�
i

). Also, use the MGF to find

E(X), E(X

2
), and Var(X).
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Theorem 3

Assume X is a random vector in Rn

, A is an m⇥ n real matrix and

b 2 Rm

. Then the MGF of Y = AX + b is given at t 2 Rm

by

M

Y

(t) = e

t

T

b

M

X

(A

T

t)

Proof:

M

Y

(t) = E

�
e

t

T

Y

�
= E

�
e

t

T (AX+b)
�

= e

t

T

b

E

�
e

t

T

AX

�
= e

t

T

b

E

�
e

(AT

t)TX

�

= e

t

T

b

M

X

(A

T

t) ⇤

Note: In the scalar case Y = aX + b we obtain

M

Y

(t) = e

tb

M

X

(at)
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Applications to Normal Distribution

Let X ⇠ N(0, 1). Then

M

X

(t) = E(e

tX

) =

Z 1

�1
e

tx

1p
2⇡

e

�x

2
/2

dx

=

Z 1

�1

1p
2⇡

e

� 1
2 (x

2�2tx)
dx =

Z 1

�1

1p
2⇡

e

� 1
2

⇥
(x�t)2�t

2
⇤
dx

= e

t

2
/2

Z 1

�1

1p
2⇡

e

� 1
2 (x�t)2

| {z }
N(t,1) pdf

dx

= e

t

2
/2

We obtain that for all t 2 R

M

X

(t) = e

t

2
/2
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Moments of a standard normal random variable

Recall the power series expansion e

z

=

P1
k=0

z

k

k! valid for all z 2 R.
Apply this to z = tX

M

X

(t) = E(e

tX

) = E

✓ 1X

k=0

(tX)

k

k!

◆

=

1X

k=0

E

⇥
(tX)

k

⇤

k!

=

1X

k=0

E

�
X

k

�

k!

t

k

and to z = t

2
/2

M

X

(t) = e

t

2
/2

=

1X

i=0

�
t

2
/2

�
i

i!

Matching the coe�cient of tk, for k = 1, 2, . . . we obtain

E(X

k

) =

8
><

>:

k!

2

k/2
(k/2)!

, k even,

0, k odd.
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Sum of independent normal random variables

Recall that if X ⇠ N(0, 1) and Y = �X + µ, where � > 0, then

Y ⇠ N(µ,�

2
). Thus the MGF of a N(µ,�

2
) random variable is

M

Y

(t) = e

tµ

M

X

(�t) = e

tµ

e

(�t)2/2

= e

tµ+t

2
�

2
/2

Let X1, . . . , Xm

be independent r.v.’s with X

i

⇠ N(µ

i

,�

2
i

) and set

X = X1 + · · ·+X

m

. Then

M

X

(t) =

mY

i=1

M

X

i

(t) =

mY

i=1

e

tµ

i

+t

2
�

2
i

/2
= e

t

�P
m

i=1 µ

i

�
+
�P

m

i=1 �

2
i

�
t

2
/2

This implies

X ⇠ N

✓
mX

i=1

µ

i

,

mX

i=1

�

2
i

◆

i.e., X1 + · · ·+X

m

is normal with mean µ

X

=

P
m

i=1 µi

and

variance �

2
X

=

P
m

i=1 �
2
i

.
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Multivariate Normal Distributions

Linear Algebra Review

Recall that an n⇥ n real matrix C is called nonnegative definite if it

is symmetric and

x

T

Cx � 0 for all x 2 Rn

and positive definite if it is symmetric and

x

T

Cx > 0 for all x 2 Rn such that x 6= 0

Let A be an arbitrary n⇥ n real matrix. Then C = A

T

A is

nonnegative definite. If A is nonsingular (invertible), then C is

positive definite.

Proof: A

T

A is symmetric since (A

T

A)

T

= (A

T

)(A

T

)

T

= A

T

A.

Thus it is nonnegative definite since

x

T

(A

T

A)x = x

T

A

T

Ax = (Ax)

T

(Ax) = kAxk2 � 0 ⇤
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For any nonnegative definite n⇥ n matrix C the following hold:

(1) C has n nonnegative eigenvalues �1, . . . ,�n

(counting multiplicities)

and corresponding n orthogonal unit-length eigenvectors b1, . . . , bn:

Cb

i

= �

i

b

i

, i = 1, . . . , n

where b

T

i

b

i

= 1, i = 1, . . . , n and b

T

i

b

j

= 0 if i 6= j.

(2) (Spectral decomposition) C can be written as

C = BDB

T

where D = diag(�1, . . . ,�n

) is the diagonal matrix of the

eigenvalues of C, and B is the orthogonal matrix whose ith column

is b
i

, i.e., B = [b1 . . . bn].

(3) C is positive definite () C is nonsingular () all the eigenvalues

�

i

are positive
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(4) C has a unique nonnegative definite square root C1/2, i.e., there

exists a unique nonnegative definite A such that

C = AA

Proof: We only prove the existence of A. Let

D

1/2
= diag(�

1/2
1 , . . . ,�

1/2
n

) and note that D1/2
D

1/2
= D. Let

A = BD

1/2
B

T . Then A is nonnegative definite and

A

2
= AA = (BD

1/2
B

T

)(BD

1/2
B

T

)

= BD

1/2
B

T

BD

1/2
B

T

= BD

1/2
D

1/2
B

T

= C ⇤

Remarks:

If C is positive definite, then so is A.

If we don’t require that A be nonnegative definite, then in

general there are infinitely many solutions A for AA

T

= C.
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Lemma 4

If ⌃ is the covariance matrix of some random vector

X = (X1, . . . , Xn

)

T

, then it is nonnegative definite.

Proof: We know that ⌃ = Cov(X) is symmetric. Let b 2 Rn be

arbitrary. Then

b

T⌃b = b

T

Cov(X)b = Cov(b

T

X) = Var(b

T

X) � 0

so ⌃ is nonnegative definite

Remark: It can be shown that an n⇥ n matrix ⌃ is nonnegative definite

if and only if there exists a random vector X = (X1, . . . , Xn

)

T such that

Cov(X) = ⌃.
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Defining the Multivariate Normal Distribution

Let Z1, . . . , Zn

be independent r.v.’s with Z

i

⇠ N(0, 1). The

multivariate MGF of Z = (Z1, . . . , Zn

)

T is

M

Z

(t) = E

�
e

t

T

Z

�
= E

�
e

P
n

i=1 t

i

Z

i

�
=

nY

i=1

E

�
e

t

i

Z

i

�

=

nY

i=1

e

t

2
i

/2
= e

P
n

i=1 t

2
i

/2
= e

1
2 t

T

t

Now let µ 2 Rn and A an n⇥ n real matrix. Then the MGF of

X = AZ + µ is

M

X

(t) = e

t

T

µ

M

Z

(A

T

t) = e

t

T

µ

e

1
2 (A

T

t)T (AT

t)

= e

t

T

µ

e

1
2 t

T

AA

T

t

= e

t

T

µ+ 1
2 t

T⌃t

where ⌃ = AA

T . Note that ⌃ is nonnegative definite.
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Definition Let µ 2 Rn and let ⌃ be an n⇥ n nonnegative definite

matrix. A random vector X = (X1, . . . , Xn

) is said to have a

multivariate normal distribution with parameters µ and ⌃ if its

multivariate MGF is

M

X

(t) = e

t

T

µ+ 1
2 t

T⌃t

Notation: X ⇠ N(µ,⌃).

Remarks:

If Z = (Z1, . . . , Zn

)

T with Z

i

⇠ N(0, 1), i = 1, . . . , n, then

Z ⇠ N(0, I), where I is the n⇥ n identity matrix.

We saw that if Z ⇠ N(0, I), then X = AZ + µ ⇠ N(µ,⌃), where

⌃ = AA

T . One can show the following:

X ⇠ N(µ,⌃) if and only if X = AZ + µ for a random n-vector

Z ⇠ N(0, I) and some n⇥ n matrix A with ⌃ = AA

T .
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Mean and covariance for multivariate normal distribution

Consider first Z ⇠ N(0, I), i.e., Z = (Z1, . . . , Zn

)

T , where the Z

i

are

independent N(0, 1) random variables. Then

E(Z) =

�
E(Z1), . . . , E(Z

n

)

�
T

= (0, · · · , 0)T

and

E

�
(Z

i

� E(Z

i

))(Z

j

� E(Z

j

))

�
= E(Z

i

Z

j

) =

8
<

:
1 if i = j,

0 if i 6= j

Thus

E(Z) = 0, Cov(Z) = I
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If X ⇠ N(µ,⌃), then X = AZ + µ for a random n-vector

Z ⇠ N(0, I) and some n⇥ n matrix A with ⌃ = AA

T .

We have

E(AZ + µ) = AE(Z) + µ = µ

Also,

Cov(AZ + µ) = Cov(AZ) = ACov(Z)A

T

= AA

T

= ⌃

Thus

E(X) = µ, Cov(X) = ⌃
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Joint pdf for multivariate normal distribution

Lemma 5

If a random vector X = (X1, . . . , Xn

)

T

has covariance matrix ⌃ that is

not of full rank (i.e., singular), then X does not have a joint pdf.

Proof sketch: If ⌃ is singular, then there exists b 2 Rn such that b 6= 0

and ⌃b = 0. Consider the random variable b

T

X =

P
n

i=1 biXi

:

Var(b

T

X) = Cov(b

T

X) = b

T

Cov(X)b = b

T⌃b = 0

Therefore P (b

T

X = c) = 1 for some constant c. If X had a joint pdf

f(x), then for B = {x : b

T

x = c} we should have

1 = P (b

T

X = c) = P (X 2 B) =

Z
· · ·

Z

B

f(x1, . . . , xn

) dx1 · · · dxn

But this is impossible since B is an (n� 1)-dimensional hyperplane

whose n-dimensional volume is zero, so the integral must be zero. ⇤
STAT/MTHE 353: 5 – MGF & Multivariate Normal Distribution 19 / 34

Theorem 6

If X = (X1, . . . , Xn

)

T ⇠ N(µ,⌃), where ⌃ is nonsingular, then it has a

joint pdf given by

f

X

(x) =

1p
(2⇡)

n

det⌃
e

� 1
2 (x�µ)T⌃�1(x�µ)

, x 2 Rn

Proof: We know that X = AZ + µ where

Z = (Z1, . . . , Zn

)

T ⇠ N(0, I) and A is an n⇥ n matrix such that

AA

T

= ⌃. Since ⌃ is nonsingular, A must be nonsingular with inverse

A

�1. Thus the mapping

h(z) = Az + µ

is invertible with inverse g(x) = A

�1
(x� µ) whose Jacobian is

J

g

(x) = detA

�1

By the multivariate transformation theorem

f

X

(x) = f

Z

(g(x))|J
g

(x)| = f

Z

�
A

�1
(x� µ)

�
| detA�1|

STAT/MTHE 353: 5 – MGF & Multivariate Normal Distribution 20 / 34



Proof cont’d: Since Z = (Z1, . . . , Zn

)

T , where the Z

i

are independent

N(0, 1) random variables, we have

f

Z

(z) =

nY

i=1

✓
1p
2⇡

◆
e

�z

2
i

/2
=

1p
(2⇡)

n

e

� 1
2

P
n

i=1 z

2
i

=

1p
(2⇡)

n

e

� 1
2z

T

z

so we get

f

X

(x) = f

Z

�
A

�1
(x� µ)

�
| detA�1|

=

1p
(2⇡)

n

e

� 1
2 (A

�1(x�µ))T (A�1(x�µ))| detA�1|

=

1p
(2⇡)

n

e

� 1
2 (x�µ)T (A�1)TA

�1(x�µ)| detA�1|

=

1p
(2⇡)

n

det⌃
e

� 1
2 (x�µ)T⌃�1(x�µ)

since | detA�1| = 1p
det⌃

and (A

�1
)

T

A

�1
= ⌃�1 (exercise!) ⇤
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Special case: bivariate normal

For n = 2 we have

µ =

"
µ1

µ1

#
and ⌃ =

"
�

2
1 ⇢�1�2

⇢�1�2 �

2
2

#

where µ

i

= E(X

i

), �2
i

= Var(X

i

), i = 1, 2, and

⇢ = ⇢(X1, X2) =
Cov(X1, X2)

�1�2

Thus the bivariate normal distribution is determined by five scalar

parameters µ1, µ2, �
2
1 , �

2
2 , and ⇢.

⌃ is positive definite () ⌃ is invertible () det⌃ > 0:

det⌃ = (1� ⇢

2
)�

2
1�

2
2 > 0 () |⇢| < 1 and �

2
1�

2
2 > 0

so a bivariate normal random variable (X1, X2) has a pdf if and only if

the components X1 and X2 have positive variances and |⇢| < 1.
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We have

⌃�1
=

"
�

2
1 ⇢�1�2

⇢�1�2 �

2
2

#�1

=

1

det⌃

"
�

2
2 �⇢�1�2

�⇢�1�2 �

2
1

#

and

(x� µ)

T⌃�1
(x� µ)

=

h
x1 � µ1, x2 � µ1

i
1

(1� ⇢

2
)�

2
1�

2
2

"
�

2
2 �⇢�1�2

�⇢�1�2 �

2
1

#"
x1 � µ1

x2 � µ1

#

=

1

(1� ⇢

2
)�

2
1�

2
2

h
x1 � µ1, x2 � µ1

i "
�

2
2(x1 � µ1)� ⇢�1�2(x2 � µ2)

�

2
1(x2 � µ2)� ⇢�1�2(x1 � µ1)

#

=

1

(1� ⇢

2
)�

2
1�

2
2

�
�

2
2(x1 � µ1)

2 � 2⇢�1�2(x1 � µ1)(x2 � µ2) + �

2
1(x2 � µ2)

2
�

=

1

(1� ⇢

2
)

✓
(x1 � µ1)

2

�

2
1

+

(x2 � µ2)
2

�

2
2

� 2⇢(x1 � µ1)(x2 � µ2)

�1�2

◆
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Thus the joint pdf of (X1, X2)
T ⇠ N(µ,⌃) is

f(x1, x2) =
1

2⇡�1�2

p
1� ⇢

2
e

1
2(1�⇢

2)

�
(x1�µ1)2

�

2
1

+
(x2�µ2)2

�

2
2

� 2⇢(x1�µ1)(x2�µ2)
�1�2

�

Remark: If ⇢ = 0, then

f(x1, x2) =

1

2⇡�1�2
e

1
2

�
(x1�µ1)2

�

2
1

+
(x2�µ2)2

�

2
2

�

=

1

�1

p
2⇡

e

(x1�µ1)2

2�2
1 · 1

�2

p
2⇡

e

(x2�µ2)2

2�2
2

= f

X1(x1)fX2(x2)

Therefore X1 and X2 are independent. It is also easy to see that

f(x1, x2) = f

X1(x1)fX2(x2) for all x1 and x2 implies ⇢ = 0. Thus we

obtain

Two jointly normal random variables X1 and X2 are independent if and

only if they are uncorrelated.
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In general, the following important facts can be proved using the

multivariate MGF:

(i) If X = (X1, . . . , Xn

)

T ⇠ N(µ,⌃), then X1, X2, . . . Xn

are

independent if and only if they are uncorrelated, i.e.,

Cov(X

i

, X

j

) = 0 if i 6= j, i.e., ⌃ is a diagonal matrix.

(ii) Assume X = (X1, . . . , Xn

)

T ⇠ N(µ,⌃) and let

X1 = (X1, . . . , Xk

)

T

, X2 = (X

k+1, . . . , Xn

)

T

Then X1 and X2 are independent if and only if

Cov(X1,X2) = 0
k⇥(n�k), the k ⇥ (n� k) matrix of zeros, i.e., ⌃

can be partitioned as

⌃ =

"
⌃11 0

k⇥(n�k)

0(n�k)⇥k

⌃22

#

where ⌃11 = Cov(X1) and ⌃22 = Cov(X2).
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Marginals of multivariate normal distributions

Let X = (X1, . . . , Xn

)

T ⇠ N(µ,⌃). If A is an m⇥ n matrix and

b 2 Rm, then

Y = AX + b

is a random m-vector. Its MGF at t 2 Rm is

M

Y

(t) = e

t

T

b

M

X

(A

T

t)

Since M

X

(⌧ ) = e

⌧

T

µ+ 1
2⌧

T⌃⌧ for all ⌧ 2 Rn, we obtain

M

Y

(t) = e

t

T

b

e

(AT

t)Tµ+ 1
2 (A

T

t)T⌃(AT

t)

= e

t

T (b+Aµ)+ 1
2 t

T

A⌃A

T

t

This means that Y ⇠ N(b+Aµ,A⌃A

T

), i.e., Y is multivariate normal

with mean b+Aµ and covariance A⌃A

T .

Example: Let a1, . . . , an 2 R and determine the distribution of

Y = a1X1 + · · ·+ a

n

X

n

.
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For some 1  m < n let {i1, . . . , im} ⇢ {1, . . . , n} such that

i1 < i2 < · · · < i

m

. Let e
j

= (0, . . . , 0, 1, 0, . . . , 0)

t be the jth unit

vector in Rn and define the m⇥ n matrix A by

A =

2

664

e

T

i1

...

e

T

i

m

3

775

Then

AX =

2

664

e

T

i1

...

e

T

i

m

3

775

2

664

X1

...

X

n

3

775 =

2

664

X

i1

...

X

i

m

3

775

Thus (X
i1 , . . . , Xi

m

)

T ⇠ N(Aµ,A⌃A

T

).
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Note the following:

Aµ =

2

664

µ

i1

...

µ

i

m

3

775

and the (j, k)th entry of A⌃A

T is

(A⌃A

T

)

jk

=

�
A⇥ (i

k

th column of ⌃)

�
j

= (⌃)

i

j

i

k

= Cov(X

i

j

, X

i

k

)

Thus if X = (X1, . . . , Xn

)

T ⇠ N(µ,⌃), then (X

i1 , . . . , Xi

m

)

T is mul-

tivariate normal whose mean and covariance are obtained by picking out

the corresponding elements of µ and ⌃.

Special case: For m = 1 we obtain that X
i

⇠ N(µ

i

,�

2
i

), where

µ

i

= E(X

i

) and �

2
i

= Var(X

i

), for all i = 1, . . . , n.
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Conditional distributions

Let X = (X1, . . . , Xn

)

T ⇠ N(µ,⌃) and for 1  m < n define

X1 = (X1, . . . , Xm

)

T

, X2 = (X

m+1, . . . , Xn

)

T

We know that X1 ⇠ N(µ1,⌃11) and X2 ⇠ N(µ2,⌃22) where

µ

i

= E(X

i

), ⌃
ii

= Cov(X

i

), i = 1, 2.

Then µ and ⌃ can be partitioned as

µ =

"
µ1

µ2

#
, ⌃ =

"
⌃11 ⌃12

⌃21 ⌃22

#

where ⌃
ij

= Cov(X

i

,X

j

), i, j = 1, 2. Note that ⌃11 is m⇥m, ⌃22 is

(n�m)⇥ (n�m), ⌃12 is m⇥ (n�m), and ⌃21 is (n�m)⇥m. Also,

⌃21 = ⌃T

12.

We assume that ⌃11 is nonsingular and we want to determine the

conditional distribution of X2 given X1 = x1.
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Recall that X = AZ + µ for some Z = (Z1, . . . , Zn

)

T where the Z

i

are

independent N(0, 1) random variables and A is such that AA

T

= ⌃.

Let Z1 = (Z1, . . . , Zm

)

T and Z2 = (Z

m+1, . . . , Zn

)

T . We want to

determine such A in a partitioned form with dimensions corresponding to

the partitioning of ⌃:

A =

"
B 0

m⇥(n�m)

C D

#

We can write ⌃ = AA

T as
"

⌃11 ⌃12

⌃21 ⌃22

#
=

"
B 0

m⇥(n�m)

C D

#"
B

T

C

T

0(n�m)⇥m

D

T

#

=

"
BB

T

BC

T

CB

T

CC

T

+DD

T

#
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We want to solve for B, C and D. First consider BB

T

= ⌃11. We

choose B to be the unique positive definite square root of ⌃11:

B = ⌃1/2
11

Recall that B is symmetric and it is invertible since ⌃11 is. Then

⌃21 = CB

T

= implies

C = ⌃21(B
T

)

�1
= ⌃21B

�1

Then ⌃22 = CC

T

+DD

T gives

DD

T

= ⌃22 �CC

T

= ⌃22 �⌃21B
�1

B

�1
(⌃21)

T

= ⌃22 �⌃21(BB)

�1⌃12 = ⌃22 �⌃21⌃
�1
11 ⌃12

Now note that X = AZ + µ gives

X1 = BZ1 + µ1, X2 = CZ1 +DZ2 + µ2
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Since B is invertible, given X1 = x1, we have Z1 = B

�1
(x1 � µ1). So

given X1 = x1, we have that the conditional distribution of X2 and the

conditional distribution of

CB

�1
(x1 � µ1) +DZ2 + µ2

are the same.

But Z2 is independent of X1, so given X1 = x1, the conditional

distribution of CB

�1
(x1 � µ1) +DZ2 + µ2 is the same as its

unconditional distribution.

We conclude that the conditional distribution of X2 given X1 = x1 is

multivariate normal with mean

E(X2|X1 = x1) = µ2 +CB

�1
(x1 � µ1)

= µ2 +⌃21B
�1

B

�1
(x1 � µ1)

= µ2 +⌃21⌃
�1
11 (x1 � µ1)

and covariance matrix ⌃22|1 = DD

T

= ⌃22 �⌃21⌃
�1
11 ⌃12
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Special case: bivariate normal

Suppose X = (X1, X2)
T ⇠ N(µ,⌃) with

µ =

"
µ1

µ1

#
and ⌃ =

"
�

2
1 ⇢�1�2

⇢�1�2 �

2
2

#

We have

µ2 + ⌃21⌃
�1
11 (x1 � µ1) = µ2 + ⇢

�2

�1
(x1 � µ1)

and

⌃22 � ⌃21⌃
�1
11 ⌃12 = �

2
2 �

⇢

2
�

2
1�

2
2

�

2
1

= �

2
2(1� ⇢

2
)

Thus the conditional distribution of X2 given X1 = x1 is normal with

(conditional) mean

E(X2|X1 = x1) = µ2 + ⇢

�2

�1
(x1 � µ1)

and variance

Var(X2|X1 = x1) = �

2
2(1� ⇢

2
)
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Equivalently, the conditional distribution of X2 given X1 = x1 is

N

�
µ2 + ⇢

�2

�1
(x1 � µ1),�

2
2(1� ⇢

2
)

�

If |⇢| < 1, then the conditional pdf exists and is given by

f

X2|X1
(x2|x1) =

1

�2

p
2⇡(1� ⇢

2
)

e

�

�
x2�µ2�⇢

�2
�1

(x1�µ1)

�2

2�2
2(1�⇢

2)

Remark: Note that E(X2|X1 = x1) = µ2 + ⇢

�2
�1
(x1 � µ1) is a linear

(a�ne) function of x1.

Example: Recall the MMSE estimate problem for X ⇠ N(0,�

2
X

) from

the observation Y = X + Z, where Z ⇠ N(0,�

2
Z

) and X and Z are

independent. Use the above the find g

⇤
(y) = E[X|Y = y] and compute

the minimum mean square error E
⇥
(X � g

⇤
(Y ))

2
⇤
.
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