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Abstract

Epigenetic inheritance is the transmission of nongenetic material such as gene expres-

sion levels, RNA and other biomolecules from parents to offspring. There is a growing

realization that such forms of inheritance can play an important role in evolution. Bac-

teria represent a prime example of epigenetic inheritance because a large array of cel-

lular components is transmitted to offspring, in addition to genetic material.

Interestingly, there is an extensive and growing empirical literature showing that many

bacteria can form ‘persister’ cells that are phenotypically resistant or tolerant to antibi-

otics, but most of these results are not interpreted within the context of epigenetic

inheritance. Instead, persister cells are usually viewed as a genetically encoded bet-

hedging strategy that has evolved in response to a fluctuating environment. Here I

show, using a relatively simple model, that many of these empirical findings can be

more simply understood as arising from a combination of epigenetic inheritance and

cellular noise. I therefore suggest that phenotypic drug tolerance in bacteria might rep-

resent one of the best-studied examples of evolution under epigenetic inheritance.
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Introduction

Modern evolutionary biology is founded on the Men-

delian genetic model of inheritance but there is a grow-

ing appreciation that this model is incomplete (Jablonka

et al. 1992; Jablonka & Lamb 1995; Richards 2006; Boss-

dorf et al. 2007; Youngson & Whitelaw 2008; Bondurian-

sky & Day 2009; Jablonka & Raz 2009; Szyf 2015). A

considerable body of empirical evidence now shows

that a wide spectrum of biological factors such as

methylation patterns, cytoplasmic components, nutri-

tional elements and other biomolecules are often inher-

ited alongside genetic material (Jablonka & Raz 2009;

Johannes et al. 2009; Heard & Martienssen 2014). Fur-

thermore, these nongenetic factors can have interesting

and important evolutionary consequences (Lachmann &

Jablonka 1996; Uller 2008; Jablonka & Raz 2009;

Danchin et al. 2011; Day & Bonduriansky 2011; Shea

et al. 2011; Bonduriansky et al. 2012).

Bacteria provide an excellent example of nongenetic

inheritance because, by being unicellular and generally

reproducing through binary fission, they transmit a

large array of cellular components from parents to off-

spring in addition to genetic material (Veening et al.

2008a; Satory et al. 2011; van der Woude 2011). There is

a growing realization that this nongenetic material can

cause genetically identical bacterial cells to differ from

one another in wide variety of important ways (Acker-

mann 2015), including their susceptibility to antibiotics.

Several examples of nongenetic antibiotic resistance

have been documented (Adam et al. 2008; El-Halfway &

Valvano 2012; Wakamoto et al. 2013; Calo et al. 2014;

Herman et al. 2014; Sanchez-Romero & Casadesus

2014), but the vast majority of research in this area has

focused on so-called persister cells (Keren et al. 2004a;

Lewis 2007, 2010a, b; Gefen & Balaban 2009; Wood et al.

2013; Helaine & Kugelberg 2014).
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When a population of bacteria is exposed to an

antibiotic there is typically a very rapid phase of cell

killing. This phase is then sometimes followed by a pla-

teau in population size, with the remaining small num-

ber of cells being largely unaffected by the drug (Keren

et al. 2004a; Dhar & McKinney 2007; Gefen & Balaban

2009; Lewis 2010a, b). These unaffected cells were first

described by Bigger (1944) who called them ‘persisters’.

Interestingly, when these persister cells are placed in

fresh, drug-free, media they replicate and re-establish a

population that is just as susceptible to the antibiotic as

was the original population (Bigger 1944; Keren et al.

2004a; Lewis 2010a, b). Thus, the ability to survive

antibiotics appears to be a transient, phenotypic, prop-

erty of some bacterial cells rather than a genetically

determined trait.

The phenomenon of persister cells has been the sub-

ject of extensive research, and this initial interpretation

of persister cells as being in an alternative phenotypic

state has been confirmed by detailed single-cell studies

in some species (Balaban et al. 2004; Gefen & Balaban

2009). It has been shown that persisters are nonreplicat-

ing (or slowly replicating) cells and that this dormancy

accounts for their reduced susceptibility to drugs (Shah

et al. 2006; Hu & Coates 2012; Wood et al. 2013). More-

over, normal cells can become persister cells stochasti-

cally, or in response to environmental triggers such as

resource stress or the presence of the antibiotics them-

selves (Balaban et al. 2004; Dorr et al. 2009; Lewis 2010a,

b; Balaban 2011; Vega et al. 2012; Cohen et al. 2013;

Johnson & Levin 2013; Helaine et al. 2014; Helaine &

Kugelberg 2014). And cells in this dormant state can

re-enter the active replication state (Balaban et al. 2004).

Thus, the persister cell state is a phenotypic

phenomenon.

Most of the research on persister cells is not

discussed or interpreted within the context of the grow-

ing work on nongenetic inheritance in evolutionary

biology. Instead, persister cells are usually viewed as a

form of nonheritable drug tolerance because persister

cells are not genetically distinct from normal cells, and

because they can readily revert to drug sensitivity.

Thus, persister cell formation is instead viewed as an

adaptive, genetically determined, bet-hedging strategy

that has evolved in response to fluctuating environmen-

tal conditions (Balaban et al. 2004; Kussell et al. 2005;

Kussell & Leibler 2005; Gefen & Balaban 2009; Lewis

2010a; Cohen et al. 2013). In effect, it is thought that

individuals are hard-wired to produce a small fraction

of phenotypically dormant offspring in case environ-

mental conditions become unfavourable.

Although it is now clear that the distinction between

normal and persister cells is nongenetic, this does not

imply that such drug tolerance is necessarily nonherita-

ble. As previous reviews have documented (Jablonka

et al. 1992; Richards 2006; Youngson & Whitelaw 2008;

Bonduriansky & Day 2009; Jablonka & Raz 2009; Heard

& Martienssen 2014), there are many instances of heri-

tability that are underlain by nongenetic mechanisms.

And as already mentioned, bacteria are a prime exam-

ple of this because virtually all of the cellular material,

in addition to genetic material, is transmitted from par-

ent to offspring (e.g. Veening et al. 2008b; Satory et al.

2011; van der Woude 2011). Thus, it might be expected

that nongenetic inheritance would be involved in at

least some aspects of the persister cell phenomenon

(Veening et al. 2008a; Casadesus & Low 2013; Motta

et al. 2015).

What can be gained from thinking about phenotypic

resistance and persister cells in the context of evolution

via nongenetic inheritance? Here, I use a model for the

inheritance of nongenetic material such as gene expres-

sion patterns or biochemical concentrations (collectively

referred to as epigenetic inheritance) to show that such

inheritance, coupled with cellular noise, can provide a

simple explanation for many of the observed properties

of persister cells. Thus, I suggest that phenotypic antibi-

otic tolerance and the persister cell phenomenon might

well represent one of the best-studied empirical exam-

ples of evolution via epigenetic inheritance.

The model

Unlike genetically based inheritance which involves the

transmission of discrete gene variants, many examples

of nongenetic inheritance are better described by a con-

tinuous variable. For instance, gene expression levels,

patterns of flux through a biochemical network or con-

centrations of RNA might all be inherited, and these

are all naturally described by continuous variables.

Likewise, some persister cell formation is thought to be

affected by the expression level or concentration of cer-

tain biomolecules like toxins or signalling molecules

[e.g. HipA toxin in Escherichia coli; Moyed & Bertrand

(1983); Korch et al. (2003); Gefen & Balaban (2009);

Lewis (2010a); Rotem et al. (2010); Vega et al. (2012);

Wood et al. (2013); Helaine & Kugelberg (2014)]. This

too might be transmitted from parent to offspring and

is best described by a continuous variable. Therefore, I

begin by developing a general equation for the evolu-

tion of such quantitative epigenetic traits.

I use x to denote the value of the quantitative trait

and, for ease of terminology, I will refer to it simply as

an individual’s ‘expression level’. I assume that the

expression level must lie between a and b and that it

can be passed from parent to offspring during repro-

duction with some fidelity (Veening et al. 2008a; Satory

et al. 2011; van der Woude 2011; Casadesus & Low
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2013; Motta et al. 2015). The function n(x, t) denotes the

density of individuals in the population with expression

level x at time t (i.e. n(x, t)Dx is the number of individu-

als with expression level between x and x + Dx).
Four main processes affect the density of individuals

having a given expression level: (i) faithful transmission

of expression level during reproduction, (ii) alteration

of the expression level between generations during the

process of reproduction, (iii) within-generation direc-

tional or deterministic change in expression level and

(iv) within-generation noise or unbiased random pertur-

bations in expression level.

Appendix I derives the following equation that

accounts for the dynamical consequences of the above

four processes:

where r(x, t) is the net per capita rate of reproduction

of individuals with expression level x at time t (i.e. r

(x, t) = b(x, t)�d(x, t) where b and d are the birth and

death rates), l is the probability of a change in expres-

sion level during reproduction, r is the variance in this

change in expression level, v(x) is the rate of directional

change in expression level within a generation and m is

a measure of the unbiased noise in expression level

within a generation (see Table 1 for notation).

The first and second terms of eqn (1) account for pro-

cesses occurring between generations. The first term

gives the total rate of reproduction of individuals with

expression level x (i.e. the per capita rate r = b�d multi-

plied by the density of individuals n). Some of these

reproductive events will result in offspring having a

different expression level than that of their parents,

however, because the transmission of expression level

is not perfectly faithful. This ‘mutational’ effect during

reproduction is accounted for by the second term.

Appendix I provides an equation that allows for a more

general form of such change. It should also be noted

that a lack of heritability of expression level can be

accounted for in this model as a special case.

The third and fourth terms of eqn (1) account for pro-

cesses occurring within a generation. The third term rep-

resents how the density of individuals with expression

level x changes as a result of directional or deterministic

change from one expression level to another. This

within-generation change might be due to physiological

or metabolic homeostatic processes operating within

an individual, but it can also account for any

environmentally induced plastic changes in expression.

The function v(x) represents the rate of change of indi-

viduals with expression level x towards higher levels.

The fourth term accounts for how the density of individ-

uals with expression level x changes as a result of noise

giving rise to unbiased stochastic changes in expression

level.

Phenotypic drug tolerance and persister cells

I now consider eqn (1) in the context of phenotypic

antibiotic tolerance and persister cells, focusing on the

case where persister cells are dormant or nonreplicat-

ing. The physiological pathway through which these

cells are formed is not completely understood. As men-

tioned above, the concentration HipA of toxin (and

other toxin–antitoxin modules) has been implicated in

some bacteria (Moyed & Bertrand (1983); Korch et al.

2003; Keren et al. 2004b; Gefen & Balaban 2009; Schu-

macher et al. 2009; Lewis 2010a; Rotem et al. 2010;

Wood et al. 2013; Helaine & Kugelberg 2014). For exam-

ple, in E. coli, persister cell formation appears to be reg-

ulated, in part, by whether the cellular concentration of

this molecule exceeds a certain threshold (Rotem et al.

2010). However, it is increasingly believed that persister

cells form a heterogeneous group (Dhar & McKinney

2007; Zhang 2007; Joers et al. 2010; Allison et al. 2011;

Hofsteenge et al. 2013; Johnson & Levin 2013; Levin

et al. 2014; Sanchez-Romero & Casadesus 2014), and

that there is no single genetic mechanism governing

their dynamics (Dhar & McKinney 2007; Balaban 2011;

Hofsteenge et al. 2013; Willenborg et al. 2014; Germain

et al. 2015; Mok et al. 2015). This viewpoint is consistent

with the notion that persister cells lie on some biochem-

ical continuum, from ‘shallow’ persisters that readily

leave the dormant state to ‘deep’ persisters that take

longer to reactivate (Zhang 2007; Joers et al. 2010; Ma

et al. 2010).

Because persister cell formation appears to involve

many different cellular processes, I attempt to capture

the main qualitative empirical findings mentioned

above by viewing x as some generic physiological state

that I will interpret as the propensity of a cell to become

a persister. This could simply be the concentration or

expression level of some relevant biomolecule, but I will

treat it more generally and view it as the expression

level of the persister phenotype. High values of expres-

sion level correspond to a high propensity for becoming

onðx; tÞ
ot

¼ rðx; tÞnðx; tÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
reproduction

þrl
2

o2

ox2
½nðx; tÞbðx; tÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

between�generation

change

� o
ox

½vðxÞnðx; tÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
within�generation

directional change

þ m
o2

ox2
nðx; tÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

within�generation

noise

ðeqn1Þ
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a persister cell and vice versa. However, to keep things

as simple as possible, I assume that an individual cell

becomes a persister if its expression level exceeds a

threshold x�. Thus, at time t, the total number of cells isR b
a nðx; tÞdx and the number of persister cells isR b
x� nðx; tÞdx (Fig. 1a). In this way, individuals with

expression levels far exceeding the threshold x� can be

viewed as ‘deep’ persisters, while those closer to the

threshold are ‘shallow’ persisters.

I suppose that cellular homeostatic mechanisms tend

to keep the expression level x of an individual centred

around a value that allows for replication. This is mod-

elled by choosing the function v(x) representing within-

generation directional processes to have the qualitative

form shown in Fig. 1b. This function is positive below

the homeostatic set point c and negative above it,

meaning that cellular homeostatic processes tend to

push the expression level of each individual upward if

it is currently below the set point and downward if the

expression level is above the set point. At the same

time, the expression level is also subject to stochastic

noise in various cellular processes (Elowitz et al. 2002;

Satory et al. 2011).

To model replication, I set b(x, t) = d(x, t) = 0 for

expression levels above x� because such expression

levels correspond to persister cells and these cells are

assumed dormant (allowing persister cells to continue

Table 1. Mathematical notation.

n(x, t) Density of individuals with expression level x at

time t

a,b Lower and upper limits of expression level

x� Threshold expression level above which a cell

becomes a persister

b(x, t) Birth rate of individuals with expression level x

at time t

d(x, t) Death rate of individuals with expression level x

at time t

r(x, t)

= b(x, t)

�d(x, t)

Net rate of reproduction of individuals with

expression level x at time t

J(x) Flux, at expression level x, of individuals towards

higher levels of gene expression as a result of

noise and within-generation directional change.

It is given by Fick’s law as

JðxÞ ¼ � o
ox ½mnðx; tÞ� þ vðxÞnðx; tÞ where m is the

‘rate of movement’ or ‘noisiness’

of expression level x and v(x) is the rate of

increase of expression level as a result of

directional change

l The probability that, when an individual

reproduces, the expression level of the offspring

is different from that of the parent

(i.e. ‘mutation’ occurs)

p(x;y) The probability density of the offspring’s

expression level x, given that the parent has

expression level y and a ‘mutation’ occurs

during reproduction

r Mutational variance in expression level during

reproduction; r ¼ R b
a ðx� yÞ2pðx; yÞdx

R(t) Resource abundance at time t

h Rate of resource inflow

g Per capita loss rate of resource

a ‘Attack’ rate of resource by bacteria

e Conversion efficiency of resource into bacteria

n(x,t)

Nonpersister cells

Persisters

(a)

b(x,t)

d(x,t)

(b)

(c)

Fig. 1. Schematic of model assumptions. The constants a and b
are the lower and upper bounds on expression level. Expression

level x� is the value above which a cell becomes a persister.

Grey shading indicates expression levels for which persister for-

mation occurs. (a) Density of cells with different expression

levels, n(x, t). Green area represents total number of nonpersis-

ter cells. Red area represents total number of persister cells. (b)

Qualitative form of function v(x), giving the within-generation

rate of directional change in expression level as result of physio-

logical homeostasis within a cell. The constant c is the homeo-

static set point expression level. (c) Birth and death rates, b(x, t)

and d(x, t), as a function of expression level.
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dying at a small rate does not qualitatively alter the

results). For simplicity, I also suppose that the birth and

death rates of individuals with expression levels below

x� are independent of x (Fig. 1c).

Much of the experimental data on persisters and drug

tolerance in bacteria have been collected during both

exponential population growth as well as when the pop-

ulation approaches stationary phase. I therefore include

such density-dependent growth by explicitly modelling a

resource and its consumption by the bacterial popula-

tion. The per capita birth rate of nonpersister microbes is

assumed to depend on the amount of resource present

according to the equation b(x, t) = eaR(t) for all values of
expression level below the threshold x�. Here, R(t) is the

amount of the resource at time t, a is the ‘attack rate’ of

the resource and e is the conversion efficiency of resource

into bacterial cells. The time dynamics of R(t) are mod-

elled as

dRðtÞ
dt

¼ h� gRðtÞ � aRðtÞ
Z x�

a
nðy; tÞdy:

where h is the resource inflow rate and g is the per cap-

ita loss rate of the resource. For simplicity, I assume

that the death rate of nonpersisters is a constant d.

At this point, it should also be noted that the model

developed here for density dependence assumes an effec-

tively continuous culture with resource influx rather than

a batch culture as is used in most experiments. Thus, the

stationary phase of population growth in the model

arises from a balance between births and deaths rather

than the exhaustion of free resources as might occur in

batch culture. This is common in many mathematical

models of bacterial growth, and the results presented

below should provide a reasonable approximation to sta-

tionary phase in batch culture so long as, when dealing

with stationary populations, we restrict attention to dura-

tions of time over which bacteria would still maintain

some type of physiological activity in batch culture.

Finally, although the dynamics of all persister cells are

governed by the inheritance of the nongenetic expression

level x in the above model, this does not preclude the pos-

sibility that genetic factors influence the persister phe-

nomenon as well. For example, genetic factors might

determine quantities like the threshold level x�, the

strength of homeostasis v(x) or the amount of noise r and

m. In this way, mutants like the HipA mutant (Moyed &

Bertrand 1983) might be viewed as genotypes with altered

parameter values governing the nongenetic inheritance.

Results

A formal mathematical analysis of eqn (1) will be pre-

sented elsewhere, but it is relatively easy to understand

the general qualitative behaviour of the model by con-

sidering the effects of the four processes embodied by

this equation. Reproduction (the first term of eqn 1)

tends to increase the density of individuals with expres-

sion levels below the threshold x� (Fig. 2a). However,

lack of fidelity in expression level during reproduction

(the second term of eqn 1) tends to smooth out the den-

sity profile across all expression levels because it spreads

the offspring produced more randomly across the possi-

ble values of x. Within-generation noise has a similar

effect (the fourth term of eqn 1), also tending to equalize

the density of individuals with different expression

levels (Fig. 2b). Finally, within-generation homeostasis

n(x,t)

t

t+1

t+2

Mutation/Noise

Expression Level, x

n(x,t)

t

t+1

t+2

Reproduction

Expression Level, x

n(x,t)

Expression Level, x

t
t+1t+2

Homeostasis

(a)

(b)

(c)

Fig. 2. Processes embodied by eqn (1). The constants a and b are

the lower and upper bounds on expression level. Expression

level x� is the value above which a cell becomes a persister. Grey

shading indicates expression levels for which persister forma-

tion occurs. All plots show density of cells with different expres-

sion levels at three different time points. (a) When resources are

abundant, reproduction increases the density of nonpersister

cells only. (b) Between-generation change/noise tends to equal-

ize the density across expression levels. (c) Homeostasis tends to

concentrate expression levels around the set point c.
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(the third term of eqn 1) tends to concentrate the density

of individuals around the homeostatic set point (Fig. 2c).

All results presented below arise from differences in the

relative strengths of these processes.

I begin by first illustrating the typical dynamical

behaviour of the model. Suppose the population is ini-

tialized with a small number of individuals distributed

uniformly across all expression levels. Over time the

total population size (i.e. the total area under the den-

sity curve) grows, eventually reaching carrying capacity

(Fig. 3a). Over time the phenotypic distribution of the

population (i.e. the shape of the density curve) changes

as well, eventually reaching a steady state that reflects a

balance among the processes described in Fig. 2. The

number of persister cells in the population at any time

is given by the area under the density curve for values

of expression greater than the threshold x�.
Now, suppose that an antibiotic is applied to this

hypothetical population and that it affects only nonper-

sister cells. All microbes having an expression level less

than x� will therefore be killed, leaving only those with

expression levels greater than x� (i.e. the persisters) (not

shown). If this remaining persister population is then re-

introduced into fresh, drug-free medium, then the model

predicts that individuals will again begin to replicate as

they stochastically leave the persister state (Fig. 3b).

Over time the very same equilibrium population is again

established, and so the fraction of the population that is

made up of persister cells at this point will be identical

to that of the population prior to the drug exposure.

As discussed in the introduction, the above dynamic,

in which the same fraction of persisters is produced

both before and after exposure to a drug, is characteris-

tic of experimental studies of persisters (Keren et al.

2004a; Gefen & Balaban 2009; Lewis 2010a, b; Willen-

borg et al. 2014). Indeed, this is sometimes taken as a

defining feature of phenotypic drug tolerance. This pat-

tern is often described as demonstrating a lack of heri-

tability of the persister phenotype, but the model

makes it clear that such a pattern does not imply a

lack of heritability per se. In the model, the expression

level, and thus the persister phenotype, can be per-

fectly heritable (i.e. l = 0) and the very same re-estab-

lishment of a susceptible population occurs.

Heritability quantifies the relationship between the

phenotype of parents and that of their offspring and so

perfect heritability simply means that offspring always

have the same expression level as their parents (i.e. the

same propensity to become a persister cell). Even in

this case, however, cellular noise and homeostasis

within a generation cause the phenotypic composition

of the population to change as regrowth occurs, ulti-

mately giving rise to the same distribution of expres-

sion levels, and thus, the same number of persister

cells as was present before drug exposure (Fig. 3b).

And this is true regardless of the number of times the

drug has been applied. In effect, the phenotypic distri-

bution of the population rapidly evolves through epi-

genetic inheritance, noise and homeostasis to attain the

same equilibrium state.

One might guess that the way in which the equilib-

rium population state is reached, and the time it takes for

this to occur, will depend on the amount of within-gen-

eration noise and the heritability of the expression level.

This is indeed the case. For example, suppose that the

n(x,t)

Expression Level, x 

t = 0

t = 200

n(x,t)

Expression Level, x 

t = 0

t = 200

(a)

(b)

Fig. 3. Density of cells with different expression levels over

time, n(x, t). Each curve represents a particular point in time.

Expression levels are arbitrarily bound between a = �0.9 and

b = 0.1 with x� ¼ 0 being the threshold for persister forma-

tion. Grey shading indicates expression levels for which persis-

ter formation occurs. (a) Initial density is n(x, 0) = 1 (i.e.

uniform across all expression levels). (b) Initial density is n

(x, 0) = 1 if x[ x� and n(x, 0) = 0 otherwise (i.e. only persister

cells present). Parameter values: h = 100, g = 1, e = 0.1,

m = 0.001, r = 0.0015, l = 0.00075, c = �0.5, v(x) = 0.5(x�a)
(x�b)(x�c), a = 0.15, d = 0.1. Model solved numerically for 200

time units using Mathematica.
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processes of within-generation noise in expression level

and homeostasis are weak (and heritability is high) rela-

tive to the process of reproduction during the exponen-

tial growth phase. In this case, the process of

reproduction in Fig. 2a will dominate the other processes

in Fig. 2b, c until carrying capacity is approached. As a

result, the total population size (i.e.
R b
a nðx; tÞdx) reaches

carrying capacity before the homogenizing effects of

between-generation change/noise, and the directional

effects of homeostasis, equalize the expression levels (i.e.

before the shape of the density curve in Fig. 4a becomes

constant). Consequently, the number of persister cells

does not increase much during the exponential growth

phase (Fig. 4c) and so their frequency initially declines

(Fig. 4d). As carrying capacity is reached (i.e. as the

upward movement of the density curve in Fig. 4a starts

to slow), the distribution of expression levels continues

to equalize, eventually resulting in an increase in the

number of persister cells even though the total popula-

tion is nearly constant by this time (i.e. it is in stationary

phase; Fig. 4c).

On the other hand, if the processes of within-genera-

tion noise in expression level and homeostasis are strong

(and heritability is low) relative to the process of repro-

duction during the exponential growth phase, then the

homogenizing effects of noise and homeostasis will

equalize the expression levels before much change in

population size occurs (i.e. the shape of the density curve

in Fig. 4b becomes constant before it increases much in

height). In this case, there is then always nearly a con-
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Persisters: panel (b)

Persisters: panel (a)

Panel (a)

Panel (b)

Fr
ac

tio
n 

p
er

si
st

er
s

Lo
g

 p
op

ul
at

io
n 

si
ze

time

Time

(a) (b)

(c) (d)

Fig. 4. (a) and (b). Density of cells with different expression levels over time, n(x, t). Each curve represents a particular point in time.

Expression levels are arbitrarily bound between a = �0.9 and b = 0.1 with x� ¼ 0 being the threshold for persister formation. Grey

shading indicates expression levels for which persister formation occurs. (a) Between-generation change/noise and homeostasis are

weak relative to reproduction when resources are abundant (m = 0.00025, v(x) = 0.075(x�a)(x�b)(x�c)). Phenotypic distribution (i.e.

the shape of the density curve) equalizes slowly (particularly for values of x [ x�), and not until after carrying capacity is

approached. (b) Between-generation change/noise and homeostasis are strong relative to reproduction when resources are abundant

(m = 0.05, v(x) = 15(x�a)(x�b)(x�c)). Phenotypic distribution equalizes quickly and then simply increases until carrying capacity is

reached. (c) Total population size of nonpersister (black) and persister (red) cells over time for the numerical results in panels (a)

and (b). (d) Fraction of population consisting of persister cells as a function of time for the numerical results in panels (a) and (b).

All other parameter values: h = 100, g = 1, e = 0.1, r = 0.00015, l ¼ 0:000075, c = �0.5, a = 0.15, d = 0.1. Model solved numerically

for 500 time units using Mathematica.

© 2016 John Wiley & Sons Ltd

EPIGENETIC INHERITANCE AND DRUG RESISTANCE 1875



stant fraction of the population that is made up of persis-

ters throughout the exponential growth and stationary

phases (Fig. 4b, c).

Interestingly, the contrasting behaviour in Fig. 4a vs.

Fig. 4b has been observed experimentally (e.g. Balaban

et al. 2004; Keren et al. 2004a.). This difference has been

taken to imply the existence of two qualitatively distinct

kinds of persisters cells (Balaban et al. 2004; Gefen &

Balaban 2009; Willenborg et al. 2014). So-called Type-I

persisters are thought to be produced in response to

stresses like the reduced resource level that occurs as

the population approaches stationary phase, whereas

so-called Type-II persisters are instead thought to be

produced stochastically at a constant rate throughout

the entire growth cycle of the population. However,

Fig. 4c shows that these dynamical patterns might also

arise for other reasons. In particular, even if the forma-

tion of persister cells is never induced by the environ-

ment, the processes of replication coupled with

different levels of heritability and cellular noise can

generate these very same patterns. As before, this is

because epigenetic inheritance allows the phenotypic

distribution of the population to rapidly evolve in

response to changing conditions.

Along similar lines, it has also been shown experi-

mentally that persister cells can sometimes be reduced

to below detectable levels by maintaining the bacterial

culture in a state of early exponential growth via serial

dilution (Keren et al. 2004a). The explanation for this

finding has been that these persister cells are of Type-I,

and therefore, no new persisters are formed under these

resource rich conditions. As a result, any persister cells

already present will be lost through serial dilution. The

model developed here shows that this finding might

actually be expected, even in the absence of environ-

mentally induced changes in the rate of persister forma-

tion. For example, under exponential growth, the

asymptotic frequency distribution of expression levels is

always skewed towards low expression levels and thus

towards a low frequency of persister cells. This occurs

simply because it is the replicating cells (i.e. those with

low expression levels) that dominate the population

under these resource rich conditions (Fig. 5). Moreover,

if the replication rate is large relative to the amount of

noise in expression level and the strength of homeosta-

sis (i.e. if the process in Fig. 2a is strong relative to that

in Fig. 2b, c), then the fraction of the population that is

made up of persister cells becomes negligible (the ‘high’

case in Fig. 5). Again, this has nothing to do with envi-

ronmentally induced changes in persister formation but

instead is a dynamic consequence of the evolutionary

shift in the phenotypic composition of the population

through epigenetic inheritance when resources are

abundant.

Recent work has also shown that, in some instances,

the number of persister cells remaining after exposure

to a drug increases with the amount of time the popula-

tion spends in stationary phase in batch culture prior to

the drug being applied (Luidalepp et al. 2011). One

interpretation of this finding is again that adaptive per-

sister formation continually occurs in stationary phase

as a means of dealing with resource deprivation.

Although the model developed here does not explicitly

account for stationary phase in batch cultures, it does

predict that the longer the population remains at carry-

ing capacity after exponential growth, the more even

the distribution of expression levels will become

because cellular noise then has had more time to equal-

ize this distribution. As a result, we would expect to

see a positive relationship between the number of per-

sister cells and the amount of time spent at carrying

capacity (e.g. Fig. 4c), even if there were not environ-

mentally induced changes in persister formation.

The results presented so far have shown that many of

the observed empirical features of persister cells can be

explained by evolution via epigenetic inheritance and

cellular noise. Moreover, these features are an expected

consequence of these processes even in the absence of

environmentally induced changes in persister forma-

tion. That said, there are several studies that show how

the environment, including the presence of antibiotics

and other stresses, can affect the likelihood of persister

Expression level, x

Probability density 

Low
Medium

High

Fig. 5. Asymptotic probability density of cells with different

expression levels during exponential population growth (i.e.

the area under the curve is 1). Curves correspond to different

exponential growth rates (i.e. resource abundances). Expression

levels are arbitrarily bound between a = �0.9 and b = 0.1 with

x� ¼ 0 being the threshold for persister formation. Grey shad-

ing indicates expression levels for which persister formation

occurs. Parameter values: m = 0.01, r = 0.0015, l = 0, c = �0.5,

v(x) = 0.5(x�a)(x�b)(x�c), d = 0.1. Birth rate for nonpersister

cells was set to a constant value of either b = 0.15 (low), b = 1

(medium), or b = 10 (high) to generate different exponential

growth rates.
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cell formation (Dorr et al. 2009; Lewis 2010a, b; Balaban

2011; Vega et al. 2012; Cohen et al. 2013; Johnson &

Levin 2013; Helaine et al. 2014; Helaine & Kugelberg

2014). As shown next, the model of evolution under

epigenetic inheritance can explain these results as well,

if cellular noise increases with environmental stress.

It seems plausible that stress, such as the presence of

antibiotics or the absence of resources, might lead to an

increased noise in expression level (and perhaps a

decrease in the fidelity of transmission of expression

level form parents to offspring). If so, such stress would

tend to further equalize the distribution of expression

levels in the population (i.e. it would increase the rela-

tive strength of the process in Fig. 2b). As Fig. 6 illus-

trates, this flattening of the density curve increases the

number of cells with expression levels greater than the

threshold x�, and as a result, the fraction of persister

cells increases. Notice that this environmentally-induced

increase in persister cell formation is not an evolved

adaptive response to stress, but instead is again a

dynamic consequence of the evolutionary shift in the

phenotypic composition of the population due to the

altered balance of the processes described in Fig. 2.

Finally, it is worth emphasizing that including the

above stress-induced change in cellular noise does not

qualitatively alter any of the previous conclusions (T.

Day, unpublished results). For example, in Fig. 3, if a

decline in resource abundance causes stress-induced

noise, then at equilibrium, the density curve is simply a

bit more flat (and there is a greater frequency of persis-

ter cells as a result). The same is true for Fig. 4, and

stress-induced noise then also enhances the increase in

the rate of appearance of persister cells as carrying

capacity in reached in Fig. 4c. And for Fig. 5, because

there is no resource depletion, including stress-induced

noise has no effect. Thus, a model of evolution via epi-

genetic inheritance (with cellular homeostasis and

stress-induced noise) provides a simple alternative

hypothesis to the view that persister cell dynamics

reflect an adaptive, genetically encoded, response to

environmental fluctuations.

Discussion

The modelling results presented here suggest that many

of the empirically documented features of phenotypic

antibiotic tolerance and the formation of bacterial persis-

ter cells can be explained by evolution via epigenetic

inheritance. This contrasts the predominate view in the

literature that persister cells represent a genetically

encoded form of bet-hedging or adaptive plasticity (Bala-

ban et al. 2004; Kussell et al. 2005; Kussell & Leibler 2005;

Gefen & Balaban 2009; Lewis 2010a; Cohen et al. 2013).

Given the extensive experimental work that has been

conducted on phenotypic antibiotic tolerance, it therefore

might well represent one of the best-studied examples of

the role of epigenetic inheritance in evolution.

The current empirical observations that can potentially

be explained by the model of epigenetic inheritance and

evolution include that: (i) the persister cells that survive

an antibiotic go on to re-establish a population that is just

as susceptible to the drug as was the original population

(Fig. 3); (ii) sometimes persister cells arise only as the

population reaches stationary phase (so-called Type-I

persisters), whereas in other cases they arise continu-

ously throughout the growth cycle (so-called Type-II per-

sisters; Fig. 4); (iii) cultures maintained in early

exponential growth phase through serial dilution show a

marked decrease in persister cells (Fig. 5); (iv) the time a

culture spends in stationary phase is positively related to

the number of persister cells that form (Fig. 4c); and (v)

stressors like antibiotics or resource depletion can

increase the formation of persister cells (Fig. 6).

The above five findings have been explained previ-

ously as resulting from adaptive bet-hedging or adap-

tive phenotypic plasticity. For example, if bacterial cells

have evolved (genetically) to switch back and forth ran-

domly between dormant and active states as an adap-

tive response to environmental variation, then such

populations will display the patterns seen in finding (i)

above (Balaban et al. 2004; Kussell et al. 2005). These

bacteria would represent so-called Type-II persister cells.

On the other hand, Type-I persister cells have previously

been explained as resulting from bacteria evolving a

n(x,t)

Expression Level,x

Low stress

High stress

Fig. 6. Density of cells with different expression levels over

time, n(x, t). Curves correspond to different levels of within-

generation noise in expression level. Expression levels are arbi-

trarily bound between a = �0.9 and b = 0.1 with x� ¼ 0 being

the threshold for persister formation. Grey shading indicates

expression levels for which persister formation occurs. Parame-

ter values: r = 0.0015, l = 0, c = �0.5, v(x) = 5(x�a)(x�b)(x�c),
d = 0.1, and birth rate for nonpersister cells set to balance

death rate (i.e. b = 0.1). Noise levels are m = 0.01 (low) and

m = 0.02 (high) .
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(genetically encoded) form of adaptive phenotypic

plasticity. In essence, bacteria have evolved to more read-

ily switch into the dormant state when conditions

become stressful. This would also explain findings (ii)–
(v).

The main novelty of the results presented here is to

show that these same five findings can instead be readily

explained as a result of a combination of epigenetic

inheritance and cellular noise. During replication, par-

ents transmit their expression level (i.e. the propensity to

become a persister) to the descendant cells with some

level of fidelity. This transmission process is noisy, how-

ever, and there is also assumed to be within-generation

noise in the maintenance of the expression level. As a

result, the phenotypic distribution of the population is

very malleable and so can readily evolve in response to

changing conditions through epigenetic inheritance.

When resources are abundant, the population grows

exponentially and the phenotypic distribution evolves a

skew towards low expression levels because these are

the cells with the greatest growth rate [finding (iii)]. As

stationary phase is approached, resources become more

scarce and the phenotypic distribution relaxes as noise

evens out the abundance of different expression levels.

As a result, the number of persister cells increases. If

resource depletion also causes a stress-induced increase

in cellular noise, then this pattern is further enhanced.

However, the way in which the number of persister cells

increases, and how quickly this happens, depends on the

rate of exponential growth relative to the amount of

noise in expression level [findings (ii) and (iv)]. More-

over, this evolutionary dynamic recurs upon repeated

exposure of the population to antibiotics [finding (i)].

Finding (v) can be explained by the idea that drug

exposure or resource depletion is a stressor that

increases the within-generation noise in expression level

and/or decreases the fidelity of transmission from par-

ent to offspring. In this case, in the absence of the stres-

sor, the expression levels of individuals will be

clustered around the homeostatic set point. If the popu-

lation is then exposed to a stressor, then the distribution

of expression levels will become more uniform, generat-

ing an increase in the number of persister cells.

The above-described process of noise-induced persis-

tence is effectively a variation on the ‘persistence as

stuff happens’ or PaSH hypothesis put forward by

Levin and colleagues (Johnson & Levin 2013; Levin

et al. 2014). They argued that persister cells arise from

random errors and glitches due to antibiotic-induced

stress and, as such, are effectively like deleterious muta-

tions. The noise-related process outlined here is similar

in that antibiotic-induced stress causes the physiological

state of individual cells to deviate from the homeostatic

set point. This too can be viewed as deleterious

although it represents a deviation of physiological state

within the range of normal variation rather than a dele-

terious mutation per se. Furthermore, stress-induced

noise would increase the density of cells with expres-

sion levels lower than the set point, in addition to

increasing the number of persister cells (i.e. those with

very high expression levels).

The predominant view of persister cells in the litera-

ture is that they represent a genetically-encoded bet-hed-

ging strategy and/or a form of adaptive phenotypic

plasticity. Consequently, considerable research effort has

been devoted to identifying the genes that underly this

strategy. The consensus to date is that many different

genetic pathways appear to play some role in the forma-

tion of persister cells, but no major genetic control mech-

anism has been identified (Lewis 2010a; Shan et al. 2015).

For example, genetic knock-out studies in E. coli have

failed to produce genotypes that no longer generate per-

sister cells (Hansen et al. 2008), suggesting that there are

many pathways involved in their formation. Interest-

ingly, this has also been interpreted as evidence for the

strong selective advantage of bet-hedging because we

might then expect many redundant genetic pathways to

evolve as backups. As Levin and colleagues have argued,

however, the lack of singular genetic control is exactly

what would be expected under their PaSH hypothesis

(Johnson & Levin 2013). It is also exactly what is

expected here as well. If persister cell formation involves

the type of epigenetic inheritance described here, then

they should continue to be formed almost irrespective of

the underlying genotype. At the same, however, many

different genetic mutations would probably alter the pro-

cesses described in Fig. 2, and so would alter the way in

which persister cells are formed and their abundance.

Whether or not the formation of persister cells through

environmental induction is adaptive remains an interest-

ing and important open question. In fact, although the

results presented here show that stress-induced noise

alone can increase the formation of persister cells, this

response might still be adaptive. For example, if such

plastic, environmentally-induced, persister formation is

selectively advantageous, then a noise-related process

like that described here might provide a simple mecha-

nism through which it could operate. Interestingly, the

model also suggests one way in which these two possi-

bilities might be distinguished experimentally.

Suppose one could measure the physiological propen-

sity of a cell to become a persister (i.e. measure the

expression level x of a molecule whose concentration is

known to have a positive effect on persister cell forma-

tion). Furthermore, suppose it was possible to measure

the within-generation stochastic change in this expres-

sion level. Now imagine conducting an experiment in

which one group of bacterial cells was subjected to a
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stress, while a control group was maintained under

normal conditions. The distribution of within-genera-

tion changes in expression level for each group could

then be compared. Under the stress-induced noise

hypothesis outlined above, the distribution of expres-

sion level changes in the group subjected to the stress

should have the same mean as that of the control group

but a higher variance, because stress simply increases

the noise. More persisters would nevertheless be

formed in the stressed group because such unbiased

noise would result in a net change towards higher

expression levels as it equalizes the distribution (i.e. as

in Fig. 6). Such a finding would thus be consistent with

the hypothesis that persister cell formation is not adap-

tive but instead is the result of epigenetic inheritance

and noise.

On the other hand, if the distribution of within-genera-

tion changes in expression level in the stressed group

had a higher mean than that of the control group then,

regardless of any difference between the groups in vari-

ance, this would reveal a deterministic or directional

change in expression that was induced by the environ-

ment. In terms of the model such an effect would be

reflected by the function v(x) changing sign as a result of

the stress. In other words, there would be a stress-

induced directional change in expression and thus a

deterministic induction of the persister phenotype. This

would provide much more compelling evidence that the

induced response was adaptive and would thereby call

into question the idea that stress-induced noise alone is

sufficient to explain persister cell formation.

The model explored here assumes that the expression

level is free to change in an unbiased fashion, aside

from homeostasis tending to push it towards a set point

value. There is some suggestion in the literature that, in

fact, a positive feedback mechanism might operate that

tends to hold persister cells in their dormant state as

well (Lou et al. 2008; Feng et al. 2014). In effect, a con-

tinuous variable like expression level somehow under-

lies a bistable cellular ‘switch’ between the persister

and nonpersister states (Satory et al. 2011). This can also

be included in the present model by specifying a

slightly different function v(x) so that there are then

two different homeostatic set points, one for nonpersis-

ter cells and one for persisters.

It has also been noted recently that the formation of

persister cells is sometimes dependent on the concentra-

tion of the antibiotic used and that higher concentra-

tions sometimes ultimately result in fewer persister

cells remaining after the antibiotic has been applied

(zur Regoes et al. 2004; Wiesch et al. 2015). Recent work

has also shown how this pattern can be explained by

simple reaction kinetics underling the drug action (zur

Wiesch et al. 2015). Here, I simply note that this phe-

nomenon is also consistent with the current hypothesis.

For example, if higher drug concentrations result in fas-

ter killing of nonpersister cells, then the net flow of per-

sister cells into the active state will be higher over this

time period, essentially because the gradient driving

this ‘diffusion’ will be steeper. As a result, more persis-

ter cell will be killed over a fixed period of time. I also

note, however, that relaxing the simplifying assumption

that the birth and death rates of cells are step functions

of expression level and that persister formation obeys a

strict threshold, further allows for more nuanced pat-

terns of persister formation. In either case, however, the

same conclusion remains – evolution via epigenetic

inheritance can explain a wide variety of the empirical

observations about phenotypic drug tolerance and per-

sister cell formation.

The modelling results presented here suggest several

avenues for future research, both empirical and theoret-

ical. For example, it might prove useful to couple the

epigenetic model developed here with a model of

genetic inheritance. Although phenotypic antibiotic tol-

erance is now a widely appreciated phenomenon, it has

also been suggested that genetically determined resis-

tance sometimes follows after phenotypic resistance has

been established (Cohen et al. 2013). Exactly, when and

how this might occur however is not completely under-

stood. Exploring this possibility might not only be

important from a medical standpoint, but it also has the

potential to provide an excellent example of how

genetic and nongenetic forms of inheritance interact in

evolution more broadly.
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Appendix 1. Derivation of Equation 1

The number of individuals with expression level

between x and x + Dx at time t + Dt is approximately

nðx; t þ DtÞDx ¼ ð1� dðx; tÞDtÞnðx; tÞDx
þ ð1� lÞnðx; tÞDxbðx; tÞDt

þ l
Z b

a
nðy; tÞDxbðy; tÞDtpðx; yÞdy

þ JðxÞDt � Jðx þ DxÞDt
(see Table 1 for notation). The second and third terms

account for reproduction when between-generation

change does not occur and when it does occur, respec-

tively. The third term adds up all of the ways that off-

spring with expression level x can be produced by

parents as a result of between-generation change during

reproduction. Rearranging gives

nðx; t þ DtÞ � nðx; tÞ
Dt

¼ � dðx; tÞnðx; tÞ
þ ð1� lÞnðx; tÞbðx; tÞ

þ l
Z b

a
nðy; tÞbðy; tÞpðx; yÞdy

� Jðx þ DxÞ � JðxÞ
Dx

or

onðx; tÞ
ot

¼ rðx; tÞnðx; tÞ � lnðx; tÞbðx; tÞ

þ l
Z b

a
nðy; tÞbðy; tÞpðx; yÞdy� oJðxÞ

ox
:
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Using the equation for J(x) from Table 1, this simplifies

to

onðx; tÞ
ot

¼ rðx; tÞnðx; tÞ � lnðx; tÞbðx; tÞ

þ l
Z b

a
nðy; tÞbðy; tÞpðx; yÞdy� o

ox
½vðxÞnðx; tÞ�

þ m
o2

ox2
nðx; tÞ

:

This last equation is the main result. However, the

integral term can be difficult to work with and so it is

worth considering how we might simplify this under

certain assumptions.

Suppose that the distribution of jumps specified by

p(x; y) is identical for all y. Mathematically, suppose

that q(d) is a probability density function for the jump

size d = x�y for all values of y. Thus, we can write

p(x;y) = q(x�y). Then, the second and third terms of the

above equation are

�lnðx; tÞbðx; tÞþ l
Z 1

�1
nðy; tÞbðy; tÞqðx� yÞdy

¼ �lnðx; tÞbðx; tÞ
þ l

Z 1

�1
nðx� d; tÞbðx� d; tÞqðdÞdd

Now suppose further that q is ‘narrow’ and has zero

mean. Defining F(x�d, t) = l(x�d)n(x�d, t)b(x�d,t) and

expanding it in a Taylor series in d near zero gives

where r ¼ R1
�1 d2qðdÞdd is the variance in jump size.

Thus, the full equation is

onðx; tÞ
ot

¼ rðx; tÞnðx; tÞ þ rl
2

o2

ox2
½nðx; tÞbðx; tÞ�

� o
ox

½vðxÞnðx; tÞ� þ m
o2

ox2
nðx; tÞ

Even with this approximation, however, one can

mimic the effects of low heritability by taking r large

relative to the other parameter values.

� lnðx; tÞbðx; tÞ þ
Z 1

�1

"
Fðx; tÞ � Fxðx; tÞd þ Fxxðx; tÞ d

2

2
þ � � �

#
qðdÞdd

� �lnðx; tÞbðx; tÞ þ Fðx; tÞ
Z 1

�1
qðdÞdd� Fxðx; tÞ

Z 1

�1
dqðdÞdd

þ Fxxðx; tÞ
Z 1

�1

d2

2
qðdÞdd¼ Fxxðx; tÞ

Z 1

�1

d2

2
qðdÞdd ¼ rl

2

o2

ox2
½nðx; tÞbðx; tÞ�

© 2016 John Wiley & Sons Ltd

1882 T. DAY


