Markov and Chebyshev Inequalities

Recall that a random variable X is called nonnegative if $P(X \geq 0) = 1$.

Theorem 1 (Markov’s inequality)

Let X be a nonnegative random variable with mean $E(X)$. Then for any $t > 0$

$$P(X \geq t) \leq \frac{E(X)}{t}$$

Proof: Assume X is continuous with pdf f. Then

$$E(X) = \int_{0}^{\infty} xf(x) \, dx \geq \int_{t}^{\infty} xf(x) \, dx \geq t \int_{t}^{\infty} f(x) \, dx = tP(X \geq t)$$

If X is discrete, replace the integrals with sums.

Example: Suppose X is nonnegative and $P(X > 10) = 1/5$; show that $E(X) \geq 2$. Also, Markov’s inequality for $|X|$.

The following result often gives a much sharper bound if the MGF of X is finite in some interval around zero.

Theorem 3 (Chernoff’s bound)

Let X be a random variable with MGF $M_X(t)$. Then for any $a \in \mathbb{R}$

$$P(X \geq a) \leq \min_{t \geq 0} e^{-at} M_X(t)$$

Proof: Fix $t > 0$. Then we have

$$P(X \geq a) = P(tX \geq ta) = P(e^{tX} \geq e^{ta})$$

$$\leq \frac{E(e^{tX})}{e^{ta}} \quad \text{(Markov’s inequality)}$$

$$= e^{-ta} M_X(t)$$

Since this holds for all $t > 0$, it must hold for the t minimizing the upper bound.
Example: Suppose $X \sim N(0, 1)$. Apply Chernoff’s bound to upper bound $P(X \geq a)$ for $a > 0$ and compare with the bounds obtained from Chebyshev’s and Markov’s inequalities.

- Recall that a random variable X is a function $X: \Omega \to \mathbb{R}$ that maps any point ω in the sample space Ω to a real number $X(\omega)$.
- A random variable X must satisfy the following: any subset A of Ω in the form
 \[A = \{ \omega \in \Omega : X(\omega) \in B \} \]
 for any “reasonable” $B \subset \mathbb{R}$ is an event. For example B can be any set obtained by a countable union and intersection of intervals.
- Recall that a sequence of real numbers $\{x_n\}_{n=1}^{\infty}$ is said to converge to a limit $x \in \mathbb{R}$ (notation: $x_n \to x$) if for any $\epsilon > 0$ there exists N such that $|x_n - x| < \epsilon$ for all $n \geq N$.

Convergence of Random Variables

A probability space is a triple (Ω, \mathcal{A}, P), where Ω is a sample space, \mathcal{A} is a collection of subsets of Ω called events, and P is a probability measure on \mathcal{A}. In particular, the set of events \mathcal{A} satisfies

1) Ω is an event
2) If $A \subset \Omega$ is an event, then A^c is also an event
3) If A_1, A_2, A_3, \ldots are events, then so is $\bigcup_{n=1}^{\infty} A_n$.

P is a function from the collection of events \mathcal{A} to $[0, 1]$ which satisfies the axioms of probability:

1) $P(A) \geq 0$ for all events $A \in \mathcal{A}$.
2) $P(\Omega) = 1$.
3) If A_1, A_2, A_3, \ldots are mutually exclusive events (i.e., $A_i \cap A_j = \emptyset$ for all $i \neq j$), then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$.

Definitions (Modes of convergence) Let $\{X_n\} = X_1, X_2, X_3, \ldots$ be a sequence of random variables defined in a probability space (Ω, \mathcal{A}, P).

1. We say that $\{X_n\}$ converges to a random variable X **almost surely** (notation: $X_n \xrightarrow{a.s.} X$) if
 \[P(\{\omega : X_n(\omega) \to X(\omega)\}) = 1 \]
2. We say that $\{X_n\}$ converges to a random variable X **in probability** (notation: $X_n \xrightarrow{P} X$) if for any $\epsilon > 0$ we have
 \[P(|X_n - X| > \epsilon) \to 0 \quad \text{as} \quad n \to \infty \]
3. If $r > 0$ we say that $\{X_n\}$ converges to a random variable X **in rth mean** (notation: $X_n \xrightarrow{r.m.} X$) if
 \[E(|X_n - X|^r) \to 0 \quad \text{as} \quad n \to \infty \]
4. Let F_n and F denote the cdfs of X_n and X, respectively. We say that $\{X_n\}$ converges to a random variable X **in distribution** (notation: $X_n \xrightarrow{d} X$) if
 \[F_n(x) \to F(x) \quad \text{as} \quad n \to \infty \]
 for any x such that F is continuous at x.
Remarks:

- A very important case of convergence in rth mean is when $r = 2$. In this case $E(|X_n - X|^2) \to 0$ as $n \to \infty$ and we say that $\{X_n\}$ converges in mean square to X.
- Almost sure convergence is often called convergence with probability 1.
- Almost sure convergence, convergence in rth mean, and convergence in probability all state that X_n is eventually close to X (in different senses) as n increases.
- In contrast, convergence in distribution is only a statement about the closeness of the distribution of X_n to that of X for large n.

Example: Sequence $\{X_n\}$ such that $F_n(x) = F(x)$ for all $x \in \mathbb{R}$ and $n = 1, 2, \ldots$, but $P(|X_n - X| > 1/2) = 1$ for all $n \ldots$

Theorem 5

Convergence in rth mean implies convergence in probability; i.e., if $X_n \xrightarrow{r.m.} X$, then $X_n \xrightarrow{P} X$.

Proof: Assume $X_n \xrightarrow{r.m.} X$ for some $r > 0$; i.e., $E(|X_n - X|^r) \to 0$ as $n \to \infty$. Then for any $\epsilon > 0$,

$$P(|X_n - X| > \epsilon) = P(|X_n - X|^r > \epsilon^r) \leq \frac{E(|X_n - X|^r)}{\epsilon^r} \to 0 \text{ as } n \to \infty$$

where the inequality follows from Markov’s inequality applied to the nonnegative random variable $|X_n - X|^r$.

Remark: We will show that in general, $X_n \xrightarrow{a.s.} X$ does not imply that $X_n \xrightarrow{r.m.} X$, and also that $X_n \xrightarrow{r.m.} X$ does not imply $X_n \xrightarrow{a.s.} X$.

Theorem 4

The following implications hold:

$$X_n \xrightarrow{a.s.} X \quad \Rightarrow \quad X_n \xrightarrow{P} X \quad \Rightarrow \quad X_n \xrightarrow{d} X$$
Proof cont’d: Now define the event
\[B_n(\epsilon) = \{ \omega : |X_m(\omega) - X(\omega)| > \epsilon \text{ for some } m \geq n \} \]

Notice that \(B_1(\epsilon) \supset B_2(\epsilon) \supset \cdots \supset B_{n-1}(\epsilon) \supset B_n(\epsilon) \supset \cdots \); i.e., \(\{B_n(\epsilon)\} \) is a decreasing sequence of events, satisfying
\[A(\epsilon) = \bigcap_{n=1}^{\infty} B_n(\epsilon) \]

Therefore by the continuity of probability
\[P(A(\epsilon)) = P\left(\bigcap_{n=1}^{\infty} B_n(\epsilon) \right) = \lim_{n \to \infty} P(B_n(\epsilon)) \]

But since \(P(A(\epsilon)) = 0 \), we obtain that \(\lim_{n \to \infty} P(B_n(\epsilon)) = 0 \).

Proof cont’d: We clearly have
\[A_n(\epsilon) \subset B_n(\epsilon) \text{ for all } n \]
so \(P(A_n(\epsilon)) \leq P(B_n(\epsilon)) \), so \(P(A_n(\epsilon)) \to 0 \text{ as } n \to \infty \). We obtain
\[\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0 \]
for any \(\epsilon > 0 \) as claimed.

Example: \((X_n \overset{P}{\to} X \text{ does not imply } X_n \overset{a.s.}{\to} X.)\) Let \(X_1, X_2, \ldots \) be independent random variables with distribution
\[P(X_n = 0) = 1 - \frac{1}{n}, \quad P(X_n = 1) = \frac{1}{n} \]
and show that there is a random variable \(X \) such that \(X_n \overset{P}{\to} X \), but \(P(\{\omega : X_n(\omega) \to X(\omega)\}) = 0 \).

Solution: \ldots

Example: \((X_n \overset{r.m.}{\to} X \text{ does not imply } X_n \overset{a.s.}{\to} X.)\) Use the previous example.\ldots

Lemma 7 (Sufficient condition for a.s. convergence)

Suppose \(\sum_{n=1}^{\infty} P(|X_n - X| > \epsilon) < \infty \text{ for all } \epsilon > 0 \). Then \(X_n \overset{a.s.}{\to} X \).

Proof: Recall the event
\[A(\epsilon) = \{ \omega : |X_n(\omega) - X(\omega)| > \epsilon \text{ for infinitely many } n \} \]

Then
\[A(\epsilon)^c = \{ \omega : \text{there exists } N \text{ such that } |X_n(\omega) - X(\omega)| \leq \epsilon \text{ for all } n \geq N \} \]

For \(\epsilon = 1/k \) we obtain a decreasing sequence of events \(\{A(1/k)^c\}_{k=1}^{\infty} \).

Let
\[C = \bigcap_{k=1}^{\infty} A(1/k)^c \]

and notice that if \(\omega \in C \), then \(X_n(\omega) \to X(\omega) \) as \(n \to \infty \). Thus if \(P(C) = 1 \), then \(X_n \overset{a.s.}{\to} X \).
Proof cont’d: But from the continuity of probability
\[P(C) = P \left(\lim_{k \to \infty} A(1/k)^c \right) = \lim_{k \to \infty} P(A(1/k)^c) \]
so if \(P(A(1/k)^c) = 1 \) for all \(k \), then \(P(C) = 1 \) and we obtain \(X_n \xrightarrow{a.s.} X \). Thus \(P(A(\epsilon)) = 0 \) for all \(\epsilon > 0 \) implies \(X_n \xrightarrow{a.s.} X \).

As before, let \(A_n(\epsilon) = \{ \omega : |X_n(\omega) - X(\omega)| > \epsilon \} \)
and
\[B_n(\epsilon) = \{ \omega : |X_m(\omega) - X(\omega)| > \epsilon \text{ for some } m \geq n \} \]
We have seen in the proof of Theorem 6 that
\[P(A(\epsilon)) = \lim_{n \to \infty} P(B_n(\epsilon)) \]
Thus if we can show that \(\lim_{n \to \infty} P(B_n(\epsilon)) = 0 \) for all \(\epsilon > 0 \), then \(X_n \xrightarrow{a.s.} X \).

Example: \((X_n \xrightarrow{a.s.} X \text{ does not imply } X_n \xrightarrow{r.m.} X) \) Let \(X_1, X_2, \ldots \) be random variables with marginal distributions given by
\[P(X_n = n^3) = \frac{1}{n^2}, \quad P(X_n = 0) = 1 - \frac{1}{n^2} \]
Show that there is a random variable \(X \) such that \(X_n \xrightarrow{a.s.} X \), but \(X_n \xrightarrow{r.m.} X \) if \(r \geq 2/3 \).

Proof cont’d: Note that
\[B_n(\epsilon) = \bigcup_{m=n}^{\infty} A_m(\epsilon) \]
and that the condition \(\sum_{n=1}^{\infty} P(A_n(\epsilon)) = \sum_{n=1}^{\infty} P(|X_n - x| > \epsilon) < \infty \) implies
\[\lim_{n \to \infty} \sum_{m=n}^{\infty} P(A_m(\epsilon)) = 0 \]
We obtain
\[P(B_n(\epsilon)) = \sum_{m=n}^{\infty} P(A_m(\epsilon)) \]
(union bound)
\[\leq \sum_{m=n}^{\infty} P(A_m(\epsilon)) \to 0 \text{ as } n \to \infty \]
so \(\lim_{n \to \infty} P(B_n(\epsilon)) = 0 \) for all \(\epsilon > 0 \). Thus \(X_n \xrightarrow{a.s.} X \). \(\square \)

Theorem 8

Convergence in probability implies convergence in distribution; i.e., if \(X_n \xrightarrow{p} X \), then \(X_n \xrightarrow{d} X \).

Proof: Let \(F_n \) and \(F \) be the cdfs of \(X_n \) and \(X \), respectively and let \(x \in \mathbb{R} \) be such that \(F \) is continuous at \(x \). We want to show that \(X_n \xrightarrow{p} X \) implies \(F_n(x) \to F(x) \) as \(n \to \infty \).

For any given \(\epsilon > 0 \) we have
\[F_n(x) = P(X_n \leq x) \]
\[= P(X_n \leq x, X \leq x + \epsilon) + P(X_n \leq x, X > x + \epsilon) \]
\[\leq P(X \leq x + \epsilon) + P(|X_n - X| > \epsilon) \]
\[= F(x + \epsilon) + P(|X_n - X| > \epsilon) \]
Laws of Large Numbers

Let X_1, X_2, \ldots be a sequence of independent and identically distributed (i.i.d.) random variables with finite mean $\mu = E(X_i)$ and variance $\sigma^2 = \text{Var}(X_i)$. The sample mean \bar{X}_n is defined by

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Theorem 10 (Weak law of large numbers)

We have $\bar{X}_n \xrightarrow{p} \mu$; i.e., for all $\epsilon > 0$

$$\lim_{n \to \infty} P(|\bar{X}_n - \mu| > \epsilon) = 0$$

If X is a constant random variable, then the converse also holds:

Theorem 9

Let $c \in \mathbb{R}$. If $X_n \xrightarrow{d} c$, then $X_n \xrightarrow{P} c$.

Proof: For X with $P(X = c)$ let F_n and F be as before and note that

$$F(x) = \begin{cases}
0 & \text{if } x < c \\
1 & \text{if } x \geq c
\end{cases}$$

Then F is continuous at all $x \neq c$, so $F_n(x) \to F(x)$ as $n \to \infty$ for all $x \neq c$. For any $\epsilon > 0$

$$P(|X_n - c| > \epsilon) = P(X_n < c - \epsilon) + P(X_n > c + \epsilon) \leq P(X_n \leq c - \epsilon) + P(X_n > c + \epsilon) = F_n(c - \epsilon) + 1 - F_n(c + \epsilon)$$

Since $F_n(c - \epsilon) \to 0$ and $F_n(c + \epsilon) \to 1$ as $n \to \infty$, we obtain $P(|X_n - c| > \epsilon) \to 0$ as $n \to \infty$.

Proof cont’d: Similarly,

$$F(x - \epsilon) = P(X \leq x - \epsilon) = P(X \leq x - \epsilon, X_n \leq x) + P(X \leq x - \epsilon, X_n > x) \leq P(X_n \leq x) + P(|X_n - X| > \epsilon) = F_n(x) + P(|X_n - X| > \epsilon)$$

We obtain

$$F(x - \epsilon) - P(|X_n - X| > \epsilon) \leq F_n(x) \leq F(x + \epsilon) + P(|X_n - X| > \epsilon)$$

Since $X_n \xrightarrow{p} X$, we have $P(|X_n - X| > \epsilon) \to 0$ as $n \to \infty$. Choosing $N(\epsilon)$ large enough so that $P(|X_n - X| > \epsilon) < \epsilon$ for all $n \geq N(\epsilon)$, we obtain

$$F(x - \epsilon) - \epsilon \leq F_n(x) \leq F(x + \epsilon) + \epsilon$$

for all $n \geq N(\epsilon)$. Since F is continuous at x, letting $\epsilon \to 0$ we obtain

$$\lim_{n \to \infty} F_n(x) = F(x).$$
Theorem 11 (Strong law of large numbers)

If \(X_1, X_2, \ldots \) is an i.i.d. sequence with finite mean \(\mu = E(X_i) \) and variance \(\text{Var}(X_i) = \sigma^2 \), then \(X_n \xrightarrow{a.s.} \mu \); i.e.,

\[
P \left(\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i = \mu \right) = 1
\]

Proof: First we show that the subsequence \(\bar{X}_{12}, \bar{X}_{22}, \bar{X}_{32}, \ldots \) converges a.s. to \(\mu \).

Let \(S_n = \sum_{i=1}^{n} X_i \). Then \(E(S_{n+2}) = n^2 \mu \) and \(\text{Var}(S_{n+2}) = n^2 \sigma^2 \). For any \(\epsilon > 0 \) we have by Chebyshev’s inequality

\[
P \left(|\bar{X}_{n+2} - \mu| > \epsilon \right) = P \left(\frac{1}{n^2} |S_{n+2} - n^2 \mu| > n^2 \epsilon \right)
\leq \frac{\text{Var}(S_{n+2})}{n^4 \epsilon^2} = \frac{\sigma^2}{n^2 \epsilon^2}
\]

Thus \(\sum_{n=1}^{\infty} P \left(|\bar{X}_{n+2} - \mu| > \epsilon \right) < \infty \) and Lemma 7 gives \(\bar{X}_{n+2} \xrightarrow{a.s.} \mu \).

Proof cont’d: Now we remove the restriction \(X_i \geq 0 \). Define

\[
X_i^+ = \max(X_i, 0), \quad X_i^- = \max(-X_i, 0)
\]

and note that \(X_i = X_i^+ - X_i^- \) and \(X_i^+ \geq 0, X_i^- \geq 0 \). Letting \(\mu^+ = E(X_i^+), \mu^- = E(X_i^-) \) and

\[
A_1 = \left\{ \omega : \frac{1}{n} \sum_{i=1}^{n} X_i^+(\omega) \to \mu^+ \right\}, \quad A_2 = \left\{ \omega : \frac{1}{n} \sum_{i=1}^{n} X_i^- (\omega) \to \mu^- \right\}
\]

we know that \(P(A_1) = P(A_2) = 1 \). Thus \(P(A_1 \cap A_2) = 1 \). But for all \(\omega \in A_1 \cap A_2 \) we have

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i(\omega) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i^+(\omega) - \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i^- (\omega)
\]

\[
= \mu^+ - \mu^- = \mu
\]

We conclude that \(\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{a.s.} \mu \). \(\square \)

Remark: The condition \(\text{Var}(X_i) < \infty \) is not needed. The strong law of large numbers (SLLN) holds for any i.i.d. sequence \(X_1, X_2, \ldots \) with finite mean \(\mu = E(X_1) \).

Example: Simple random walk . . .

Example: (Single server queue) Customers arrive one-by-one at a service station.

- The time between the arrival of the \((i-1) \)th and \(i \)th customer is \(Y_1 \) and \(Y_1, Y_2, \ldots \) are i.i.d. nonnegative random variables with finite mean \(E(Y_1) \) and finite variance.
- The time needed to service the \(i \)th customer is \(U_i \) and \(U_1, U_2, \ldots \) are i.i.d. nonnegative random variables with finite mean \(E(U_1) \) and finite variance.

Show that if \(E(U_1) < E(Y_1) \), then (after the first customer arrives) the queue will eventually become empty with probability 1.
Central Limit Theorem

- If X_1, X_2, \ldots are Bernoulli(p) random variables, then $S_n = X_1 + \cdots + X_n$ is a Binomial(n, p) random variable with mean $E(S_n) = np$ and variance $\text{Var}(S_n) = np(1 - p)$.

- Recall the De Moivre-Laplace theorem:
 \[
 \lim_{n \to \infty} P \left(\frac{S_n - np}{\sqrt{np(1-p)}} \leq x \right) = \Phi(x)
 \]
 where $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$ is the cdf of a $N(0, 1)$ random variable X.

- Since $\Phi(x)$ is continuous at every x, the above is equivalent to
 \[
 \frac{S_n - np}{\sigma \sqrt{n}} \xrightarrow{d} X
 \]
 where $\mu = E(X_1) = p$ and $\sigma = \sqrt{\text{Var}(X_1)} = p(1 - p)$.

To prove the CLT we will assume that each X_i has MGF $M_{X_i}(t)$ that is defined in an open interval around zero. The key to the proof is the following result which we won’t prove:

Theorem 13 (Levy continuity theorem for MGF)

Assume Z_1, Z_2, \ldots are random variables such that the MGF $M_{Z_n}(t)$ is defined for all $t \in (-a, a)$ for some $a > 0$ and all $n = 1, 2, \ldots$ Suppose X is a random variable with MGF $M_X(t)$ defined for $t \in (-a, a)$. If

\[
\lim_{n \to \infty} M_{Z_n}(t) = M_X(t)
\]

for all $t \in (-a, a)$

then $Z_n \xrightarrow{d} X$.

The De Moivre-Laplace theorem is a special case of the following general result:

Theorem 12 (Central Limit Theorem)

Let X_1, X_2, \ldots be i.i.d. random variables with mean μ and finite variance σ^2. Then for $S_n = X_1 + \cdots + X_n$ we have

\[
\frac{S_n - np}{\sigma \sqrt{n}} \xrightarrow{d} X
\]

where $X \sim N(0, 1)$.

Remark: Note that $\frac{S_n - np}{\sigma \sqrt{n}} = \frac{\sqrt{n}}{\sigma}(\bar{X}_n - \mu)$. The SLLN implies that with probability 1, $\bar{X}_n - \mu \to 0$ as $n \to \infty$ The central limit theorem (CLT) tells us something about the speed at which $\bar{X}_n - \mu$ converges to zero.

Proof of CLT: Let $Y_n = X_n - \mu$. Then $E(Y_n) = 0$ and $\text{Var}(Y_n) = \sigma^2$. Note that

\[
\frac{\sum_{i=1}^{n} Y_i}{\sigma \sqrt{n}} = \frac{S_n - np}{\sigma \sqrt{n}} = Z_n
\]

Letting $M_Y(t)$ denote the (common) moment generating function of the Y_i, we have by the independence of Y_1, Y_2, \ldots

\[
M_{Z_n}(t) = M_Y \left(\frac{t}{\sigma \sqrt{n}} \right)^n
\]

If $X \sim N(0, 1)$, then $M_X(t) = e^{t^2/2}$. Thus if we show that $M_{Z_n}(t) \to e^{t^2/2}$, or equivalently

\[
\lim_{n \to \infty} \ln(M_{Z_n}(t)) = \frac{t^2}{2}
\]

then Levy’s continuity theorem implies the CLT.
Proof cont’d: Let \(h = \frac{t}{\sigma \sqrt{n}} \). Then
\[
\lim_{n \to \infty} \ln(M_{Z_n}(t)) = \lim_{n \to \infty} \ln \left(M_Y \left(\frac{t}{\sigma \sqrt{n}} \right)^n \right)
\]
\[
= \lim_{n \to \infty} n \ln \left(M_Y \left(\frac{t}{\sigma \sqrt{n}} \right) \right)
\]
\[
= \frac{t^2}{\sigma^2} \lim_{h \to 0} \ln M_Y(h)
\]

It can be shown that \(M_Y(h) \) and all its derivatives are continuous at \(h = 0 \). Since \(M_Y(0) = E(e^{0 \cdot Y}) = 1 \), the above limit is indeterminate.

Applying l’Hospital’s rule, we consider the limit
\[
\frac{t^2}{\sigma^2} \lim_{h \to 0} \frac{M_Y'(h)}{2h} = \frac{t^2}{\sigma^2} \lim_{h \to 0} \frac{M_Y'(h)}{2h}
\]

Again, since \(M'(0) = E(Y) = 0 \), the limit is indeterminate.

Proof cont’d: Apply l’Hospital’s rule again:
\[
\lim_{n \to \infty} \ln(M_{Z_n}(t)) = \frac{t^2}{\sigma^2} \lim_{h \to 0} \frac{\ln M_Y(h)}{h^2}
\]
\[
= \frac{t^2}{\sigma^2} \lim_{h \to 0} \frac{M_Y'(h)}{2h M_Y(h)}
\]
\[
= \frac{t^2}{\sigma^2} \lim_{h \to 0} \frac{M_Y''(h)}{2 M_Y(0) + 2h M_Y'(h)}
\]
\[
= \frac{t^2}{\sigma^2} \cdot \frac{M_Y''(0)}{2 M_Y(0)} = \frac{t^2}{\sigma^2} \cdot \frac{\sigma^2}{2}
\]
\[
= \frac{t^2}{2}
\]

Thus \(M_{Z_n}(t) \to e^{t^2/2} \) and therefore \(Z_n = \frac{S_n - n\mu}{\sigma \sqrt{n}} \xrightarrow{d} X \), where \(X \sim N(0, 1) \). \(\square \)