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abstract: A model is presented to explore how the form of selection
arising from competition for resources is affected by spatial resource
heterogeneity. The model consists of a single species occupying two
patches connected by migration, where the two patches can differ
in the type of resources that they contain. The main goal is to de-
termine the conditions under which competition for resources results
in disruptive selection (i.e., selection favoring a polymorphism) since
it is this form of selection that will give rise to the evolutionary
diversification of resource exploitation strategies. In particular, com-
paring the conditions giving rise to disruptive selection when the
two patches are identical to the conditions when they contain dif-
ferent resources reveals the effect of spatial resource heterogeneity.
Results show that when the patches are identical, the conditions
giving rise to disruptive selection are identical to those that give rise
to character displacement in previous models. When the patches are
different, the conditions giving rise to disruptive selection can be
either more or less stringent depending upon demographic param-
eters such as the intrinsic rate of increase and the migration rate.
Surprisingly, spatial resource heterogeneity can actually make forms
of evolutionary diversification such as character displacement less
likely. It is also found that results are dependent on how the resource
exploitation strategies and the spatial resource heterogeneity affect
the population dynamics. One robust conclusion however, is that
spatial resource heterogeneity always has a disruptive effect when the
migration rate between patches is low.

Keywords: character displacement, frequency-dependent selection,
density-dependent selection, competition, resource exploitation,
Lotka-Volterra.

Much of the early work in theoretical ecology centered on
trying to determine the importance of competition for
resources in the structuring of communities. One of the
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first organizing principles to emerge from this research
was the principle of limiting similarity (e.g., see MacArthur
and Levins 1967; May 1974; Abrams 1975). This principle
postulates that there is a limit to how similar species can
be and still coexist. Although this is primarily an ecological
principle, there has been considerable interest in related
evolutionary processes as well. Brown and Wilson (1956),
and later Hutchinson (1959), initiated study of the evo-
lutionary consequences of competition by introducing pu-
tative examples of what they termed “character displace-
ment.” In these examples, species that coexist in some
geographic regions and not in others, differ to a greater
extent where they occur in sympatry than where they occur
in allopatry. They suggested that such patterns might have
arisen from evolutionary character divergence because
competition for resources in areas of sympatry should re-
sult in each species specializing on different resources.

Since Brown and Wilson’s paper, the plausibility of evo-
lutionary character divergence has been examined theo-
retically in a number of different ways. Initially, MacArthur
and Levins (1964, 1967) and Levins (1968) investigated
the idea in terms of fitness sets. Subsequent to these in-
vestigations, several authors have explored character dis-
placement using more explicit accounts of consumer (and
resource) population dynamics, as well as more explicit
accounts of evolutionary change (Bulmer 1974; Crozier
1974; Lawlor and Maynard Smith 1976; Roughgarden
1976, 1983; Fenchel and Chistiansen 1977; Slatkin 1980;
Case 1981, 1982; Matessi and Jayakar 1981; Pacala and
Roughgarden 1982; Lundberg and Stenseth 1985; Milligan
1985; Taper and Case 1985, 1992; Abrams 1986, 1987a,
1987b, 1990a, 1990b; Brown and Vincent 1987; Gotelli and
Bossert 1991; Vincent et al. 1993; Doebeli 1996; Law et
al. 1997). This list is undoubtedly incomplete, but most
such theoretical research builds on previous models by
exploring the effects of additional biological factors such
as asymmetric competition, different types of genetic ar-
chitecture, nonequilibrium population dynamics, tempo-
rally fluctuating environments, multidimensional resource
spaces, and the importance of absolute versus relative re-
source abundances. This research has centered on deter-



Spatial Heterogeneity and Disruptive Selection 791

mining the conditions that favor evolutionary divergence
as opposed to convergence.

An important biological factor that is conspicuously ab-
sent from the above list is the effect of spatial resource
heterogeneity (SRH). In particular, if different resources
are found in different spatial locations, is character dis-
placement more or less likely to occur? Many organisms
forage under such resource heterogeneity. For example,
some freshwater fish species forage in both the limnetic
and the benthic regions of lakes, and these regions contain
very different suites of prey (Mittlebach 1981). There is
considerable evidence that character displacement has oc-
curred in some of these systems as well (Schluter and
McPhail 1992; Robinson and Wilson 1994; Schluter 1994),
but there are few theoretical results available to predict
when we expect such divergence and when we do not if
SRH is present. The initial theoretical work on character
displacement by Levins (1962, 1968) and MacArthur and
Levins (1964) clearly considered such SRH to be impor-
tant, but the large body of theory on competition for
resources and character displacement that followed essen-
tially ignored this issue. Although the flavor of spatial het-
erogeneity is present in the foraging time trade-offs in
many of the above models (e.g., Lawlor and Maynard
Smith 1976), the movement of individuals between dif-
ferent resource patches is usually not explicitly considered.
Consequently, it is not possible from these results to de-
termine how factors such as the propensity of individuals
to move mediates the effects of spatial heterogeneity.

Of the few spatial models of character displacement that
have been examined, none to my knowledge has examined
how the incorporation of SRH alters predictions. For ex-
ample, Pacala (1988) explored a model in which there is
spatially local resource use by sedentary individuals, and
he showed that the extent of resource partitioning de-
creases as resource use becomes more local. His model did
not, however, explore the effect of SRH, and he identified
this as an important area for future research. Similarly,
Kawata (1996) constructed a spatial simulation model of
character displacement based on a two-consumer, two-
resource model of competition. Resource use was again
local, but both resources were randomly distributed
throughout space and, thus, there was no consistent,
coarse-grained SRH. Last, Brown and Pavlovic (1992) con-
sidered a two-patch model that did explicitly involve SRH.
They analyzed it in terms of fitness sets, however, and
because their model is quite different from most of the
aforementioned models of character displacement, it is
difficult to draw any clear comparisons.

The purpose of this article is, therefore, to determine
how the predictions from previous models change when
there is spatial resource heterogeneity. In particular, is
character divergence more or less likely to occur under

these conditions? There are a number of ways in which
this question might be addressed, and I take what is prob-
ably the simplest possible approach. I consider competi-
tion for resources among individuals of a single species
and determine the conditions necessary for there to be a
single, evolutionarily stable resource exploitation strategy.
What is of most interest, however, is when these conditions
are not satisfied. In such instances, selection will be dis-
ruptive, favoring an evolutionary diversification of strat-
egies, and it is under these conditions that phenomena
like character divergence will occur.

It should be stressed that I do not model character
displacement per se. I simply examine the conditions un-
der which competition for resources results in disruptive
selection within a single species. The reasoning is that, if
selection favors a diversity of strategies within a single
species, then it will also favor a diversity of strategies
among species when there is more than one present. In
this sense, disruptive selection is a necessary condition for
the occurrence of evolutionary diversification via natural
selection. Making any predictions about evolutionary di-
versification would require knowledge about the number
of competing species as well as their underlying genetic
architectures. Because understanding the form of selection
is a first step toward understanding evolutionary change,
I restrict my attention to this more limited goal. The ad-
vantage is that my results should have a much broader
scope of applicability. Of course, it is possible to construct
models of character displacement in which disruptive se-
lection is sufficient for evolutionary divergence. In fact,
this is true of many previous models of character dis-
placement, and it is these models that are most easily
compared to my results.

My approach is to consider two spatially distinct re-
source patches connected by migration and to ask how
the conditions for disruptive selection change as the re-
sources in each patch become more different. At first
glance, it would seem that this should effectively broaden
the available resource base. As a result, it should lead to
increased disruptive selection and, thereby, make character
displacement (or other forms of evolutionary diversifi-
cation) more likely. It turns out, however, that this is not
always the case. The form of selection depends critically
on demographic parameters such as the migration rate
and the intrinsic rate of increase. Furthermore, the form
of selection is dependent on the specifics of competition
such as how the resource exploitation strategies and the
spatial resource heterogeneity affect the population dy-
namics. Nevertheless, some general conclusions can still
be drawn.
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Figure 1: Plot of resource abundance against resource size. The abun-
dance axis is arbitrary. Size is one example of how the available resources
might be indexed. A, Plot depicting the qualitative features of the abun-
dance distribution for a single habitat, with the size axis scaled so that
the peak of the abundance graph coincides with zero. B, Plot depicting
the qualitative features of the abundance distributions in the model pre-
sented here that has two patches connected by dispersal. The size axis is
again scaled so that the two abundance graphs have peaks that are sym-
metric around 0 at 5v.

The Model

There are two main approaches in the literature for con-
structing evolutionary models of competition for re-
sources. One uses the explicit consumer-resource equa-
tions of theoretical ecology (e.g., Lawlor and Maynard
Smith 1976; Taper and Case 1985; Abrams 1986, 1987a,
1987b). The other is more phenomenological and is based
on the Lotka-Volterra competition equations or similar
equations (e.g., Bulmer 1974; Slatkin 1980; Case 1981,
1982; Milligan 1985; Taper and Case 1985; Brown and
Vincent 1987; Doebeli 1996; Law et al. 1997). The Lotka-
Volterra approach is followed here. This approach assumes
that the available resources can be indexed along a single
axis such as size (but see Pacala and Roughgarden 1982).
The available resources can then be depicted by a plot of
resource abundance versus size (fig. 1A). To introduce SRH
into this framework, I consider two discrete patches cou-
pled by migration, where each patch has a different dis-
tribution of resources (fig. 1B). For simplicity, I assume
that the resource distribution in each patch is symmetric
and unimodal and that the shape of the distribution does
not differ between patches. Therefore, with the size ex-
ample, the two patches can differ in the mean size of
resources available and in the total resource abundance.
Without loss of generality, I choose a scale such that the
means of the resource distributions are symmetric about
0 at 5v (fig. 1B). With this formulation, v is a measure
of spatial heterogeneity, and corresponds to no het-v = 0
erogeneity. Therefore, I can replicate the results of non-
spatial models by setting .v = 0

The Lotka-Volterra approach also assumes that the re-
source exploitation strategies of consumers can be mapped
onto the resource axis. If the resources are indexed by size,
for example, then the exploitation strategies must also be
indexed by size. A strategy, u, would be a strategy that
primarily consumes resources of size u. Of course, this
strategy will consume resources of different sizes as well,
and this is why different strategies compete. The Lotka-
Volterra approach supposes that this effect of competition
decreases as the strategies become more different, reflect-
ing the fact that very different strategies are less likely to
consume the same resources than very similar strategies.

The next step is to specify how the frequency of different
strategies in the population will be modeled. Here the
Lotka-Volterra approach has been handled using two dif-
ferent types of models: quantitative-genetic (QG) models
and the game-theoretic (GT) models (Taper and Case
1992). Quantitative-genetic models assume that the strat-
egies in the population are present according to some con-
tinuous frequency distribution (usually Gaussian), while
GT models assume that the population is monomorphic
for a resident strategy and consider the fate of rare mutant

strategies that arise. It turns out that these two approaches
are mathematically very similar (Iwasa et al. 1991; Abrams
et al. 1993; Taylor 1996; Taylor and Day 1997), and they
give similar results under a very wide range of conditions,
particularly for character displacement models (Taper and
Case 1992). Therefore, I use a GT model because it is
easier to obtain analytical results.

With this background, I now describe the model more
explicitly. Let denote the resident resource exploitationû
strategy. I will assume that reproduction (which is both
density and frequency dependent) takes place within each
patch, followed by dispersal, and that the population size
is regulated independently within each patch. Thus, the
number of resident individuals in patches 1 and 2 (denoted

and ) are governed by the system∗ ∗N N1 2
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∗ ∗ ∗ ∗ ∗˜ ˜N (t 1 1) = R N (t)(1 2 d) 1 R N (t)d,1 1 1 2 2

∗ ∗ ∗ ∗ ∗˜ ˜N (t 1 1) = R N (t)d 1 R N (t)(1 2 d), (1)2 1 1 2 2

where

∗Ni∗R̃ = 1 1 r 1 2 , (2)i i( )ˆK (u)i

where ri is the intrinsic rate of increase in patch i, d is the
probability of an individual migrating to the other patch
( ), and is the carrying capacity of theˆ0 ! d ! 1/2 K (u)i

resident population in patch i. The expected number of
offspring produced by a resident individual in patch i is

. Notice that, although the probability of migration is∗R̃i

symmetric between the two patches, the number of mi-
grants per generation need not be symmetric because each
patch can have a different total number of individuals.

I assume that the resource distribution in each patch is
reflected by the carrying capacity functions Ki , such that
a strategy specializing on an abundant resource type will
have a high carrying capacity. Thus, the Ki are symmetric
and unimodal, with peaks at 5v. I follow previous models
by using a Gaussian form for Ki :

1
2K (u) = k exp 2 (u 2 v) , (3)1 1 2[ ]2jk

1
2K (u) = k exp 2 (u 1 v) . (4)2 2 2[ ]2jk

The shape of these functions is similar to those of the
resource abundance curves depicted in figure 1B. The
breadth of resources available in each patch is represented
by , and the parameter ki gives the maximal possible2jk

carrying capacity in patch i.
Equations (1) describe the population dynamics of the

resident strategy in isolation, and to determine the fate of
a rare mutant strategy, u, system (1) is augmented to in-
corporate the mutant’s dynamics:

∗ ∗ ∗ ∗ ∗N (t 1 1) = R N (t)(1 2 d) 1 R N (t)d,1 1 1 2 2

∗ ∗ ∗ ∗ ∗N (t 1 1) = R N (t)d 1 R N (t)(1 2 d),2 1 1 2 2

m m m m mN (t 1 1) = R N (t)(1 2 d) 1 R N (t)d, (5)1 1 1 2 2

m m m m mN (t 1 1) = R N (t)d 1 R N (t)(1 2 d).2 1 1 2 2

The number of mutants in patch i is denoted by andmNi

the expected number of offspring produced by each type

(denoted by and is given by the Lotka-Volterra∗ mR R )i i

competition equations,

∗ mˆN 1 a(u, u)Ni i∗R = 1 1 r 1 2 , (6)i i[ ]ˆK (u)i

m ∗ˆN 1 a(u, u)Ni imR = 1 1 r 1 2 . (7)i i[ ]K (u)i

Notice that when the mutants are absent (i.e.,∗ ∗R̃ = Ri i

Thus, when mutants are present, the dynamicsmN = 0).i

of the resident population (i.e., [1]) change due to com-
petition, which affects the expected number of offspring
produced in each patch. The function is the com-ˆa(u, u)
petition coefficient from the Lotka-Volterra equations, and
it specifies the intensity of competition between an indi-
vidual with strategy u and one with strategy relative toû
the intensity of competition between two identical indi-
viduals. There are several possible choices for the function
a, and again I follow previous models by using the Gauss-
ian form:

1
2ˆ ˆa(u, u) = exp 2 (u 2 u) . (8)

2[ ]2ja

The parameter ja specifies how quickly the intensity of
competition falls off with increasing phenotypic distance.

Method of Analysis

In all analyses, I restrict attention to values of r satisfying
so that the resident population dynamics reach0 ! r ! 2

a stable equilibrium. Suppose there is a single, evolution-
arily stable strategy. When it is the resident strategy, no
mutant strategy will be able to invade. The ability of a
mutant to invade is described by the stability of the equi-
librium and of system∗ ∗ ∗ ∗ m mˆ ˆN = N , N = N , N = 0, N = 01 1 2 2 1 2

(5), where is the equilibrium obtained by the res-∗ ∗ˆ ˆN , N1 2

ident strategy in the absence of the mutant. A linear sta-
bility analysis (app. A) shows that this stability depends
on the magnitude of the eigenvalue

1∗ ∗ m mˆ ˆˆ ˆ ˆl[u, u, N (u), N (u)] = (1 2 d)(R 1 R )1 2 1 2[2

2 m m 2 m mÎ1 (1 2 d) (R 1 R ) 2 4R R (1 2 2d) .1 2 1 2 ]

I refer to expression (9) as the fitness of a mutant using
strategy u in a population using because it is the mutant’sû
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initial multiplication rate. A mutant will invade if and only
if its fitness is 11 because invasion requires that it more
than replace itself. Notice that the arguments of the fitness
function l in (9) display the fact that selection is both
frequency and density dependent, but for shorthand, I will
simply write Therefore, if there is a single, evo-ˆl(u, u).
lutionarily stable strategy (an ESS), , we have∗u

∗ ∗ ∗l(u, u ) ≤ l(u , u ), (10)

∗ ∗l(u , u ) = 1 (11)

for all mutant strategies, Condition (10) expresses∗u ( u .
the fact that, if the population is at an ESS, then a mutant’s
fitness will be maximized by using the same resource ex-
ploitation strategy as the resident (i.e., In other∗u = u ).
words, if is an ESS, then no other strategy provides a∗u
larger fitness in a population dominated by this strategy.
The equality in (11) follows from the fact that the mutant
will be completely neutral if its resource exploitation strat-
egy is the same as that of the resident.

It is difficult to characterize using condition (10)∗u
directly, so local conditions are employed instead. Since
condition (10) implies that is maximized in u at∗l(u, u )

an ESS must satisfy∗u = u ,

l F = 0. (12)∗ˆu=u=uu

This is simply a first-order necessary condition for l to
be maximized in u at and I refer to it as the∗u = u ,
evolutionary equilibrium condition. This reflects the fact
that directional selection ceases to act when (12) holds
( is a measure of the strength of directionall/uF ˆu=u

selection).
The crux of my analysis rests upon an examination of

the sign of the second derivative,

2 l F . (13)
2 ∗ˆu=u=uu

If (13) is negative, then represents a local maximum∗u = u
of l as a function of u, and therefore, nearby strategies
cannot invade because their fitness is !1. If, however, (13)
is positive, then represents a local minimum of l∗u = u
as a function of u, and therefore, nearby strategies will
invade because they have a fitness 11. In such cases, se-
lection favors extreme phenotypes, and this is when we
expect evolutionary diversification. This is what will be
referred to as “disruptive selection” in what follows (see
Christiansen 1991 for a more detailed explanation of this
approach). Notice, however, that this type of analysis is
meaningful only if directional selection near the evolu-

tionary equilibrium actually drives the population toward
it since it is only such equilibria that the population will
experience. This means that we require directional selec-
tion to be positive (favoring larger values of u) when

and for it to be negative (favoring smaller values∗û ! u
of u) when This implies that the derivative of∗ ˆu ! u.

with respect to is negative at ; that is,∗ˆ ˆl/uF u u = uˆu=u

d l F ! 0. (14)F{ }ˆu=uˆ ∗du u û=u

I refer to condition (14) as the “convergence stability con-
dition” (Eshel 1983; Taylor 1989). The sign of (13) will
be examined only for those evolutionary equilibria that
satisfy this condition. Incidentally, it turns out that there
is always at least one evolutionary equilibrium in the
model presented, and numerical results suggest that when
there is only one evolutionary equilibrium, it always sat-
isfies condition (14).

Results

Explicit expressions for (12) and (13) are presented in
appendix B for two different levels of generality. The most
general expressions (given by [B2] and [B5]) allow for any
function for the number of offspring produced by amRi

mutant individual in patch i. The next level of generality
is more specific and substitutes the Lotka-Volterra form
of (i.e., [7]) into these expressions but allows for ar-mRi

bitrary parameter values (see [B6] and [B9]). The results
presented here are more specific yet and assume certain
restrictions on the parameter values. Throughout the re-
sults below, I simplify the notation by defining h =

as an index of migration. Since the migrationd/(1 2 d)
rate d is between and h is between 0 and 1. The0 1/2,
value corresponds to perfect site fidelity ( ) andh = 0 d r 0

corresponds to random mixing ( ).h = 1 d r 1/2

No Spatial Resource Heterogeneity

By setting and I recover a model that isv = 0 r = r = r,1 2

similar to many previous models of character displacement
that lack spatial resource heterogeneity. In this case ∗u =

(and ) is the only value of that∗ ∗ ∗ˆ ˆ0 N = K (0), N = K (0) u1 1 2 2

satisfies (B6), and therefore, it is the only evolutionary
equilibrium. This equilibrium also always satisfies the con-
vergence stability condition (14). Using this evolutionary
equilibrium in (B9) shows that (13) has the same sign as

2 2j 2 j . (15)k a

Disruptive selection occurs if (15) is positive, whereas sta-
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Figure 2: Range of migration rates that result in heterogeneity having a
disruptive versus a stabilizing effect on the equilibrium, Spatial∗u = 0.
heterogeneity has a disruptive effect when and a stabilizingd ! r/(1 1 2r)
effect when the reverse inequality holds. Dashed line is the boundary
between these two types of behavior (i.e., it is defined by d = r/(1 1

. The parameter combinations that result in being convergent∗2r) u = 0
stable (convergent) and convergence unstable (nonconvergent) are also
depicted. The solid line is the boundary between these two types of
behavior and is defined by . Results are for the parameterd = r/(4 1 2r)
values andj = 1, v = 1.k

bilizing selection occurs when (15) is negative. This is
identical to results from many previous models of char-
acter displacement (Roughgarden 1976, 1983; Brown and
Vincent 1987; Vincent et al. 1993). Biologically, it means
that more than one consumer species (or strategy) can be
supported by the available resources (i.e., disruptive se-
lection occurs) if the diversity of resource types (as mea-
sured by is greater than the diversity of resources used2j )k

by any single type of consumer (as measured by ). In2ja

other words, the spectrum of available resources must be
broader than any single consumer’s niche. This is a well-
known result in the character displacement literature, and
it provides a benchmark against which results that incor-
porate spatial resource heterogeneity can be compared.

The Effect of Spatial Resource Heterogeneity

Habitat Symmetry. With habitat symmetry (i.e., andr = r1 2

), (and is again one∗ ∗ ∗ˆ ˆk = k u = 0 N = K (0), N = K (0))1 2 1 1 2 2

possible evolutionary equilibrium. This is not surprising
since the two habitats are identical except that their re-
source distributions have peaks that are symmetric around
0. With the approach outlined in appendix B, it can be
shown that the convergence stability condition (14) at this
evolutionary equilibrium requires that

2 ( )22 h 1 hr 2 rjk
1 . (16)

2v 2 1 (1 2 h)(r 2 2)

Numerical results suggest that this condition is satisfied if
and only if is the only evolutionary equilibrium.∗u = 0

Restricting attention to parameter values for which (16)
is satisfied, we can determine the conditions necessary for
this evolutionary equilibrium to exhibit disruptive selec-
tion. Substituting (and into∗ ∗ ∗ˆ ˆu = 0 N = K (0), N = K (0))1 1 2 2

(B9) shows that (13) has the same sign as

2j r 2 hr 2 ha2 2 2(j 2 j ) 1 v . (17)k a 2 ( )j hk

Disruptive selection occurs when (17) is positive, and sta-
bilizing selection occurs when it is negative. Note that
setting reduces this expression to the nonheteroge-v = 0
neous expression (15) as it should.

This makes clear the effect of spatial resource hetero-
geneity. In particular, spatial heterogeneity (having v (

will have a disruptive effect if , and0) (r 2 hr 2 h)/h 1 0
it will have a stabilizing effect if . There-(r 2 hr 2 h)/h ! 0
fore, for a given rate of increase, r, selection tends to be
stabilizing for large migration rates and disruptive for
small migration rates. If the migration rate becomes small

enough, however, condition (16) may no longer be sat-
isfied (fig. 2).

The migration rate at which the form of selection
switches from disruptive to stabilizing depends on the
value of the intrinsic rate of increase. For example, a larger
intrinsic rate of increase allows for a larger range of mi-
gration rates that result in disruptive selection (fig. 2).
Notably, if migration is high enough ( (16) is alwaysh r 1),
satisfied, and (17) shows that heterogeneity always has a
stabilizing effect. Conversely, if migration rate is low
enough ( condition (16) requires that and2h r 0), j 1 2vk

heterogeneity always has a disruptive effect (fig. 3).
The fact that SRH can result in stabilizing selection and,

therefore, can hinder the evolutionary diversification is
somewhat surprising. To gain more insight into this phe-
nomenon, consider the specific parameter values d = 1/2
and in which case SRH always has a stabilizing effect.r = 1,
The fitness expression (9) reduces to

1
m m( )l u, 0 = (R 1 R ), (18)1 22

a mutant’s fitness is simply the average of its rate of growth
in each patch, with each patch weighted equally. Substi-
tuting expressions (7) for the R’s gives
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Figure 3: Plot of evolutionary equilibria and expression (13) against
migration rate. Circles are evolutionary equilibria, and curves are ex-
pression (13) different values of ja (note: changes in ja do not affect the
evolutionary equilibria). Where the curves are above the d-axis, expres-
sion (13) is positive, and therefore, selection at the equilibrium is dis-
ruptive (negative values imply stabilizing selection). Black circles rep-
resent convergence stable equilibria, and grey circles represent
convergence unstable equilibria. A, Parameter values j = 1.5, r = 1,k

For these values, condition (16) holds for all valuesv = 1, k = k = 1,000.1 2

of d, and the only evolutionary equilibrium is B, Parameter values∗u = 0.
For these values, condition (16)j = 1.1, r = 1, v = 1, k = k = 1,000.k 1 2

fails when the migration rate is low enough, at which point two additional
evolutionary equilibria appear, both of which are convergence stable, and

becomes convergence unstable. Only one value of ja is shown in∗u = 0
panel B.

1 a(u, 0) a(u, 0) ˆl(u, 0) = 4 2 1 N (19){ [ ] }2 K (u) K (u)1 2

1 1 1 ˆ= 2 2 a(u, 0) 1 N (20)[ ]2 K (u) K (u)1 2

1 ˆ= 2 2 a(u, 0) N, (21)
K̃(u)

where is the harmonic mean carrying capacity for aK̃(u)

mutant using resource exploitation strategy u and N̂ =
K (0) = K (0).1 2

First consider the case where heterogeneity is absent
(i.e., . Then A mutant usingv = 0) K (u) = K (u) = K(u).1 2

strategy (or ) will benefit from reduced com-u 1 0 u ! 0
petition through a decrease in a, but it will pay the cost
of specializing on a resource type that is less abundant
through a decrease in K. It will invade only if the benefits
outweigh the costs, and this is more likely to be the case
if the resource distribution, K, is broad. This condition is
embodied in expression (15) being positive.

Now consider the case where Herev ( 0. K (u) (1

except in the case where A mutant usingK (u) u = 0.2

strategy will again benefit from reduced competitionu 1 0
through a decrease in Now however, we need to com-a.
pare this benefit to the cost that results from a change in

Although having will increase K1, it will decreaseK̃. u 1 0
K2 substantially, and because it is the harmonic mean of
the two that is relevant, the smaller K dominates. There-
fore, spatial heterogeneity inhibits the evolutionary diver-
sification of strategies. Biologically, a specialist strategy
(one that uses loses much more in the “wrong”u ( 0)
habitat than it gains in the “right” habitat. In general,
however, the migration rate at which selection switches
from being disruptive to stabilizing depends on the in-
trinsic rate of increase. If this is high, then a specialist
strategy is better able to make up for the heavy loss in the
wrong habitat, so that there is a greater range of migration
rates for which selection is disruptive.

Habitat Asymmetry. Most of the qualitative effects of SRH
are exhibited by the symmetric case. There are some dif-
ferences under asymmetry, however, and I present these
results here. All results in this section were obtained
numerically.

Asymmetric Intrinsic Rates of Increase (r1 1 r2). The most
obvious effect of having asymmetric intrinsic rates of in-
crease is that is no longer an evolutionary equilib-∗u = 0
rium. Instead, it seems that there is always an evolutionary
equilibrium that is positive when and that thisr 1 r1 2

equilibrium is larger for lower migration rates (fig. 4).
Unlike in the symmetric case, however, this equilibrium
is always convergence stable for all migration rates. This
reflects the fact that directional selection drives the pop-
ulation to a strategy that is best adapted to the habitat
with the highest intrinsic rate of increase.

As with the symmetric case, this positive equilibrium
experiences stabilizing selection when the migration rate
is high enough, and the form of selection switches to dis-
ruptive once the migration rate drops below a critical
threshold (fig. 4). For certain parameter values, however,
two additional equilibria form when the migration rate
becomes low enough (fig. 4). Unlike the symmetric case,
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Figure 4: Plot of evolutionary equilibria and expression (13) against
migration rate for asymmetric intrinsic rates of increase ( andr = 1.251

Circles are evolutionary equilibria, and curves are expressionr = 1).2

(13) for different values of ja. Where the curves are above the d-axis,
expression (13) is positive, and therefore, selection at the equilibrium is
disruptive (negative values imply stabilizing selection). Black circles rep-
resent convergence stable equilibria, and grey circles represent conver-
gence unstable equilibria. A, Parameter values: j = 1.5, v = 1, k = k =k 1 2

For these values, there appears to be only one evolutionary equi-1,000.
librium, and it is always convergence stable. B, Parameter values: j =k

For these values, two new equilibria appear1.1, v = 1, k = k = 1,000.1 2

when the migration rate is low enough. At this point the initial equilib-
rium remains convergence stable, and one of the new equilibria (the
middle equilibrium) is convergence unstable and the second new equi-
librium is convergence stable. Only one value of ja is shown in panel B.

Figure 5: Plot of evolutionary equilibria and expression (13) against
migration rate for asymmetric maximal carrying capacities (k = 1,5001

and Circles are evolutionary equilibria, and curves are ex-k = 1,000).2

pression (13). Where the curves are above the d -axis, expression (13)
is positive, and therefore, selection at the equilibria is disruptive (negative
values imply stabilizing selection). Parameter values: j = 1.1, r = 1,k

For these values, there appears to be only one evolutionary equi-v = 1.
librium, and it is always convergence stable. For other parameter values,
it is again possible for there to be more than one evolutionary equilibria
(not shown).

the original equilibrium remains convergence stable, but
one of the two new equilibria is convergence unstable
while the other is convergence stable.

Asymmetric Maximal Carrying Capacities (k1 1 k2). In
this case, again is no longer an evolutionary equi-∗u = 0
librium; instead, there is an equilibrium that is positive
for low migration rates, and it becomes negative as the
migration rate increases (fig. 5). This equilibrium appears
to always be convergence stable as well. Therefore, with
high migration rates, directional selection drives the pop-
ulation toward being adapted to the habitat with the lowest
maximal carrying capacity, but it switches to driving the

population toward being adapted to the habitat with the
highest maximal carrying capacity when the migration rate
is low.

This can be understood with reference to the previous
arguments involving the harmonic mean carrying capacity.
When the migration rate is high, natural selection favors
a strategy that is adapted to the habitat with the lowest
maximal carrying capacity, thereby minimizing adverse ef-
fects when in the wrong habitat.

As with the case when for some parameterr ( r ,1 2

values, two new equilibria appear when the migration rate
gets low enough. The original equilibrium appears to re-
main convergence stable, and again one of the two new
equilibria is convergence unstable while the other is con-
vergence stable.

The Form of Selection Can Also Depend on
the Specifics of Competition

One of the most surprising results of the above analysis
is that spatial resource heterogeneity can cause selection
to be stabilizing for a single resource exploitation strategy
and can, therefore, hinder evolutionary diversification. It
is, therefore, of interest to determine whether or not this
result is dependent upon the underlying details of com-
petition for resources. Here, I demonstrate that this is the
case by using a different choice of mR .i

Although many alternative forms of might be used,mRi

the simplest is perhaps
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m m ∗ˆˆ˜R = 1 1 r [K (u) 2 N 2 a(u, u)N ]. (22)i i i

Expression (22) is related to the Lotka-Volterra form used
earlier in that the carrying capacity for this type of pop-
ulation dynamic is again given by Ki(u). The difference
lies in the fact that the intrinsic rate of increase, ,r̃ K (u)i i

is now also a function of the resource exploitation strategy,
u. To see how this type of population dynamic compares
to the Lotka-Volterra version used earlier, I examine the
case where and .˜ ˜r = r k = k1 2 1 2

From (B2) and (B5) of appendix B, (and∗ ∗ˆu = 0 N =1

is again an equilibrium, and expression∗ˆK (0), N = K (0))1 2 2

(5) now has the same sign as

2 ˜j h 1 (1 2 h)rK(0)a2 2 2(j 2 j ) 1 v , (23)k a 2 [ ]j hk

where (cf. [17]). This shows that,K(0) = K (0) = K (0)1 2

when heterogeneity is absent ( the condition forv = 0),
disruptive selection is the same as in the other model (i.e.,
[15] must be positive), but now heterogeneity always has
a disruptive effect ( is always positive).[h 1 (1 2 h)rK(0)]/h

Discussion

The purpose of the model analyzed here was to explore
the effects of coarse-grained spatial resource heteroge-
neity on the evolutionary diversification of resource ex-
ploitation strategies. In particular, I examined how the
conditions for phenomena such as character displace-
ment change when spatial heterogeneity is introduced.
Surprisingly, it was found that spatial heterogeneity can
cause selection to be either disruptive or stabilizing, de-
pending upon the balance between the intrinsic rate of
increase and the migration rate. Additionally, the form
of selection can also depend on how the resource ex-
ploitation strategy and the spatial resource heterogeneity
affect the population dynamics. Previous models by
Abrams (1986, 1987a, 1987b, 1990a, 1990b) have dem-
onstrated that competition for resources can result in
nonintuitive evolutionary outcomes as well. His models
were based on explicit consumer and resource dynamics
rather than on the Lotka-Volterra approach used here,
however, and therefore, a comparison of the two is dif-
ficult. It would be very useful to explore the correspon-
dence between these two modeling approaches.

The results presented here are closely related to those
of Brown and Pavlovic (1992). They studied a model sim-
ilar to that studied here, but they used a continuous-time
formulation with a different type of population dynamic,
and they framed their analysis in the context of Levins’s
(1968) ideas of fitness sets. They obtained similar results

in that, for the two types of competition that they explored
(a Lotka-Volterra type and a consumer-resource type),
high migration rates resulted in stabilizing selection, and
low migration rates resulted in disruptive selection. My
results complement their findings in two ways. First, I have
explicitly tied my approach to previous models of character
displacement, and therefore, I am able to examine directly
how conditions that favor character displacement change
when spatial heterogeneity is introduced. This is useful
because, as mentioned earlier, many organisms probably
forage under such spatial resource heterogeneity. Expres-
sion (17) is a generalization of previous character dis-
placement results, and it reveals how spatial resource het-
erogeneity affects the conditions for divergence. It shows
that factors such as the intrinsic rate of increase, in ad-
dition to the migration rate, can influence whether selec-
tion will be stabilizing or disruptive. Second, Brown and
Pavlovic (1992) analyzed two quite different models of
competition and found that both displayed a range of
migration rates for which selection was stabilizing, al-
though the exact migration rate at which the form of se-
lection switched was different for each. Thus, they sug-
gested that different formulations of competition could
have nontrivial effects on model predictions. My results
reiterate and strengthen this claim by showing that qual-
itatively different predictions can be made depending on
how the resource exploitation strategy and the spatial re-
source heterogeneity affect the population dynamics.

All of the findings presented here make it clear that
simple, general predictions will often be difficult, but they
do not necessarily imply that “anything goes.” There is
some regularity to all of the predictions found here as well
as to those found by Brown and Pavlovic (1992). In par-
ticular, if the migration rate between resource patches is
low, then spatial resource heterogeneity always has a dis-
ruptive effect. This conforms to our intuition that selection
should favor specialization on each resource patch. The
surprise comes when the migration rate is high. Under
these conditions, it is possible for selection to be either
stabilizing or disruptive depending on the specifics of the
situation. Of course, this does not mean that no predic-
tions can be made but rather that more information re-
garding the underlying biology is necessary before this will
be possible. This should not be surprising. Indeed, it would
be more surprising if general predictions could be made
that are independent of the underlying form of compe-
tition for resources and of the population dynamics.

Biological Implications

Given the diversity of predictions that can be made when
there is SRH, how can such models be used to understand
better the evolutionary diversification of resource exploi-
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tation strategies? To answer this question, it is helpful to
return to a specific example of freshwater fish alluded to
in the introduction, three-spine sticklebacks. Many lakes
inhabited by sticklebacks can be thought of as two resource
patches, the benthic and the limnetic. One of the primary
differences between the prey found in each of these two
habitats is their size, the benthic habitat generally con-
taining larger prey (Mittlebach 1981). Furthermore, it has
been shown that certain morphological characteristics are
required to forage efficiently in each of the two habitats
(Larson 1976; Bentzen and McPhail 1984; Lavin and
McPhail 1986; Schluter 1993), and therefore, resource ex-
ploitation strategies can be mapped onto a prey size axis
reasonably well. What is not known is the extent of mi-
gration between the two habitats. The above model as-
sumes that individuals forage in a single habitat during
any given season, and there is some circumstantial evi-
dence suggesting that this is true of sticklebacks. For ex-
ample, some solitary species appear to partition the lake
along the benthic-limnetic axis such that individuals found
in the benthic habitat tend to be morphologically distinct
from those found in the limnetic habitat (Lavin and
McPhail 1985; Schluter and McPhail 1992). This might
result from habitat choice or habitat-induced morpholog-
ical plasticity (Day et al. 1994), but in either case it suggests
relatively consistent habitat use since diet-induced mor-
phological change occurs only over a long period of time
(Day and McPhail 1996).

Given that the model’s assumptions are adequately met
for this system, what predictions does it make? First, if
habitat preferences are highly heritable, then the effective
migration rate between the habitats will be low. In this
case, we would expect strong disruptive selection, and this
should result in a diversification of resource exploitation
strategies. This might be realized simply as an increased
variance in trophic morphology or, perhaps, a trophic
polymorphism. Alternatively, if there is very little corre-
lation between parents and offspring in their foraging hab-
itats, then selection can be strongly stabilizing or strongly
disruptive.

Comparisons across lakes with different amounts of
benthic and limnetic habitat might also be understood by
looking at the model’s predictions when the two habitats
have different carrying capacities. Figure 5 shows that the
resource exploitation strategy (i.e., the trophic morphol-
ogy) should more closely match the most abundant hab-
itat. This makes perfect sense, but there are some com-
parisons across lakes that can result in counterintuitive
predictions. For example, fish from a lake in which the
size distribution of benthic prey is very similar to that of
limnetic prey might well experience greater disruptive se-
lection than those from a lake in which the size distri-
butions are very different. Mathematically, the first lake

has a smaller v than the second, and if the standard Lotka-
Volterra model is adequate, then expression (17) shows
that this can result in greater disruptive selection. There-
fore, in some circumstances, it might not be surprising to
see a smaller variance in the trophic morphology of fish
inhabiting lakes with very different sized benthic and lim-
netic prey than in fish inhabiting lakes in which these two
types of prey have very similar sizes.

In closing, it is perhaps useful to take a broader per-
spective and ask how the results presented here might be
altered when other biological details are incorporated. In
particular, all of the present results assume that migration
is passive. This is not unreasonable for some organisms,
but often individuals exhibit adaptive behavior either by
“choosing” not to migrate if migration is likely to result
in a fitness disadvantage or by exhibiting some type of
habitat choice when migrating. Such behavior might be a
facultative response (e.g., habitat choice) or a constant
response that has become fixed through evolution (e.g., a
low migration rate). In either case, for organisms that
exhibit this type of adaptive behavior, spatial resource het-
erogeneity will likely have a disruptive effect most of the
time. Without adaptive behavior, resources can be parti-
tioned only through individuals specializing on different
resource types. With adaptive behavior, however, resources
can be partitioned spatially as well. This suggests some
tentative general predictions about the effects of spatial
resource heterogeneity: SRH will tend to have a disruptive
effect and, thereby, favor a diversification of resource ex-
ploitation strategies if migration is passive and the migra-
tion rate is low or if individuals can exhibit some form of
adaptive migratory behavior; SRH will have a stabilizing
effect and, thereby, hinder the diversification of resource
exploitation strategies only when migration is passive and
the migration rate is high; SRH can have a disruptive effect
in this context as well, however, and therefore more in-
formation about the biological details of competition is
necessary before more definite predictions can be made.
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APPENDIX A

Linear Stability Analysis

A linear stability analysis of the equilibrium shows that stability is determined by the leading eigenvalue of an upper-
triangular matrix:

R U
, (A1)[ ]0 M ∗ ∗ ∗ ∗ m mˆ ˆN =N , N =N ,N =0, N =01 1 2 2 1 1

where R, U, and M are submatrices. Thus, stability is determined by the largest eigenvalue (in modulus) of the2 # 2
two submatrices:

∗ ∗ R R1 2∗ ∗ ∗ ∗N 1 R (1 2 d) N 1 R d1 1 2 2∗ ∗( ) ( )N N1 2
R = (A2)∗ ∗R R1 2 ∗ ∗ ∗ ∗N 1 R d N 1 R (1 2 d)1 1 2 2∗ ∗( ) ( )N N ∗ ∗ ∗ ∗ m mˆ ˆ 1 2 N =N , N =N ,N =0, N =01 1 2 2 1 1

and

m mR (1 2 d) R d1 2 
M = (A3)  .

m mR d R (1 2 d) ∗ ∗ ∗ ∗ m mˆ ˆ 1 2 N =N , N =N ,N =0, N =01 1 2 2 1 1

Notice that R is the matrix obtained from conducting a linear stability analysis of the pure resident system (1) at the
equilibrium and because this equilibrium is stable by assumption, both eigenvalues of R are !1 in∗ ∗ ∗ ∗ˆ ˆN = N , N = N ,1 1 2 2

magnitude. Thus, stability is completely determined by the leading eigenvalue of the mutant submatrix, M. These are

1
m m 2 m m 2 m mÎ(1 2 d)(R 1 R ) 5 (1 2 d) (R 1 R ) 2 4R R (1 2 2d) . (A4)[ ]1 2 1 2 1 22

It can be shown that the second term in these eigenvalues is always real, and thus, assuming (9) of them mR 1 R ≥ 0,1 2

text is the leading eigenvalue.

APPENDIX B

Equilibrium Conditions

Here I calculate conditions (12) and (13) at two levels of generality. First, I allow any functions and simply calculatemR ,i

these conditions using the leading eigenvalue (9). The next level of (reduced) generality then substitutes the Lotka-
Volterra form of (i.e., [7]) into these expressions but allows for arbitrary parameter values. Last, I also demonstratemRi

how (14) is calculated although I do not present these results here.

Condition (12)

Writing (9) as , where we getm m 2 m m 2 m mÎ1/2[(1 2 d)(R 1 R ) 1 S] S = (1 2 d) (R 1 R ) 2 4R R (1 2 2d),1 2 1 2 1 2

m ml R R 1 S1 2∝ (1 2 d) 1 1 . (B1)( ) Îu u u u2 S
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Now, because we have that when at (recall that is always real)∗ ∗ m m ∗Î Îl(u , u ) = 1, S = 2 2 (1 2 d)(R 1 R ) u = u S1 2

and therefore, (B1) evaluated at is proportional to∗u = u

m m m mR R R R1 2 1 2m m(1 2 d) 1 2 (1 2 2d) R 1 R . (B2)2 1 F( ) ( )u u u u ∗ˆu=u=u

Condition (13)

Calculating (13) from (B1) we get

2
2 2 m 2 m 2 2 l  R  R 1 1 S/u 1  S/u1 2∝ (1 2 d) 1 1 2 1 . (B3)

2 2 2( ) [ ( ) ]Î Î Îu u u 2 2 S S S

Now, because the definition of an ESS sets (B1) equal to 0 at we have∗u = u ,

2 2
m mS/u R R1 22= 4(1 2 d) 1 , (B4)( ) ( )Î u uS

and using the simplification for above at shows that (B3) evaluated at is proportional to∗ ∗ÎS u = u , u = u

2 m 2 m 2 m m m 2 m R  R  R R R  R1 2 1 1 2 2m m(1 2 d) 1 2 (1 2 2d) R 1 2 1 R . (B5)2 12 2 2 2 F( ) ( )u u u u u u ∗ˆu=u=u

Next, I substitute the Lotka-Volterra form of (i.e., [7]) into these expressions. In this case, setting (B2) equalmRi

to 0 gives (12) as

∗ ˜u G
= , (B6)

v G

where

∗ ∗ ∗ ∗ ∗ ∗˜ ˆ ˆ ˆ ˆ ˆ ˆG = h(r N K 2 r N K ) 1 (1 2 h)r r [N (N 2 K ) 2 N (N 2 K )] (B7)1 1 2 2 2 1 1 2 1 2 2 2 1 1

∗ ∗ ∗ ∗ ∗ ∗ˆ ˆ ˆ ˆ ˆ ˆG = h(r N K 1 r N K ) 1 (1 2 h)r r [N (N 2 K ) 1 N (N 2 K )]. (B8)1 1 2 2 2 1 1 2 1 2 2 2 1 1

Similarly, substituting (7) into (B5) shows that (13) has the same sign as

2 ∗ ∗ˆ ˆj 2r r (1 2 h)N N2a 1 2 1 22 2 ∗ 2G (j 2 j ) 1 (u 2 v ) 1 2 . (B9)k a 2{ [ ]}j Gk

The derivation of this expression is tedious and is therefore omitted (it is available upon request).
Calculating (14) is more difficult because we need to differentiate with respect to the resident’s strategy but theû,

equilibrium population size of the resident in each patch is also a function of In other words, the derivative in (14)û.
can be written more explicitly as
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2 2 2 ∗ 2 ∗ˆ ˆd l  l  l  l dN  l dN1 2F = 1 1 1 . (B10)F 2 ∗ ∗ F{ } ˆ ˆˆu=uˆ ˆ ˆ ˆ∗ ∗du u u uu N u du N u duˆ ˆu=u u=u=u1 2

Unfortunately, it is not possible to obtain and as a function of explicitly in any simple form. Therefore, the∗ ∗ˆ ˆ ˆN N u1 2

derivatives of the equilibrium population size in each patch with respect to are calculated most easily by implicitlyû
differentiating system (1) with respect to and evaluating at This gives two equations that can then be∗ˆ ˆu, u = u = u .
solved for the two unknowns, and∗ ∗ˆ ˆˆ ˆdN /du dN /du.1 2
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