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Abstract

A model is presented that explores how population structure affects the evolutionary outcome of ecological
competition for resources. The model assumes that competition for resources occurs within groups of a finite
number of individuals (interaction groups), and that limited dispersal of individuals between groups (according
to Wright’s island model of population structure) results in genetic structuring of the population. It is found that
both finite-sized interaction groups and limited dispersal can have substantial effects on the evolution of resource
exploitation strategies as compared to models with a single, infinitely large, well-mixed interaction group. Both
effects, in general, tend to select for less aggressive competitive strategies. Moreover, both effects also tend to
reduce the likelihood of the evolutionary diversification of resource exploitation strategies that often occurs in
models of resource competition with infinite populations. The results are discussed in the context of theories of the
evolutionary diversification of resource exploitation strategies and speciation.

Introduction

The role that microevolutionary processes such as
natural selection play in the process of speciation
has long been debated. One of the primary ways in
which natural selection has been implicated in speci-
ation is through the evolutionary reinforcement of par-
tial reproductive isolation between incipient species
(Dobzhansky, 1940; Butlin, 1989; Howard, 1993). In
particular, it has been suggested that if two groups
of organisms produce hybrid offspring through inter-
breeding, but that these offspring suffer some degree
of reduced fitness, then natural selection will favour
the evolution of additional isolating mechanisms that
reinforce this partial isolation. This hybrid disadvant-
age is often considered to occur as a result of intrinsic
genetic incompatibilities that build up during a period
of geographic isolation followed by secondary con-
tact (Coyne & Orr, 1998), but it is also possible that
hybrid disadvantage is mediated through ecological
interactions, and occurs in the absence of any geo-
graphic isolation (Coyne & Orr, 1998; Schluter, 1998).

In fact, one view of how sympatric speciation might
be initiated is that ecologically mediated disruptive
selection favours two extreme types, and that the in-
termediate forms that result from hybridization suffer
from being maladapted to the environment (Maynard
Smith, 1966; Rice & Hostert, 1993; Bush, 1994; Doe-
beli, 1996; Johnson & Gullberg, 1998 and references
therein). In other words, the ecological environment
contains two distinct niches (two adaptive peaks on
the fitness landscape), and the resulting disruptive
selection promotes the evolution of two species.

In his 1959 paper, Hutchinson focused attention
on such ecological issues by considering how they
might set a upper limit for the number of animal spe-
cies that coexist. Later Felsenstein (1981) suggested
that, although such ecological processes likely do set
an upper limit, evolution might not produce enough
species to attain this limit. One of Felsenstein’s main
points was that the number of species that actually
occur in nature is far smaller than we would expect
based on a purely ecological explanation, and there-
fore he sought to find an explanation for why this
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might be so. His answer was that genetic constraints
arising from a tension between linkage disequilibrium
and recombination between loci associated with ad-
aptation and those associated with assortative mating
can often prevent the occurrence of speciation, even in
the face of disruptive selection. In essence, speciation
requires a statistical association to build up between
alleles involved with adaptation and those involved
in assortative mating, and recombination between loci
continually erodes this association. This study was
highly influential, and it highlighted two important
phases of evolution that occur during the process of
speciation in the absence of geographical isolation.
First, disruptive selection sets the stage for speciation
by driving the evolution of two extreme types. Second,
reproductive isolation must then evolve between these
two types to complete the process of speciation (Kon-
drashov & Mina, 1986; Johnson & Gullberg, 1998).
It is this second phase that is hindered by the genetic
constraints highlighted by Felsenstein.

Although Felsenstein’s paper cast some doubt on
the plausibility of speciation in the absence of geo-
graphic isolation, several more recent theoretical stud-
ies seem to reaffirm the idea that such sympatric
speciation can easily occur (Doebeli, 1996; Law et al.,
1997; Kondrashov et al., 1998; Dieckmann & Doe-
beli, 1999; Kisdi, 1999; Kondrashov & Kondrashov,
1999; Doebeli & Dieckmann, 2000; Gertiz & Kisdi,
2000). Not all of these studies deal with speciation
per se according to the biological species concept
(Mayr, 1963) because some deal with asexual organ-
isms, but much of this recent work has again focussed
on the role that ecological interactions play in gener-
ating disruptive selection, and on how this disruptive
selection might then, in turn, ultimately lead to the
evolution of reproductive isolation in sexual species.
The central idea of these recent theories builds upon
Rosenzweig’s (1978) notion of competitive speciation.
Competition for resources will first cause a single pop-
ulation to evolve a strategy that best exploits the most
abundant resource available. At this point, however, if
competition is strong enough, then selection will fa-
vour individuals that specialize on extreme resources
because they experience reduced competition. Thus
disruptive selection is generated endogenously by the
ecological interactions among individuals (Doebeli &
Dieckmann, 2000). This disruptive selection can then
result in speciation if reproductive isolation evolves
(e.g., Dieckmann & Doebeli, 1999).

There is growing evidence that disruptive selection
is relatively common in natural populations (reviewed

in Endler, 1986; Kingsolver et al., in press), and that
it can play an important role in the evolution of repro-
ductive isolation in some organisms (Rice & Hostert
1993; Feder, 1998; Schluter, 1998). Although it is not
yet clear how many of these empirical examples are in-
stances of the kind of ecologically mediated disruptive
selection characteristic of competitive speciation, one
of the most interesting conclusions of this recent the-
ory is that we might often expect natural selection to
drive the evolution of single populations to phenotypic
values at which disruptive selection occurs. Therefore
this process of speciation in the absence of geographic
isolation might be quite common in nature. Indeed,
in many of these models speciation seems to occur
quite easily, suggesting that a reconsideration of Fel-
senstein’s original question might be worthwhile. If
such ecological factors do play a pre-eminent role in
evolutionary diversification and speciation, then why
are not more species found in nature? What limits
this process of seemingly inevitable diversification and
speciation that is seen in some of these models (Bridle
& Jiggins, 2000)?

As already mentioned, Felsenstein’s original an-
swer to this question was a genetic one. My intention
here is to suggest that, for these recent models similar
to Rosenzweig’s (1978) notion of competition speci-
ation, another partial answer might be found at the
interface between ecology and genetics. Much of the
recent theory demonstrating that competitive interac-
tions can result in disruptive selection and thereby
drive speciation is based on models that assume com-
petitive interactions take place among all individuals
of an effectively infinite population, and that the pop-
ulation is ‘well-mixed’ (e.g., Doebeli & Dieckmann,
2000). Here I present a very simple model of resource
competition that allows competitive interactions to
take place within finite-sized ‘interaction groups’, and
that also relaxes the assumption that the population is
well-mixed by allowing individuals to exhibit limited
dispersal. I use this model to ask two questions. (1)
Is the resource exploitation strategy that evolves un-
der competition affected by these realistic biological
features? (2) Is competition for resources more or
less likely to result in disruptive selection once these
factors are incorporated? The combination of finite-
sized interaction groups and the population viscosity
that results from limited dispersal, causes populations
to become genetically structured. If such structuring
makes the disruptive selection that arises from com-
petition for resources less likely, then this interaction
between genetics and ecology provides one possible
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factor that, when incorporated into models of com-
petitive speciation would reduce the frequency with
which they predict speciation. The difference between
this type of mechanism and that of Felsenstein is that
the present mechanism would reduce the extent to
which disruptive selection occurs thereby preventing
the first phase of sympatric speciation (selection fa-
vouring extreme types), whereas Felsenstein’s mech-
anism prevents the evolution of reproductive isolation
once disruptive selection is present (Kondrashov &
Mina, 1986; Johnson & Gullberg, 1998).

Theoretical development

Modeling approach and method of analysis

I take a very simple game-theoretic approach. In par-
ticular, I consider competition for resources among
individuals of a single species and I determine the con-
ditions that must be satisfied for there to be a single,
evolutionarily stable resource exploitation strategy
(i.e., an ESS). This analysis is used for two pur-
poses. First, it is used to determine how such ESS’s
are affected by the genetic structuring of the popula-
tion which is inherent in the model (to be described
shortly). The answer to this question provides some
insight into how such population structure can af-
fect the direction of evolution of a single species in
which there is competition for resources. Second, the
analysis is used to determine how the conditions ne-
cessary for there to be an ESS with a single type of
consumer, are affected by this population structure.
The answer to this second question is important be-
cause when an ESS with a single type of consumer
does not exist, we then expect that the competition
for resources within the species results in disruptive
selection, favouring an evolutionary diversification of
strategies. It is under such conditions that phenomena
like character divergence and speciation might occur
(Johnson & Gullberg, 1998).

To derive conditions that characterize an ESS we
first need to formulate an expression for the fitness of
an adult with a rare mutant phenotype, x, in a pop-
ulation with resident phenotype, ŷ (Taylor & Frank,
1996) (which I denote by W

(
x, ŷ

)
). Given this fit-

ness function, an ESS is then a strategy which is
uninvadible by all alternative strategies (i.e., all altern-
ative strategies have a lower fitness). If y∗ is an ESS,
then mathematically this requires that W(x, y∗) ≤
W(y∗, y∗) for all x �= y∗. This is a global condition

stating that W must be maximized in x at x = y∗
when the predominate population strategy is y∗. It is
usually much easier, however, to restrict attention to
local ESS’s by working with the corresponding local
conditions,

∂W

∂x

∣∣∣∣
x=ŷ=y∗

= 0, (1)

∂2W

∂x2

∣∣∣∣
x=ŷ=y∗

< 0. (2)

Condition (1) will be referred to as the equilibrium
condition since when it holds, directional selection
ceases (∂W/∂x|x=ŷ=y∗ is a measure of the strength of
directional selection). Strategies that satisfy (1) have
also been termed ‘evolutionarily singular strategies’
by some authors (Geritz et al., 1998) since they are not
necessarily ESS’s. To be an ESS, y∗ must also satisfy
condition (2) (which guarantees that W is maximized
rather than minimized), and therefore I will refer to
this as the ESS condition. When the ESS condition
is not satisfied, then selection becomes disruptive at
these singular points, and we therefore expect some
form of evolutionary diversification. In asexual pop-
ulations this is always evolutionary branching, but in
sexual populations the kinds of evolutionary diversi-
fication that can occur are more varied (Christiansen,
1991; Abrams et al., 1993; Taylor & Day, 1997; Geritz
et al., 1998 and references therein).

Notice, however, that the above analysis is mean-
ingful only if directional selection near the evolution-
ary equilibrium actually drives the population towards
it since it is only such equilibria that the population
will experience. This means that we require directional
selection to be positive (favouring larger values of y)

when ŷ < y∗ and for it to be negative (favouring
smaller values of y) when y∗ < ŷ. This implies that
the derivative of ∂W(x, ŷ)/∂x

∣∣
x=ŷ

with respect to ŷ

is negative at ŷ = y∗ (Eshel, 1983; Taylor, 1989;
Christiansen, 1991); that is,

d

dŷ

{
∂W

∂x

∣∣∣∣
x=ŷ

}∣∣∣∣∣
ŷ=y∗

< 0. (3)

I will refer to condition (3) as the convergence stabil-
ity condition. Some authors (Geritz et al., 1998) have
termed values of y that satisfy conditions (1) and (3)
but that do not satisfy the ESS condition (2) ‘evolu-
tionary branching points’ since natural selection drives
the population towards these strategies, at which point
selection becomes disruptive, sometimes resulting in
phenomena like sympatric speciation.
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A model of resource competition

I consider a model of a haploid asexual organism in a
very large (effectively infinite) population, structured
into patches containing exactly N individuals each
(i.e., Wright’s island model of population structure).
It might seem paradoxical to construct a model that
purports to have implications for theories of speciation
by using an assumption of asexuality, but my goal here
is to explore how population structure affects the form
of selection that results from competition for resources
rather than to explore speciation itself. An assumption
of asexuality is well suited to this goal since (provid-
ing their is ample genetic variation as I assume below)
the long-term course of evolution is then largely de-
termined by selection. It is quite conceivable that the
quantitative details of the results presented below will
be altered for a diploid, sexual organism, since restric-
ted movement of individuals (i.e., partial dispersal in
an island model) causes genetic structuring of the pop-
ulation, and the exact nature of this structuring may
depend on the genetic system under consideration.
Nevertheless, the qualitative nature of this structur-
ing should be similar across different genetic systems,
and the main objective here is to qualitatively explore
how this genetic structuring interacts with the eco-
logical phenomenon of competition for resources to
determine the form of selection, and thus the potential
outcome of evolution.

The life cycle of the organism occurs as follows.
Each generation the N adults compete for resources
locally within each patch, and each adult produces
a large number of offspring in accordance with its
competitive ability (the precise form of competition
will be described shortly). All patches are assumed
to contain an identical resource distribution in the ab-
sence of any consumers. Following reproduction, a
proportion, d, of the offspring disperse globally, and
each survives dispersal with probability 1 − c (c is the
cost of dispersal). The surviving dispersers then settle
at random on some patch in the population. The re-
maining proportion, 1 − d, of offspring stay on their
natal patch. All adults survive to the next year with
probability s, in which case they retain their spot on
the patch with certainty. There is then a process of
genotype-independent culling in which the population
size on each patch is reduced back to N. In this pro-
cess, the probability of any individual obtaining one
of the newly vacated spots is inversely proportional to
the number of individuals competing for that spot. The
life cycle then begins anew.

Within each patch there is a distribution of re-
sources that can be indexed along a one-dimensional
continuous axis, with all patches having the same
distribution. For example, resources might be charac-
terized by their size. The abundance of resources of
type z in each patch is denoted by K(z), and following
much previous work on evolution under resource com-
petition (e.g., Slatkin, 1980; Rummel & Roughgarden,
1985; Brown & Vincent, 1987; Taper & Case, 1992;
Vincent et al., 1993; Doebeli, 1996; Day, 2000 and
references therein), a Gaussian form for K(z) is used

K(z) = κ exp

{
− z2

2σ 2
k

}
. (4)

This formulation assumes that the resource axis has
been scaled so that the type of resource with the
greatest abundance is labelled 0. The parameter κ spe-
cifies the abundance of this type 0 resource, and σk

specifies how quickly the abundance of resources de-
clines as we consider types further away from type 0.

Note that the resources do not move between patches.
Competition for resources is exploitative, and each

individual’s ability at consuming resources of type
z is determined by a quantitative character. In par-
ticular, I suppose that this character maps directly
on to the resource axis such that an individual with
phenotype x specializes at (i.e., is best at) consuming
resources of type x (I will use ‘phenotype’ and ‘geno-
type’ interchangeably). Two individuals with different
phenotypes, x and y, nevertheless have some overlap
in their resource consumption, and thus they compete
with one another for resources. This competition is
stronger the more similar are their phenotypes, and it
decays to zero as the phenotypes become very differ-
ent. This form of competition, along with the above
specification of the resource distribution, results in
two qualitative selective pressures on the evolution
of resource exploitation strategies. First, selection is
stabilizing, favouring strategies that are close to 0 be-
cause they benefit from a high resource abundance.
Second, there is also a disruptive aspect of selection
favouring individuals that are ‘different’ because they
experience less competition. These two forms of se-
lection that arise from competition for resources are
present in all models related to Rosenzweig’s notion
of competitive speciation (Rosenzweig, 1978).

To model these two forms of selection, I use
the following expression for, φ, the number of off-
spring produced by an individual with phenotype x,

when in a patch where the remaining individuals have
phenotypes y1, . . . , yN−1
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φ(x; y1, . . . , yN−1)

= K(x)
α(x, x)

α(x, x) + α(x, y1) + · · · + α(x, yN−1)

(5)

= K(x)
1

1 + ∑N−1
i=1 α(x, yi)

. (6)

This form is similar to a model of exploitative compet-
ition presented by Schoener (1976). Here the function,
α(x, y), gives the competitive effect of a y-individual
on an x-individual (as felt by an x-individual), and
it is analogous to the competition coefficients of the
Lotka–Volterra competition equations. I assume that
α(x, x) = 1, and that α decays to zero as the two
phenotypes become sufficiently different. Notice that
if all individuals have the same phenotype, x, then
each has offspring production K(x)/N, which can
be interpreted roughly as though each individual gets
a competitive share, 1/N, of the type x resources
available. If some of the competitors have a different
phenotype, however, then an individual with pheno-
type x gets a greater than 1/N competitive share of
the type x resources. Moreover, if all the remaining
N −1 competitors have phenotypes sufficiently differ-
ent from x (so that α(x, yi) ≈ 0 for i = 1, . . . , N − 1)

then the x-individual gets essentially all of the re-
sources of type x. Importantly, this form for φ also
results in the same predictions as infinite population
size models based on the Lotka–Volterra equations as
N → ∞ as will be detailed shortly. Consequently,
the results obtained here are directly comparable with
earlier results. An important difference between these
earlier models and the form of (6), however, is that
here a single individual has a non-negligible effect on
resource availability within its patch.

I assume that the competition coefficients used in
(6) all have a general, exponential form that allows for
competitive asymmetry;

α(x, y) = exp

{
β2

2

}
exp

{
− (x − y + σαβ)2

2σ 2
α

}
(7)

(Kisdi, 1999). Notice that α(x, x) = 1 for all x. To
get a better feel for this expression, first consider the
case whereby β = 0. The parameter σα in (7) governs
that rate at which α decreases as the phenotypes be-
comes more different. A large value of σα means that α
decreases slowly with increasing phenotypic distance,
and α(x, y) gets smaller than unity as y becomes
more different from x. Now the parameter β (which

is non-negative) allows for the possibility of compet-
itive asymmetry. If β > 0, then individuals with large
phenotypic values have a competitive advantage over
those with small values, and the larger the value of β,

the greater is this advantage. This means that α(x, y)

will then be greater than unity if y is slightly greater
than x, and less than unity if the reverse holds. And as
the phenotypic distance becomes very large in either
direction, α eventually decreases back to zero.

The fitness function

With the above definitions I now formulate an ex-
pression for the fitness of a rare mutant adult with
phenotype x, in a population where the predomin-
ate phenotype is ŷ. Fitness here is measured as the
expected total number of offspring produced that,
themselves, go on to become reproductively active
adults. First suppose that a mutant finds itself in a
patch where the remaining individuals have pheno-
types y1, . . . , yN−1. It is necessary to keep track of all
of the phenotypes of the individuals in the patch be-
cause, even though I will suppose that the mutant type
is rare, more than one individual in the patch might
be a mutant due to restricted dispersal. The mutant’s
fitness, G(x; y1, . . . , yN−1; ŷ), is given by

G(x; y1, . . . , yN−1; ŷ)

= φ(x; y1, . . . , yN−1){
d(1 − c)N(1 − s)

(1 − cd)φ(ŷ; ŷ, . . . , ŷ)N
+

+ (1 − d)N(1 − s)

(1 − d)φ̄N + d(1 − c)φ(ŷ; ŷ, . . . , ŷ)N

}
+ s

(8)

= (1 − s)φ(x; y1, . . . , yN−1){
d(1 − c)

(1 − cd)φ(ŷ; ŷ, . . . , ŷ)
+

+ (1 − d)

(1 − d)φ̄ + d(1 − c)φ(ŷ; ŷ, . . . , ŷ)

}
+ s,

(9)

where

φ̄ = 1

N
φ(x; y1, . . . , yN−1) +

+ 1

N
φ(y1; x, . . . , yN−1) + · · · +

+ 1

N
φ(yN−1; y1, . . . , x) (10)

is the average number of offspring produced by an in-
dividual in the patch containing the mutant. The two



76

terms in the braces of (8) represent the two different
fates of the offspring produced. A proportion d(1 − c)

disperse (and survive dispersal), and because the pop-
ulation size is very large and the mutant is rare, these
will land on patches where all other individuals, both
native and immigrant, have phenotype ŷ. Summing
these two sources of wild type individuals gives a total
of (1−d)φ(ŷ; ŷ, . . . , ŷ)N +d(1−c)φ(ŷ; ŷ, . . . , ŷ)N

or simply (1 − cd)φ(ŷ; ŷ, . . . , ŷ)N. Therefore, each
(surviving) dispersing mutant offspring has a 1/(1 −
cd)φ(ŷ; ŷ, . . . , ŷ)N chance of surviving culling to
become an adult. Because all adults have a large num-
ber of offspring, this is true for all the N(1 − s)

spots that become available in that generation, and this
gives the first term of (8). Now a proportion 1 − d

of the mutant’s offspring remain on their natal site,
and the total expected number of juveniles on this
patch after dispersal, from native and immigrant in-
dividuals, is (1 − d)φ̄N + d(1 − c)φ(ŷ; ŷ, . . . , ŷ)N.

Thus, each non-dispersing mutant offspring has a
1/

[
(1 − d)φ̄ + d(1 − c)φ(ŷ; ŷ, . . . , ŷ)

]
N chance of

surviving culling to become an adult, and again this is
true for all the N(1 − s) spots that become available
that generation, giving the second term of (8). The
third term, s, is simply the probability that the mutant
adult will survive to the following year.

Expression (9) is the expected fitness of a mutant
given it finds itself on a patch where the remain-
ing individuals have phenotypes y1, . . . , yN−1. To
obtain the final fitness function, W(x, ŷ), we then
need to take the expectation of this expression over
all possible types of patches in which the mutants
are found. To obtain a simple expression for W,

I make the simplifying assumption that selection is
weak, so that the distribution of mutants on patches
throughout the population reaches a statistical equi-
librium while the mutant is still rare. In particular,
I assume that the mutant allele is neutral (and rare)
to calculate this equilibrium (which represents a bal-
ance between drift and dispersal within each patch).
This means that, although virtually no patches contain
mutants (because they are rare), wherever a mutant
is found, there will often be many due to limited
dispersal. It is this distribution that is used to cal-
culate the expression for W

(
x, ŷ

)
. This type of as-

sumption is implicit in many inclusive fitness models.
Appendix A shows that the assumption of neutral-
ity is valid for weak selection (i.e., to first order in
the mutant deviation), and simulation results for the
present model suggest that this simplification is quite
reasonable.

Results

Before detailing the results of the present model, I first
present analogous results for a model with an infinite,
well-mixed population based on the Lotka–Volterra
equations for comparison (I will refer to this as the LV
model). The results are based on a model described
by Doebeli and Dieckmann (2000) (see also Dieck-
mann & Doebeli, 1999) but use (7) as the competition
coefficient instead of

α(x, y) = exp

{
σ 2

αβ2

2

}
exp

{
− (x − y + σ 2

αβ)2

2σ 2
α

}
,

as used by Doebeli and Dieckmann (2000). Results
are qualitatively similar in either case (see Rummel
& Roughgarden, 1985; Taper & Case, 1992; Vincent
et al., 1993, & Law et al., 1997 for other forms for α).

Condition (1) for this LV model yields

y∗ = σ 2
K

σα

β (11)

as the candidate ESS, and this value of y∗ is eas-
ily shown to always satisfy the convergence stability
condition (3). The ESS condition (2) for this model
yields

σ 2
K < σ 2

α (12)

as the inequality that must be satisfied for y∗ given in
(11) to be an ESS (Roughgarden, 1976, 1983; Brown
& Vincent, 1987; Vincent et al., 1993).

These results have interesting, and intuitive ex-
planations. First it is clear that when a single evol-
utionarily stable resource exploitation strategy, y∗,
exists (i.e., when (12) holds) it is located at the peak of
the resource distribution, K, if competition is symmet-
ric (i.e., β = 0). In other words, all individuals special-
ize on the most abundant resource. Under competitive
asymmetry (β > 0) however, at the ESS, individuals
do not specialize on resources that are most abund-
ant. Rather, they have a phenotype that is larger than
this because large trait values outcompete small trait
values. In other words, despite the fact that a mutant
individual with a slightly smaller phenotype would
benefit from an increased resource abundance at the
ESS, it would suffer greatly from competition with
the remaining, larger individuals. The ESS value of
y∗ given in (11) is the phenotype at which these costs
and benefits exactly balance.

Also of primary interest is when condition (12)
does not hold. In this case, natural selection will still
drive the population towards phenotype y∗, but once
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the population is there, selection will become disrupt-
ive. This occurs because, when σ 2

K > σ 2
α , the resource

distribution is very broad and/or the strength of com-
petition is very high. Thus, selection to ‘be different’ is
very strong so as to avoid the intense competition. Be-
cause the resource distribution is quite broad, little is
lost in terms of resource abundance by deviating from
y∗ slightly. Interestingly, notice that the condition un-
der which we expect such evolutionary diversification
to occur (i.e., σ 2

K > σ 2
α ) is independent of the degree

of symmetry of competition, β.

General findings

All examples of potential ESS’s that were found in the
present model appear to satisfy the convergence sta-
bility condition (3) based on simulation results. These
candidate ESS values of y must satisfy condition (1),
and Appendix A demonstrates that this is equivalent to
satisfying the condition,[

∂G

∂x
+ ∂G

∂y
(Nr̄ − 1)

]
x=yi=ŷ=y∗

= 0. (13)

Here r̄ is the genetic relatedness of two randomly
chosen patchmates with replacement (Michod &
Hamilton, 1980), and ∂G/dy is defined as ∂G/dyi

for any i (notice that the derivative of G with respect
to yi is the same for all i because all yi individuals
play the same role). The constant, r̄ can also be inter-
preted as the expected fraction of individuals in a patch
that are mutant as seen by a randomly chosen mutant
individual. Therefore, using (9) in (13) gives

∂G

∂x
+ ∂G

∂y
(Nr̄ − 1)

∝ ∂φ

∂x
+ ∂φ̄

∂y

{
Nr̄

1 − k2

1 − r̄k2 − 1

}
, (14)

where k = (1−d)/(1−cd) is the probability that a ran-
domly chosen individual is native to that patch from
the previous generation. Now using (6) in (14) and
setting the resulting expression equal to zero, gives the
(candidate) ESS resource exploitation phenotype to be

y∗ = σ 2
k

σα

β{1 − r̄ξ}, (15)

which is expressed in terms of the relatedness para-
meter, r̄ , and the constant,

ξ =
(
1 − k2

) (
N − k2(N − 1) 2s−ks+k

k(1+s)

)
N − k2(N − 1) 2s−ks+k

k(1+s)
− k2

(compare this with the LV model result, [11]). Ap-
pendix B (see also Pen, 2000; Taylor & Irwin, 2000)
shows that

r̄ = 1

N − k2(N − 1) 2s−ks+k
k(1+s)

. (16)

Once the population has evolved to this candidate ESS,
selection can then become either stabilizing or dis-
ruptive depending upon condition (2). If selection is
disruptive we then expect some type of evolutionary
diversification of resource exploitation strategies to
occur.

A consideration of the form of (15), reveals some
interesting general properties. First, if β = 0 (no com-
petitive asymmetry) then y∗ = 0, which reveals that
neither interaction group size nor genetic structuring
have any effect on the location of the candidate ESS. If
there is competitive asymmetry (i.e., β �= 0), however,
then we can see from (15) that both factors can have
an effect on the location of y∗. Unfortunately a general
expression for condition (2) was not obtained, but as
will be seen below, both interaction groups size and
population viscosity affect whether selection is sta-
bilizing or disruptive at y∗ = 0 regardless of whether
competition is asymmetric or not. Some special cases
help to illustrate these phenomena.

Some special cases

Well-mixed populations
Suppose that all individuals disperse every generation
(d = 1), that there is no cost of dispersal (c = 0), and
that there is no adult survival (s = 0). Interactions
still take place within finite-sized groups, but there is
no genetic structuring of the population. In this case
conditions (15) and (2) yield

y∗ = σ 2
k

σα

β

(
1 − 1

N

)
(17)

and(
1 − 1

N

) (
1 − β2

N

)
σ 2

K < σ 2
α . (18)

These results reveal several interesting effects of hav-
ing finite-sized interaction groups. First, (17) shows
that the predicted value of y∗ converges to that
of the LV model as N → ∞ (as it should). It
also reveals that (under asymmetric competition) the
value of y∗ decreases as the size of the interac-
tion group gets smaller, and it is zero when N = 1
(Figure 1). This is intuitively reasonable since when
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Figure 1. A plot of the ratio of y∗ (i.e., the ESS) from the present model to that from the LV (i.e., the well-mixed, infinite population size
Lotka–Volterra model) model. In other words, this is Equation (17) divided by Equation (11). The value of y∗ from the LV model is denoted
y∗(LV). y∗ from the present model is always smaller than that from the LV model, but they become more similar as the size of the interaction
group, N, gets large.

N = 1 there is no competition and therefore nat-
ural selection should push the population towards a
strategy that specializes on the most abundant re-
source. Figure 2 presents some simulation results in
this setting (Appendix C provides details of the simu-
lation).

The condition determining the form of selection
that occurs at y∗ also has interesting properties. If
inequality (18) is satisfied, then selection will be sta-
bilizing whereas if the reverse inequality holds, then
we expect evolutionary diversification. Notice that,
again as N → ∞, this converges on the LV model res-
ult (12), but it differs (sometimes substantially) from
this condition for any finite-sized interaction group.
In the most extreme case, with groups of size N = 1,
inequality (18) is always satisfied and selection will
never be disruptive. Again this is intuitively reason-
able since there is never anything for an individual
to gain by deviating from using the most abundant
resource. If N > 1 then there is some benefit of re-
duced competition that results from being different,
but this benefit can be quite small for small N , since
competition occurs among very few individuals. This
thereby makes disruptive selection much less likely
(Figure 3). Inequality (18) also shows that compet-
itive asymmetry (β > 0) makes disruptive selection
less likely as well (whereas it has no effect in the
LV model; condition [12]). Simulation results also
confirm this idea that finite-sized interaction groups

make disruptive selection less common (Appendix C;
Figure 4).

Population viscosity with no adult survival
Partial dispersal (d < 1, c > 0) will generate some de-
gree of genetic structuring in the population, and it is
of interest to examine the effect that this has on the
location of y∗ as well as on the likelihood of disruptive
selection, both in the absence and in the presence of
adult survival. In this case, again it is easy to obtain
an analytical expression for y∗, but condition (2) can
be extremely tedious to evaluate for deme sizes larger
than 2. In the interest of clarity and ease of understand-
ing, I present only the N = 2 case since the exact same
phenomenon that occurs in this case will also occur
for N > 2. Also, competitive asymmetry complicates
the calculations, without altering the phenomenon to
be described, and therefore I assume that β = 0 when
calculating condition (2).

Interestingly, with no adult survival (s = 0), y∗ is
given by the exact same formula as above (i.e., [17]).
This implies that the genetic structuring that results
from partial dispersal has no effect on the location of
y∗ if there is no adult survival. This is an example of
a well-known result from models for the evolution of
altruism (Taylor, 1992; Wilson et al., 1992). Popu-
lation viscosity (low dispersal) increases relatedness
between interacting individuals, and one might ex-
pect this to increase the evolution of altruism (altruism
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Figure 2. Simulation results demonstrating that the value of y∗ is convergence stable. Each plot is the mean value of 5 separate runs of the
simulation described in Appendix C. One of these plots is for 5 runs that begin above y∗ and the other is for 5 runs that begin below y∗.
The horizontal axis is the number of invasion attempts (i.e., the number of new mutants that have arisen and attempted to displace the resident
strategy) from 0 to 500. The horizontal line in the figures is the analytical prediction for y∗. (a) Parameter values are d = 1, c = 0, s = 0, β = 1,
N = 2, σK = 1, σα = 1, κ = 1000 where d is the dispersal rate, c is the cost of dispersal, and β is the competitive asymmetry parameter.
The number of patches is 100. (b) Parameter values are d = 1, c = 0, s = 0, β = 1, N = 5, σK = 1, σα = 1, κ = 1000 and the number of
patches is 100.

here, under competitive asymmetry, can be interpreted
as a smaller phenotype). This is not necessarily the
case, however, because this same viscosity guarantees
that the extra offspring produced from altruistic beha-
viour will be competing with other related individuals
due to their limited dispersal. These effects exactly
cancel one another leaving y∗ unaltered by population
viscosity. This can also be understood from the general

expression (15) for y∗. Population viscosity increases
relatedness, r̄ , but it decreases the factor ξ , and these
two effects cancel provided that s = 0.

The ESS condition (2) for the case N = 2 and β = 0
yields the condition (Appendix D)

(1 − c) d ((1 − d) + (1 − cd))

2 (1 − cd)2
σ 2

K < σ 2
α . (19)
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Figure 3. Plots of the threshold values of σ 2
α/σ 2

K below which selection is disruptive (and consequently we expect some form of evolutionary
diversification) against interaction group size, N . Solid, horizontal line at 1 is for the LV (i.e., Lotka–Volterra) model for comparison (which is
independent of N ). Dashed line is for competitive symmetry (i.e., β = 0) and dotted line is for β = 1.

Figure 4. A plot of simulation results that examine whether selection is stabilizing or disruptive at y∗ = 0. Mutant strategies that deviate
different amounts from 0 in absolute value are plotted on the horizontal axis. Vertical axis is the probability of the mutant frequency hitting
(or passing) a frequency twice as great as its initial frequency prior to hitting zero (as described in Appendix C), and is thus a measure of
the selective advantage of the mutant. The value at y = 0 is the neutral probability, and anything above this is selectively favoured whereas
anything below is selectively disadvantageous. The five plots are for different values of σk. Error bars are ±2 S.E. Remaining parameter
values are: d = 1, c = 0, s = 0, β = 0, N = 2, σK = 1, σα = 1, κ = 1000 where d is the dispersal rate, c is the cost of dispersal,
and s is the probability of adult survival from year to year. The number of patches is 100. For these parameter values, condition (18)

predicts that selection changes from stabilizing to disruptive as σK increases past
√

2 ≈ 1.41 which matches the simulation results quite
well. Note that the threshold value of σK for the infinite, well-mixed population for these parameter values is σK = 1 (from condition
[12]).
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Figure 5. Simulation results demonstrating that the value of y∗ is convergence stable. Each plot is the mean value of 5 separate runs of the
simulation described in Appendix C. One of these plots is for 5 runs that begin above y∗ and the other is for 5 runs that begin below y∗. The ho-
rizontal axis is the number of invasion attempts (i.e., the number of new mutants that have arisen and attempted to displace the resident strategy)
from 0 to 500. The horizontal line in the figures is the analytical prediction for y∗. (a) Parameter values are d = 0.4, c = 0.4, s = 0.75, β = 1,

N = 2, σK = 1, σα = 1, κ = 1000 where d is the dispersal rate, c is the cost of dispersal, s is the probability of adult survival, and β is
the competitive asymmetry parameter. The number of patches is 100. (b) Parameter values are d = 0.4, c = 0.4, s = 0.85, β = 1, N = 5,

σK = 1, σα = 1, κ = 1000 and the number of patches is 100.

As expected from (18), this reduces to 1
2σ 2

K < σ 2
α

when the population is well-mixed (i.e., when d =
1, c = 0). Condition (19) illustrates that disruptive
selection becomes even less likely as population vis-
cosity increases because this condition is more likely
to be satisfied. To better see this, consider the case
where the cost of dispersal, c, is zero. Condition (19)
then becomes

d(2 − d)

2
σ 2

K < σ 2
α . (20)

The left-hand side of this inequality decreases to 0 as d

decreases to zero, and therefore, when dispersal is very
limited, selection will almost invariably be stabilizing,
thereby preventing evolutionary diversification. Stated
another way, for any set of parameter values for σK

and σα , it is possible to choose a dispersal rate low
enough to prevent evolutionary diversification.

The reason why genetic structuring can prevent
evolutionary diversification is that, when dispersal is
limited, most competitors will be genetically very
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Figure 6. A plot of simulation results that examine whether selection is stabilizing or disruptive at y∗ = 0. Mutant strategies that deviate
different amounts from 0 in absolute value are plotted on the horizontal axis. Vertical axis is the probability of the mutant frequency hitting
(or passing) a frequency twice as great as its initial frequency prior to hitting zero (as described in Appendix C), and is thus a measure of
the selective advantage of the mutant. The value at y = 0 is the neutral probability, and anything above this is selectively favoured whereas
anything below is selectively disadvantageous. The four plots are for different values of σk. Error bars are ±2 S.E. Remaining parameter values
are: d = 0.4, c = 0.4, s = 0.75, β = 0, N = 2, σK = 1, σα = 1, κ = 1000 where d is the dispersal rate, c is the cost of dispersal, and s is
the probability of adult survival from year to year. The number of patches is 100. For these parameter values, the complete version of condition
(22) (not shown) predicts that selection changes from stabilizing to disruptive as σK increases past approximately 2.28, which matches the
simulation results reasonably well.

similar. That means that the benefit that a mutant type
gains from being different (which is a reduction is
competition) will very seldom be realized because lim-
ited dispersal causes the mutant’s competitors to be
mutants as well. This means that the cost to being
different (which is a reduced abundance of resources)
must be extremely small in order for evolutionary di-
versification to occur. This will be true only when the
resource distribution, K , is extremely broad, mean-
ing that σK must be extremely large. This inhibition
of diversification that arises from competition among
relatives will occur if N > 2, as well as if β �= 0.

Population viscosity with adult survival
If there is some adult survival, then both the expression
for y∗, as well as the ESS condition (2) are altered by
population viscosity. The candidate ESS is then given
by

y∗ = σ 2
k

σα

β
N − 1

N + ζ
, (21)

where ζ = k2(1 − η)/(1 − k2η), and η = (2s − ks

+ k)/k(1 + s). The constant ζ , although somewhat
complicated, increases as dispersal rates go down,
costs of dispersal go up, or adult survival rates go
up. That implies that population viscosity selects for
lower phenotypic values under more restricted dis-

persal if competition is asymmetric (Figure 5). Again
this has a clear analogue in the altruism literature.
It has been noted that overlapping generations in
combination with population viscosity can select for
greater altruism (Taylor & Irwin, 2000), which is
analogous to smaller phenotypes under asymmetric
competition. The reason is that the benefit gained by
a mutant with a larger phenotype (which is reduced
competition as well as the ability to outcompete smal-
ler phenotypes) is reduced in this setting. Such larger
mutants will tend to compete with genetically sim-
ilar, and therefore large, mutants due to the population
viscosity.

The ESS condition in this setting for symmetric
competition and a patch size of 2 is quite complicated,
but it can be simplified considerably in the case where
there is no cost to dispersal;

2 − d + ds

2 − d + s

d (2 − d)

2
σ 2

K < σ 2
α . (22)

Again, this expression demonstrates that population
viscosity has the same, inhibiting effects on evolu-
tionary diversification here as it does when there is
no adult survival (also see Figure 6). Moreover, as
s increases, the left-hand size of (22) becomes even
smaller for any given dispersal rate, making evolu-
tionary diversification even less likely. The reason of
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course, is that increasing adult survival increases the
genetic similarity among competing individuals.

Discussion

Recent models have demonstrated that Rosenzweig’s
(1978) idea of competition speciation (and related
phenomena) can, in theory, be a potent force driv-
ing evolutionary diversification (Doebeli, 1996; Law
et al., 1997; Dieckmann & Doebeli, 1999; Kisdi,
1999; Doebeli & Dieckmann, 2000). So much so
that one might be lead to feel that speciation occurs
too easily in some of these models (Bridle & Jiggins,
2000). This echoes Felsenstein’s (1981) feelings when
he considered Hutchinson’s ecological arguments for
the determinants of current species numbers, and
Felsenstein (1981) suggested that genetic constraints
can hinder the process of speciation. Here I have
demonstrated that an interaction between ecological
aspects of competition for resources and the genetic
structuring that results from finite interaction groups
and population viscosity, can inhibit the occurrence
of disruptive selection on which many recent mod-
els of sympatric speciation depend. This provides an
additional factor limiting the occurrence of such evol-
utionary diversification in the absence of geographic
isolation. Notice that the effect described here is one
in which the occurrence of disruptive selection is in-
hibited, whereas Felsenstein’s was one that inhibited
the evolution of reproductive isolation once disruptive
selection was in place.

The present study also found that finite interac-
tion groups and population viscosity often select for
less extreme competitive strategies when competition
is asymmetric. This has a natural analogue in the liter-
ature on the evolution of altruism. Population structure
increases the genetic relatedness between competit-
ors, and this can select for increased altruism (less
competitive strategies here). As with these inclusive
fitness studies, this phenomenon seems to occur, only
when there is some degree of adult survival. This
causes overlapping generations and it increases the ge-
netic relatedness among competitors (Taylor & Irwin,
2000).

Some of my finding are also closely related to a
model of interspecific resource partitioning by Pacala
(1988). Pacala modeled a community of sedentary in-
dividuals which compete for resources in spatially loc-
alized areas. He found that, as the resource use by each
individual became more and more local, the extent

of resource partitioning that occurred among species
decreased to zero. This is analogous to the present
result in which, as patch size decreases, the likelihood
of disruptive selection decreases. Moreover, disruptive
selection never occurs once patch size equals 1. As
with Pacala’s result, this occurs in the present study
because competition for resources diminishes as the
number of competitors decreases, and there is no com-
petition once resource use is completely local (N = 1
here).

The model presented here was chosen with an eye
towards analytical tractability so that the phenomena
of finite groups and genetic structuring could be under-
stood relatively easily. As such it is not intended to be
a completely faithful depiction of any particular bio-
logical organism. Nevertheless, it seems reasonable to
expect that the phenomena described here will occur in
more complex, realistic scenarios as well. Limited dis-
persal (whatever its form) should often result in com-
petition between genetically similar individuals, and
this should thereby reduce the evolutionary advantage
of being different, which reduces the likelihood of
disruptive selection. Being different is advantageous
under competition because it allows an individual to
escape competition. If one’s competitors are always
genetically similar to oneself, however, then being
different is rarely possible. Mutant individuals with al-
ternative resource exploitation strategies will compete
predominately with other mutant individuals that have
the exact same strategy because of limited dispersal.
This enhances stabilizing selection for a strategy that
specializes on the most abundant resource, and in
general it should inhibit evolutionary diversification
and thereby inhibit competitive speciation as well. It
should be noted, however, that the importance of this
effect for any particular biological system will de-
pend upon at least two important factors, the size of
the interaction groups, and the rate of dispersal. Lar-
ger interaction groups will require a smaller dispersal
rate for the effects discussed here to play a significant
role.

Finally, I close by mentioning an interesting caveat
and possible extension. The results presented here as-
sume that all patches are identical, and they make
the prediction that the spatial structuring that accom-
panies reduced dispersal will reduce the likelihood of
disruptive selection. If there was variation is patch
type, then it seems likely that this would introduce
an interesting effect that works in opposition to the
effects detailed here. Previous results for two-patch
models in which the patches contain different suites
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of resources have shown that low dispersal between
patches makes disruptive selection occur more readily
(Brown & Pavlovic, 1992; Day, 2000). An important
difference between the present results and this earlier
work, however, is that competition occurs among a
finite number of individuals here, whereas the patches
in this previous work were effectively infinite. It would
be very interesting to extend the present results by al-
lowing for different patch types to examine how both
of these factors play out in determining the form of
selection.
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Appendix A

The derivation here follows that of Day and Taylor
(1998). Consider a patch-structured population in
which there are N individuals per patch, and every
individual plays the same role. Suppose that the fit-
ness of an individual using the (mutant) strategy x in a
patch where the remaining N −1 individuals are using
strategies y1, y2, . . . , yN−1 is given by the function
G(x; y1, . . . , yN−1; ŷ). Then if ρk is the probability
that a mutant individual finds itself in a patch with a
total of k mutants, the expected fitness of this mutant
allele is given by

W(x; y1, . . . , yN−1)

=
N∑

k=1

ρkG(x; x, x, . . . , ŷN−1; ŷ). (A.1)

Here, x appears k times after the semicolon because
that gives the fitness of a mutant given it is found in
a population with a total of k mutants. Recall that all
individuals play the same role and so all that matters
in determining fitness is the total number of mutants,
not which particular individuals are mutant and which
are not. Because of this, all of the partial derivatives,
∂G/∂yi are identical and I will simply denote them

by ∂G/∂y. Now if y∗ is an ESS, then (A.1) must be
maximized in x at x = y∗ when y∗ is substituted for
all the yi . The first order condition for this is that the
first derivative with respect to x be zero at this point.
This derivative is given as

∂W

∂x

∣∣∣∣
x=yi=y∗

=
N∑

k=1

dρk

dx
G +

+
N∑

k=1

ρk

(
∂G

∂x
+ (k − 1)

∂G

∂y

)

(A.2)

= ∂G

∂x
+ ∂G

∂y

N∑
k=1

ρk(k − 1) (A.3)

= ∂G

∂x
+ ∂G

∂y
(Nr̄ − 1) , (A.4)

where r̄ = ∑
k ρk(k/N) is the relatedness of two

randomly chosen patch members with replacement
(Michod & Hamilton, 1980; Day & Taylor, 1998). All
the derivatives above are evaluated at x = yi = y∗,
and expression (A.2) must equal zero. The derivatives
dρk/dx in the above expression reflect the fact that
the distribution, ρk, will change with changes in the
mutant strategy, x, but the first summation term in
(A.2) is zero when evaluated at x = yi = y∗ be-
cause it simplifies to G

∑N
k=1(dρk/dx). Because the

ρk sum to unity, the sum of their derivatives must
equal zero. Notice that the only place that the spatial
structuring of types enters into the final result (A.4) is
in the relatedness, r̄ , and that this is calculated under
the assumption that the population is monomorphic (or
equivalently, that the mutant allele is selectively neut-
ral). Thus, to first order in the mutant deviation, the
distribution of mutants in the population can be calcu-
lated by assuming that the mutant allele is selectively
neutral.

Appendix B

Here I calculate relatedness of two patch members
chosen randomly, with replacement (i.e., r̄) follow-
ing Pen (2000) and Taylor and Irwin (2000). Suppose
that r̄t is the relatedness in generation t . Then the re-
latedness in generation t + 1 is given by the recursion

r̄t+1 = 1

N
+

(
1 − 1

N

)
(s2rt + 2s(1 − s)kr̄t +

+ (1 − s)2k2r̄t ), (B.1)
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where rt is the relatedness of two different members
on the same patch in generation t, and is defined by
the relation r̄ = 1/N + r (1 − 1/N). With probability
1/N the same individual is chosen which gives the first
term, and with probability (1 − 1/N) a different indi-
vidual is chosen, giving the second term, which itself
is composed of three different pieces. First, with prob-
ability s2 both individuals are surviving adults from
the last generation, in which case their relatedness is
rt . With probability 2s(1 − s)k one of the individu-
als is a surviving adult and the other is a new adult
that arose from an offspring native to the patch from
the prior generation. With probability 1/N this off-
spring is from the surviving adult under consideration
(in which case relatedness is 1), and with probabil-
ity (1 − 1/N) it is not (in which case relatedness is
rt ). This gives a total of r̄t . Lastly, with probability
(1 − s)2k2 both individuals are new adults that arose
from offspring native to the patch from the last gen-
eration. The same considerations as those for the last
case give their relatedness to be r̄t , which completes
the above recursion. At equilibrium, r̄t = r̄t+1 = r̄ ,
and substituting this into the above recursion results in
an equation that can be solved for r̄ .

Appendix C

Simulations were carried out using Mathematica 4
(Wolfram research). Simulations were initialized by
setting up a population of demes of size N in which
most individuals were of a given phenotype except
for an initial, small number of mutants (usually with
frequency 0.005). The mutants were placed such that
there was never more than one mutant on any given
patch initially. Then the life cycle described earlier
was simulated by first generating offspring and then
calculating the proportion of mutant offspring there
were on each patch after dispersal. Each adult on each
site then either survived or died independently accord-
ing to the survival probability, s. Then there was fair
competition for the newly opened sites on each patch
(which amounts to Binomial sampling according to
the proportion of mutants on each patch), and the cycle
was then repeated. This procedure was continued until
either the mutant frequency dropped to zero, or it in-
creased to 1. At this point, a new mutant was generated
by altering the resident strategy by a small amount
(usually ± 0.1), and the entire invasion attempt sim-
ulation started again. This whole procedure continued
for a total of 500 potential invasions/replacement.

To use the simulations for calculating whether or
not there is disruptive selection at y∗, I needed to
obtain a measure of the selective advantage (or disad-
vantage) of a mutant type when rare. This was done
by starting the mutants at a frequency of 0.005 (as
above) and then calculating the probability that the
frequency hits (or passes) 0.01 before it hits 0 using
the results of several runs of the simulation. This was
carried out for different mutant values, y, when the
wild type (resident) strategy was at y∗. These values
can then be compared to the neutral probability ob-
tained by carrying out the exact same simulation but
with both strategies being set to y∗.

Appendix D

Here I evaluate condition (2) explicitly for the case
where N = 2 and β = 0. In this case, (A.1) simplifies
to

W(x; y) = ρ1G(x; ŷ) + ρ2G(x; x). (D.1)

The first derivative, (1), is given by

∂W

∂x
= dρ1

dx
G(x; ŷ) + ρ1

∂G

dx
+ dρ2

dx
G(x; x) +

+ ρ2

(
∂G

dx
+ ∂G

dy

)
(D.2)

prior to evaluating at x = yi = y∗. Then ESS condition
(2) is

∂2W

∂x2

∣∣∣∣
x=yi=y∗

= d2ρ1

dx2
G + 2

dρ1

dx

∂G

∂x
+ ρ1

∂2G

∂x2
+ d2ρ2

dx2
G +
(D.3)

+ 2
dρ2

dx

(
∂G

∂x
+ ∂G

∂y

)
+

+ ρ2

(
∂2G

∂x2 + 2
∂2G

∂x∂y
+ ∂2G

∂y2

)
(D.4)

= ∂2G

∂x2 + 2
dρ2

dx

∂G

∂y
+ ρ2

(
2

∂2G

∂x∂y
+ ∂2G

∂y2

)
.

(D.5)

The second equality above uses the fact that, because
ρ1 + ρ2 = 1, we have dρ1/dx + dρ1/dx = 0 and
d2ρ1/dx2 + d2ρ1/dx2 = 0. Using the definition of G

given in the text, Equation (D.5) then evaluates to give
conditions (19) and (22) of the text.
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