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In 1957, George Williams [1] argued that
higher, age-independent, adult mortality
should be correlated with more rapid
senescence. Charlesworth [2] and most
subsequent studies have added the adjec-
tive ‘extrinsic’ to mean that the age-
independent mortality was due to sources
‘external’ to the organism. We now know
that neither age- nor condition-independent
increases in extrinsic mortality are necessary
for more rapid senescence to evolve, and
analyses have also shown that higher
mortality can lead to the evolution of
slower senescence [3,4]. Indeed, there
are empirical examples where an added
source of mortality seems to have ex-
tended lifespan [5]. Nevertheless, Williams’
hypothesis remains popular [6].

Recently Moorad et al. [7] (henceforth MPS)
reviewed Williams’ hypothesis and they
made the strong claim (in at least ten dif-
ferent places throughout their paper) that
Williams’ hypothesis is wrong, flawed, and/
or contains a conceptual error. They then
claim to show that the hypothesis is wrong
because, for an extrinsic source of mortality
to affect senescence, it must act in an age-
dependent fashion (and Williams’ hypothe-
sis involves age-independent mortality).
This latter claim is also reiterated throughout
their paper, where they say that ‘…formal
theory shows that only mortality that is
age-specific can influence the evolution of
senescence…’ and that ‘mortality that is
truly independent of condition…’ cannot
affect selection on senescence. This is
further emphasized in an entire section of
their paper titled ‘Models that redefine
extrinsic to mean something else’, where

they say that extrinsic mortality can affect
selection only if ‘…one changes the mean-
ing of “extrinsic” to mean age dependent’.
There they also review Abrams [3] and
Williams and Day [4], stating that these
papers either support their view or, when
they don’t, it is because of differences in
opinion ([7], p. 6).

The purpose of this letter is to point out
that these conclusions are incorrect.
Both Abrams ([3], p.882) and Williams and
Day ([4], p.1482) have independently
demonstrated that extrinsic mortality need
not be age-dependent to drive the evolution
of more rapid senescence. MPS mischar-
acterize [3] by incorrectly claiming that
with ‘…age-independent density effects,
Abrams’ models found that the addition of
extrinsic mortality had no effect…’. He did
not. Likewise, [4] is mischaracterized by in-
correctly claiming that any discrepancy be-
tween results comes from differences in
opinion about how to measure fitness and
that perhaps ‘…we need to examine
whether [a] redefinition of fitness is justified’.
In fact, these discrepancies are not a matter
of opinion. In an online appendix (see
supplemental material online), we provide a
detailed analysis that illustrates this fact and
we present a two-age model as a simple
counterexample to MPS’s claim that extrin-
sic mortality must be age-dependent in
order to affect selection on senescence.
This simple counterexample is nothing
more than a special case of the general anal-
ysis already published in [3] and [4], but the
restriction to two age-classes makes the
analysis simpler.

One way to understand why density de-
pendence is important in the evolution
of senescence is to note that, roughly
speaking, when a population is growing
exponentially (i.e., no density dependence),
the fitness consequence of a change in
vital rates at age x is discounted by the
probability of survival to age x and by the
population growth rate (because offspring
produced earlier can, themselves, reap the

rewards of exponential growth). When age-
independent extrinsic mortality increases,
the discounting through survival gets
stronger (i.e., there is a smaller probability
of reaching age x), while the discounting
through population growth gets weaker
(i.e., the exponential growth potential is
reduced), such that these two effects ex-
actly cancel and Williams’ hypothesis does
not hold. But when a population is regulated
by density dependence (and so on average
is not growing) the latter effect need not
exactly cancel the former, even when all
density and mortality effects act in an age-
independent way.

Indeed, the predictions made by existing
theory are completely unambiguous and
worth reiterating. If a population is growing
exponentially, then a change in age-
independentmortality will not affect selection
on senescence (i.e., Williams hypothesis is
not valid). For populations subject to den-
sity dependence things are more compli-
cated for two reasons. First, depending
on the form of density dependence, popu-
lation size might continually change over
time in complex ways. At present, little
theory speaks to this interesting case (see
Appendix in the supplemental material
online for further discussion). Second, a
change in mortality might affect population
density, which then feeds back to affect
vital rates in other ways. Nevertheless, if
density dependence leads to a constant
equilibrium population size then predictions
are still completely unambiguous. If all
mortality and density effects are age-
independent, then Williams’ hypothesis is
correct when density dependence acts
solely through fertility and it is incorrect
when density dependence acts solely
throughmortality. It is a fact, not an opinion,
that age-dependency of external mortality
is not required for Williams’ hypothesis to
be valid.

Some previous studies have made the
same claim as MPS, suggesting that
Williams’ hypothesis is wrong irrespective
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of whether there is density dependence
[8,9]. However, these studies have fo-
cused only on the case where density de-
pendence acts solely through mortality
and so their conclusions are actually in
complete agreement with the above sum-
mary (see Appendix in the supplemental
material online for further discussion).

Williams’ hypothesis continues to occupy
the attention of evolutionary biologists
[6,10]. It is true that for organisms with
high evolutionarily unavoidable mortality,
investment in repair and maintenance for
ages that are seldom reached does not
make sense. Likewise, organisms that
require a long time tomaturemust not dete-
riorate so rapidly that they never reproduce.
Thus,wemight expect a positive correlation
between mean mortality rate and most
measures of senescence in a diverse set
of species. However, such a correlation is
not very informative regarding the effect of
mortality on the evolution of senescence
in any particular lineage. The evolution of
senescent traits in response to a new mor-
tality source is influenced by many factors,
including density dependence in all demo-
graphic rates, age-dependent effects of
both altered density and the new mortality
on existing mortality and fertility, and inter-
actions between the mortality source and
physiological changes caused by senes-
cence [3,4]. In addition, senescence in-
volves age-related changes in traits other
than mortality, a fact that is often neglected.
These changes in birth and growth rates are
also likely to cause differential effects on the
abundances of different age classes, fur-
ther complicating evolutionary predictions

about senescence. For example, when
density dependence in fertilities is charac-
terized by larger effects in more senescent
individuals, Williams’ hypothesis could
again fail to hold.

In summary, to understand the effect of an
environmentally imposed change inmortality
(or fertility) on the evolution of senescence
at least three types of measurements are
needed: (i) the direct age-specificity of the
change in demographic rates, where ‘direct’
means age-differences due to age-related
factors other than senescence (a point also
made by MPS); (ii) the interaction of existing
senescence with the environmental factor
(e.g., are there greater effects of the factor
on individuals with greater senescent
decline?); (iii) the density-dependent feed-
backs from the environmental change on all
life history parameters, including the interac-
tions mentioned in point (ii). Future work
should also reassess how to compare rates
of senescence, because the trajectories of
mortality (or other fitness parameters) versus
age are not characterized by a single simple
function [11,12]. In addition, it should ex-
pand theory to consider variable environ-
ments, where results are likely to differ
from those of the equilibrium conditions as-
sumed in this and most previous work.
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1 Introduction1

In this appendix we make precise our objections through a detailed analysis of a simple2

two-age model. We focus on the specific claim made in Moorad et al. [1] that ‘mortality3

that is truly independent of condition...’ cannot affect selection on senescence, and that4

extrinsic mortality can affect selection only if ’...one changes the meaning of extrinsic to5

mean age dependent.’ This is an unambiguous statement and the message it conveys is6

reiterated several times throughout their paper. It also forms the basis for Moorad et al.’s7

[1] central claim that Williams’ hypothesis is flawed/wrong (since, if extrinsic mortality8

must be age-dependent to affect the evolution of senescence as Moorad et al. claim, then9

Williams’ must be wrong because his hypothesis is about age-independent extrinsic10

mortality). As we explain in our letter, however, both Abrams ([2], p.882) and Williams11

and Day ([3], p.1482) independently demonstrate that Moorad et al.’s claim that extrinsic12

mortality must be age-dependent is simply not true. Below we will provide a simpler13

analysis that is a special case of the analyses published in Abrams [2] and Williams and14

Day [3] to demonstrate this fact.15

For simplicity, throughout we make the assumption that the organism in question is16

asexual in order to put aside any complications of sexual reproduction. We also assume17

that mutations are relatively rare, an assumption that is implicit in using optimization18

techniques. Finally, we work in discrete time since many people often find this setting19

easier to think about. Therefore, the growth rate r of Moorad et al. [1] is equivalent to20

what we will call the growth factor, λ, below with the condition that r > 0 is equivalent to21

λ > 1, r < 0 is equivalent to λ < 1, and r = 0 is equivalent to λ = 1. Although not all of22

these assumptions are explicitly mentioned in Moorad et al. [1], many of them are implicit23

in their analysis. In any event, our principle point of disagreement is not affected by24

focusing on this simple case.25
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We agree with Moorad et al. [1] that the word ‘extrinsic’ can be vague and can mean26

different things to different people, and therefore we will give it a precise definition here.27

We choose a definition that is both in keeping with how most of the previous theoretical28

literature on senescence has used the term and one that is also aligned with the above29

quote from Moorad et al. [1]. Specifically, we refer to a source of mortality as being30

‘extrinsic’ if the following two conditions hold: (i) the mortality is independent of other31

sources of mortality (in the probabilistic sense of the word) including those that might be32

thought of as being intrinsic to the organism, like mortality related to condition or33

senescence itself, and (ii) the mortality is independent of age (i.e., the mortality rate34

imposed by the external factor is the same for all age classes).35

The above two conditions constitute our definition of extrinsic mortality but things can36

become subtly more complicated when there is density dependence. For example, an37

increase in the extrinsic mortality rate (as defined above) will usually decrease population38

density, and if the effect of such a change in density on vital rates is different for different39

age classes, then even though the extrinsic mortality itself acts in an age-independent way40

(by our definition) it might still induce an age-specific change in vital rates (like mortality41

or fertility) as a result of such demographic feedbacks. In this sense, even extrinsic42

mortality as defined above might ultimately not be truly independent of age because of an43

age-dependent demographic feedback [2]. Therefore, to be completely unambiguous, when44

considering density dependence we will only consider forms of density dependence that are45

also independent of age. In other words, if there is ever a demographic feedback that46

occurs through density dependence, we will assume that it too affects all age classes in an47

identical fashion. As a result, whenever we consider in change in extrinsic mortality, there48

is no sense in which it can result in any age-dependent effects on the vital rates. Of course49

this is clearly a highly unrealistic case and one that is probably never realized in any real50

biological population. The point of focusing on this case though is to illustrate that the51

way of thinking about Williams’ hypothesis that is advocated by Moorad et al. [1] is52
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incorrect. Namely, they claim (as in the above quote) that if extrinsic mortality ever has an53

effect on the evolution of senescence, then it is because somehow this mortality ultimately54

results in an age-dependent effect on vital rates. We will show that this is not true. It is55

the case that, for enhanced extrinsic mortality to cause an evolutionary change in56

senescence the enhanced mortality must result in age-dependent differences in selection (by57

definition) but it is not true that it must result in age-dependent affects on the vital rates.58

Although some of the analysis below is quite general we will also attempt to highlight the59

general issues throughout with a running example. For simplicity (and so one can obtain60

explicit expressions for all quantities of interest) we consider a species with two age classes61

that lives is a seasonal environment. We census the population at the start of spring. Both62

age 1 and age 2 individuals produce offspring during the summer, with fecundity m1 and63

m2. The offspring then survive the winter with probability s0, and age 1 individuals64

survive the winter with probability s1. All age 2 individuals die at the end of the breeding65

season. Thus, the number of age 1 and age 2 individuals at the start of spring next year66

(denoted by n1(t+ 1) and n2(t+ 1) respectively) can be computed from the number of67

these kinds of individuals at the start of spring this year (denoted by n1(t) and n2(t)) as68

n1(t+ 1) = n1(t)m1s0 + n2(t)m2s0 (1)

n2(t+ 1) = n1(t)s1 (2)

or in matrix notation69

n(t+ 1) = Ln(t) (3)
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where n is a vector whose components are the numbers of individuals in the different age70

classes and L is the Leslie matrix71

L =

m1s0 m2s0

s1 0

 (4)

In what follows we first consider the density independent case since this will serve as a72

useful benchmark. We then consider how things are altered under density dependence.73

2 Density independence (DI)74

By density-independence we mean that all vital rates are independent of density. Thus,75

under DI the population size will change exponentially. In this case all life history76

strategies that have an intrinsic growth factor larger than 1 will persist (we will use the77

terms ‘growth factor’ and ‘growth rate’ interchangeably). However, over time the strategy78

with the largest growth rate will come to make up the greatest fraction of the population.79

Therefore, over a long (evolutionary) time frame, after many mutations have occurred, we80

expect the population to be dominated by the life history strategy that has the largest81

growth rate. Thus, we can predict which life history strategy will dominate by predicting82

the life history strategy that maximizes growth rate.83

For and exponentially growing population, the growth rate, λ, of any strategy is defined84

implicitly by the Euler-Lotka equation85

∑
i

λ−ilimi = 1 (5)
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where li is the probability of surviving to age i and mi is the fecundity of individuals of age86

i. To find the strategy that maximizes λ we first need to delineate the strategies that are of87

interest. For example, in the case of antagonistic pleiotropy we are interested in the88

trade-off between early and late-life fitness components. At the optimal life history the89

effect on λ of any change in one component of fitness must be exactly balanced by the90

effect on λ of the resulting change (due to pleiotropy) in the other component of fitness (if91

this wasn’t true then it would be possible to increase λ). And we can use the results of92

Hamilton [4] to compute the effect on λ of a change in any life history component of93

interest.94

Running Example - For our running example the Euler-Lotka equation is95

λ−2s0s1m2 + λ−1s0m1 = 1 (6)

(note that l2 = s0s1 and l1 = s0). In fact, although the Euler-Lotka equation typically96

defines λ implicitly as a function of the life history parameters, this model is simple enough97

that we can write down λ as an explicit function of these fitness parameters:98

λ =
1

2

(
m1s0 +

√
m2

1s
2
0 + 4m2s0s1

)
(7)

In other words, equations (6) and (7) are simply two different but equivalent ways of99

expressing how the dominant eigenvalue of L is a function of the vital rates.100

Let’s now consider a case of antagonistic pleiotropy in which there is a trade-off between101

the age-specific survival probabilities s0 and s1. To make things concrete, let’s use x to102

denote the intrinsic survival probability of a newborn reaching age 1, and 1− x to be the103

intrinsic survival probability of an age 1 individual reaching age 2. In this case we can104
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think of x as a measure of the rate of senescence. Large values of x mean that early-life105

survival is high and late-late survival is low, and so the drop in survival with age is large106

(i.e., a large rate of senescence). Further, let’s use p to denote an age-independent survival107

probability related to sources of mortality external to the organism (i.e., extrinsic108

mortality). From our definition of ‘extrinsic’ we have s0 = px and s1 = p(1− x). In this109

context, Williams’ hypothesis is about how changes in p affect senescence (here defined by110

x). And again we stress that there is no age-dependence in this external source of mortality111

and that it acts in way that is independent of the ‘intrinsic’ survival rate at each age, x and112

1− x. The figure below plots the growth rate λ as a function of x for two different values of113

p (and with m0 = 1 and m1 = 9). The top (dashed) curve corresponds to p = 0.9 and the114

bottom (solid) curve corresponds to p = 0.8.115

0.2 0.4 0.6 0.8 1.0
Rate of Senescence (x)

0.5

1.0

1.5

Growth rate (lambda)

116

We can see that, although decreasing p (i.e., increasing age-independent mortality) reduces117

the growth rate for any fixed value of x (as expected) it does not alter where the growth118

rate reaches a maximum as a function of x. In fact, for this simple model we can find the119

value of x that maximizes λ directly by differentiating (7), setting the result to zero, and120

solving for x. We get121

x∗ =

√
m2

2
√
m2 −m1

(8)

6



We can see that, as illustrated in Figure 1, the optimal rate of senescence does not depend122

on the extrinsic source of mortality p, meaning that Williams’ hypothesis does not hold in123

this case.124

Before moving to the density-dependent case it is worth laying out how Hamilton’s [4]125

approach relates to the above result in this simple model. As we have already mentioned,126

this example is simple enough that we can write the growth rate λ explicitly as a function127

of the life history parameters and so, to find the optimal life history, we can directly128

differentiate this function. More generally, Hamilton [4] differentiated λ implicitly using the129

Euler-Lotka equation. To do so in this simple example we differentiate λ in equation (6)130

implicitly with respect to the life history parameters s0 and s1. We get131

∂λ

∂s0
∝ m1 + s1m2λ

−1

∂λ

∂s1
∝ s0m2λ

−1 (9)

where the constant of proportionality in both is the same and is equal to 1/T , where T is a132

measure of generation time given by T = s0m1λ
−1 + 2s0s1m2λ

−2. Equations (9) are exactly133

Hamilton’s [4] fitness sensitivity expressions in the context of this simple example. To134

complete the picture, recall that both s0 and s1 are functions of x in our example, and so135

the optimal life history occurs when the fitness effects through expressions (9) exactly136

balance one another. In other words, the optimal value of x must satisfy137

∂λ

∂s0

ds0
dx

+
∂λ

∂s1

ds1
dx

= 0 (10)

or, using Hamilton’s [4] expressions (9) and noting that s0 = px and s1 = p(1− x) and so138
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ds0/dx = −ds1/dx, we get139

m1 + s1m2λ
−1 − s0m2λ

−1 = 0 (11)

It is important to note that in equation (11) λ is not arbitrary, but rather it is defined by140

the Euler-Lotka equation (i.e., either by 6 or equivalently by 7). Thus, if we substitute this141

definition into (11) we can then solve for the optimal value of x and we get (8) as before142

(as we must since both calculations are simply different ways of computing the same143

thing). And as we already mentioned, extrinsic mortality has no effect on the optimal rate144

of senescence. In fact, we can see directly from Hamilton’s [4] expressions (9) that extrinsic145

mortality will have no effect because they do not depend on p. To see this it is critical to146

note that λ does depend on p (it can be seen to be proportional to p from equation (7))147

but the s′s are proportional to p as well and because every s is multiplied by a λ−1 in148

Hamilton’s [4] expressions (9) the p′s cancel.149

3 Density dependence (DD)150

So far our conclusions agree with the claims of Moorad et al [1]. We now turn the the case151

of density-dependence. We take the existence of DD to mean that at least some of the vital152

rates dependent on population density. Usually, however, people mean a bit more than this153

when invoking density dependence. In particular, since a population might still grow in an154

unbounded way even if the vital rates depend on density (e.g., if DD is weak), people155

usually take DD to mean that population size is regulated in some way. Consequently, we156

define DD as a situation in which at least some of the vital rates depend on density, and157

they do so in a way that prevents unbounded population growth.158
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How do we incorporate DD? In general this can be complicated because, under DD the159

long-term population size can reach a steady state, it can display periodic behaviour, or it160

can even display chaotic behaviour. How we model evolution (and the predictions that can161

be made about evolution) therefore typically depends on what sorts of long-term162

population dynamics we want to consider. Although it is perhaps not very realistic, the163

majority of theory on the evolution of senescence and Williams’ hypothesis involving164

density dependence (including Moorad et al. [1]) either implicitly or explicitly assumes165

that, in the long term, the population size reaches a steady state. Therefore we make this166

assumption here as well.167

What above evolution? How do we predict the evolutionary outcome under DD?168

Presumably, if during the process of evolution the population is to eventually settle down169

to an ‘optimal’ strategy, then this means that evolutionary change would essentially stop.170

In turn this means that the ‘optimal’ strategy must be ‘uninvadable’. In other words, once171

most individuals in the population are using this strategy, it must be the case that any172

mutant strategy that appears will have a lower fitness (i.e., a lower growth rate, λ).173

Otherwise, the population would continue to evolve.174

Given the above, there are therefore two conditions that must be used to characterize the175

predicted evolutionary outcome. Namely, once the population has reached demographic176

and evolutionary equilibrium we require that: (1) the population is not changing in size177

and thus λ = 1, and (2) the growth rate λ must be maximized as a function of the life178

history strategy of interest. The key difference from the DI case is therefore that some of179

the life history parameters now depend on density (which we denote by N) and λ must180

therefore be maximized subject to the constraint that, at this maximum, the density N is181

such that we also have λ = 1.182

Running Example - To make our point we will assume that density dependence acts solely183

through fecundity and in an age-independent manner. Specifically, we assume that m1 and184
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m2 can be written as mi = f(N)bi where bi is the fecundity of an age i individual when185

population density is low, and f(N) is a decreasing function of population density N (with186

f(0) = 1) that captures the age-independent density dependence. All other assumptions187

about the model structure remain the same as the DI case (including the assumption that188

extrinsic mortality acts in an age-independent way). This is a situation in which Moorad et189

al. ([1]; p. 525) claim Williams’ hypothesis is still not valid (just as it wasn’t in the DI case190

above) because, as Moorad et al. [1] claim, ‘density dependent population regulation191

cannot, by itself, cause changes in selection’. As our example will illustrate, this is not192

true. The mere addition of density-dependence on fertility (in a completely193

age-independent way) does indeed cause changes in selection on senescence. It is difficult to194

tell where the error in this part of Moorad et al.’s [1] analysis lies because many key195

components of their analysis are not clearly stated or defined. For example, what they196

mean by extrinsic mortality being age-dependent is never explicitly defined despite this197

forming the backbone of their entire argument (we also could not obtain a clear answer in198

our correspondence). Their text, however, suggests that they consider extrinsic mortality199

to be age-dependent if it results in a change in the stable age distribution. For example,200

when explaining what they claim is a flaw in Williams’ model they say ‘It has long been201

known that the addition of age-independent mortality can have, by definition, no effect on202

age-distributions. It follows that mortality that is truly independent of condition will not203

affect within- or among age distributions of phenotypes’ ([1], p. 520). But this is both204

incorrect (with density dependence, the stable age distribution can indeed change as a205

result of a change in age-independent mortality - our simple model below provides an206

example) and irrelevant (a change in the age distribution is neither necessary nor sufficient207

for a change in age-specific selection on senescence).208

Returning to our example, equations (6) and (7) continue to hold under DD but now the209

m’s are functions of population density N . Thus, to construct a plot analogous to that of210

Figure 1 we now must also specify the population density N . Figure 2 illustrates this for211
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the same two values of p used in Figure 1 (again dashed and solid) but now for two212

different values of population density as well (black vs blue). We have chosen f(N) = e−N213

for simplicity, and the black plot corresponds to N = 0 and so is identical to that of Figure214

1 while the blue plot corresponds to N = 0.5. We have also plotted the λ = 1 line.215

0.0 0.2 0.4 0.6 0.8 1.0
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216

We can see that in general λ is larger in low density populations for any given value of x217

(as we would expect). Now as we have stressed, at eco-evolutionary steady state not only218

must λ be maximized but the population density must also have reached a value such that219

λ = 1. Graphically, this means that the population density must be such that the graph of220

λ as a function of the life history strategy (here rate of senescence x) must be tangent to221

the λ = 1 line when it reaches its maximum. The plot must therefore look like that shown222

in Figure 3 at eco-evolutionary equilibrium.223
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Let’s now use this fact to compute the predicted value of x. As before we will do so using225

Hamilton’s [4] results. Equations (9) continue to hold, as do equations (10) and therefore226

(11) since they characterize the fact that when λ is maximized, early and late-life fitness227

effects must be balanced. But we must now also enforce the condition that at228

eco-evolutionary steady state the population size is unchanging (i.e., λ = 1). Substituting229

this into equation (11) gives the necessary condition230

m1 + s1m2 − s0m2 = 0 (12)

or, more explicitly231

b1f(N̂) + s1b2f(N̂)− s0b2f(N̂) = 0 (13)

where N̂ is the population size at which λ = 1. We can cancel f(N̂) from this equation to232

get233

b1 + s1b2 − s0b2 = 0 (14)

which can then be solved for the optimal value of x to get234

x∗ =
1

2
+

b1
2b2p

(15)

Notice that now the optimal rate of senescence does depend on p. In particular, as p goes235

down (i.e., as age-independent extrinsic mortality goes up) the optimal rate of senescence,236

x, goes up exactly in accordance with Williams’ hypothesis [5].237
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Incidentally, we point out that equation (14) is exactly the necessary condition that we238

would get if we had instead simply maximized R0 in this model in the absence of density239

dependence (i.e., assuming N = 0). Specifically, R0 = s0m1 + s0s1m2 = s0b1 + s0s1b2 where240

the last equality holds when N = 0. If we then differentiate this with respect to x and set241

the result equal to zero we get exactly equation (14). This is no coincidence. A beautiful242

(and we believe underappreciated) paper by Mylius and Diekmann [6] proves that243

whenever density dependence acts in an age-independent way through feertility (as244

assumed here in our simple model) the optimal life history is always one that maximizes245

R0. We have used Hamilton’s [4] equations here rather than the results of Mylius and246

Diekmann [6] simply to better match the approach taken by Moorad et al. [1]. However,247

the techinques of Mylius and Diekmann [6] provide a much more general and simpler way248

to obtain the same prediction.249

It is also worth noting that we can see directly from Hamilton’s [4] expressions (9) that250

extrinsic mortality p will affect the predictions under this form of density dependence.251

Unlike in the DI case, the population density will always adjust in the long term so that252

λ = 1. Thus, as Hamilton [4] himself noted, expressions (9) become253

∂λ

∂s0
∝ m1 + s1m2

∂λ

∂s1
∝ s0m2 (16)

or, under the form of DD considered here254
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∂λ

∂s0
∝ b1 + s1b2

∂λ

∂s1
∝ s0b2 (17)

(because both have the same density dependence factor f(N̂)). Now the p’s that are part255

of the survival probabilities s0 and s1 no longer cancel as they did in the DI case.256

As an aside, one might wonder if perhaps λ is not always equal to 1 in the density257

dependent case. For example, suppose a population has reached eco-evolutionary258

equilibrium. Now imagine increasing the age-independent extrinsic mortality by decreasing259

p. The first immediate effect will be that the population size decreases and so we have260

λ < 1 during this phase. Doesn’t this contradict the assumption made above that we must261

have λ = 1? This appears to be part of the justification given in Moorad et al. [1] for their262

belief that there is no difference in predictions between DI and DD. For example, they263

state that Williams and Day’s [3] defense of Williams’ hypothesis ‘begins with the264

condition that density regulation maintains stable population sizes with no time lag265

regardless of any mortality effects caused by changing density ([1], p.524)’, and that ‘even266

long-term stationary populations are not invariant. They are dynamically stable and must267

be in states of increase ...[λ > 1]... and decrease...[λ < 1]...for much of the time. ([1], p.268

525)’ Such transient effects on the population size certainly will occur, and are potentially269

very interesting, but these quotes suggest that Moorad et al. [1] have not appreciated an270

important aspect of the mathematical foundation of all optimization models based on the271

Euler-Lotka (EL) equation; namely, all mathematical analyses are valid only for the272

asymptotic state of the population. This means that such analyses (including those of273

Moorad et al. [1]) cannot speak to these transient effects. They apply only once the274

population has reached a stable age-distribution and is growing exponentially (the DI case)275

or once the population has reached stable age distribution and is stationary in size (the DD276
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case). This is simply a mathematical fact and it invalidates all of Moorad et al.s [1]277

arguments having to do with these transient effects.278

Indeed, for similar reasons, most of the considerations of p. 525 of their paper are279

mathematically invalid. To reiterate, anytime one uses the Euler-Lotka equation in such280

models one is necessarily assuming that the population size is changing exponentially and281

that the dynamics have reached their asymptotic state (and so a stable age distribution has282

been reached). These assumptions form the very basis of how the Euler-Lotka equation is283

derived (e.g., see [7]). Thus, the EL equation can only be used in three situations: (i) the284

population is growing exponentially (λ > 1), (ii) the population is declining exponentially285

(λ < 1), or (iii) the population is constant is size (i.e., changing exponentially with a286

growth rate of λ = 1.). Therefore, if DD prevents unbounded population growth then,287

asymptotically, the population must either reach a constant size (i.e., λ = 1 and we can use288

the EL equation as we have above), or it will continue to fluctuate in size (in which case289

the population will not, typically, be changing exponentially and so we cannot use the EL290

equation). Thus, there is no actual mathematical basis to Moorad et al.’s [1] claim that291

setting λ = 1 in the analysis of DD is arbitrary and that, although ‘...it does make it292

slightly easier to develop models if one assumes that [λ] is constant over time [and equal to293

1] models that permit [λ] to change in response to some ecological shift are not intractable294

(Box 3)’. Everything in their Box 3 is based on the EL and so necessarily excludes the very295

cases that they are attempting to explain. It is certainly interesting to ask about the296

validity of Williams’ hypothesis in situations where DD results in continual fluctuations in297

population size but nothing in the analysis of Abrams [2], nor Williams and Day [3], nor298

Moorad et al. [1] speaks to this question. (Note that it is possible that the EL equation299

sometimes provides an approximation under other conditions, but whether this is true, and300

how accurate the approximation might be, typically must be determined on a case-by-case301

basis.).302
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Finally we wish to stress (as we said in our letter) that the form of DD really does dictate303

whether Williams’ hypothesis holds. To highlight this fact we now show that if we simply304

change DD so that it acts in an age-independent way through survival then Williams’305

hypothesis no longer holds. Specifically we now treat the m’s as density-independent but306

define s0 = pxf(N) and s1 = p(1− x)f(N). Again expressions (16) hold but now, under307

this form of DD, they simplify to308

∂λ

∂s0
∝ m1 + p(1− x)f(N̂)m2

∂λ

∂s1
∝ pxf(N̂)m2 (18)

We cannot yet tell from these expressions what will happen because f(N̂) will likely309

depend on p. In fact, from equation (7) we can see that310

λ =
1

2

(
m1x+

√
m2

1x
2 + 4m2x(1− x)

)
pf(N) (19)

and since N̂ is the population size for which λ = 1 we have311

f(N̂) =
2

p
(
m1x+

√
m2

1x
2 + 4m2x(1− x)

) (20)

Thus, f(N̂) is proportional to 1/p and so the p’s in Hamilton’s expressions cancel, meaning312

extrinsic mortality has no effect on the optimal life history. Thus, under this form of DD313

Williams’ hypothesis is not valid. So the form of DD really does determine whether314

Williams’ hypothesis is valid.315
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Incidentally, if we take equation (11) with λ = 1 and then substitute this form of DD we get316

m1 + p(1− x)f(N̂)m2 − pxf(N̂)m2 = 0 (21)

and if we then also substitute in the expression for f(N̂) we get the condition317

2m2 − 4m2x+m2
1x+m1

√
m2

1x
2 + 4m2x(1− x) = 0 (22)

Although perhaps not immediately obvious, this last condition is exactly the necessary318

condition we would get if we had instead simply maximized λ in this model in the absence319

of density dependence (i.e., assuming N = 0). Again this is no coincidence. The paper by320

Mylius and Diekmann [6] proves that whenever density dependence acts in an321

age-independent way through survival as assumed here, the optimal life history is always322

one that maximizes λ.323

4 Conclusions324

Moorad et al. [1] claim that Williams made a conceptual error in his 1957 paper and so his325

hypothesis is wrong/flawed etc. because ‘mortality that is truly independent of condition...’326

cannot affect selection on senescence, and that extrinsic mortality can affect selection only327

if ’...one changes the meaning of extrinsic to mean age dependent.’ As we mentioned in our328

letter both Abrams ([2], p.882) and Williams and Day ([3], p.1482) independently329

demonstrate that this is not true. Here, with the above results, we have again330

demonstrated this fact.331

Although the mathematical details are obviously important we feel that it is equally332
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important that some sort of intuition for the results be obtained from the mathematics. To333

this end let’s again consider equation (11) from our simple two-age model, which is334

repeated here for easy reference:335

m1 + s1m2λ
−1 − s0m2λ

−1 = 0 (23)

Recall that this equation specifies the balance that must occur between early and late-life336

fitness effects of a change in senescence at the optimal life history. The first two terms are337

the early-life effect (i.e., the effect of a change in survival to age 1) and the last term is the338

late-life effect (i.e., the effect of a change in survival from age 1 to age 2).339

In all analyses (both DI and DD) a key ingredient in the evolution of senescence is the idea340

that the fitness consequence of a change in vital rates at age a must discounted by the341

probability of survival to age a (because only the surviving fraction of the population342

expresses the trait). This is captured by the s’s in equation (23). Now in the DI case,343

because the population is growing exponentially, the fitness consequence of a change in344

vital rates at age a must also be discounted by the population growth rate (because345

offspring produced earlier can, themselves, reap the rewards of exponential growth). This is346

captured by the λ’s in equation (23). As a result, when extrinsic mortality increases, the347

discounting through survival gets stronger (i.e., there is a smaller probability of reaching348

age a - the s’s in equation (23) decrease) while the discounting through population growth349

gets weaker (i.e., the exponential growth potential is reduced and so λ−1 in equation (23)350

gets larger). You can see in equation (23) that these two effects exactly cancel, and351

Williams hypothesis therefore does not hold.352

Under DD there is no longer any discounting due to population growth because at353

eco-evolutionary equilibrium the population is constant in size. In other words, equation354

(23) becomes355
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m1 + s1m2 − s0m2 = 0 (24)

Notice that the fitness consequence of a change in vital rates at age a are still discounted356

by the probability of survival to age a (through the s’s). And because this gets stronger as357

extrinsic mortality increases, all else equal this will tend to make Williams’ hypothesis358

valid. You can see this in equation (24) by the fact that early-life reproduction (the m1359

term) is not discounted as much as late-life reproduction. This is precisely the effect that360

Williams [5] identified in his 1957 paper and so, in a very important sense, Williams’361

intuition and reasoning was absolutely correct.362

Of course all else might not always be equal because, when there is DD, some of the vital363

rates will be depressed at eco-evolutionary equilibrium owing to population density. Thus,364

we can think of this as another way in which the fitness consequences of change in vital365

rates at age a must be weighted. It appears that Williams’ [5] reasoning implicitly assumed366

that such density effects apply equally across ages and so all else would be equal [3]. For367

example, if DD acts through fertility, then equation (24) becomes368

b1f(N̂) + s1b2f(N̂)− s0b2f(N̂) = 0 (25)

Since all terms in this equation are depressed equally by the DD (because DD is acting369

uniformly through fertility in an age-independent way) this does not affect the balance of370

early versus late-life effects. In other words, all else is indeed equal and so the discounting371

that occurs through survival when extrinsic mortality increases does indeed select for372

greater senescence as Williams [5] argued.373

On the other hand, sometimes all else will not be equal. For example, if DD acts uniformly374

through survival then equation (24) becomes375
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m1 + s∗1f(N̂)m2 − s∗0f(N̂)m2 = 0 (26)

where we have defined s∗i = si/f(N̂) for clarity of notation. Now, we can see that the376

depression of vital rates as a result of DD affects only some of the terms and so it has the377

potential to alter the balance. When extrinsic mortality increases, the discounting through378

survival gets stronger (i.e., there is a smaller probability of reaching age a) just as Williams379

[5] argued, and again the reduced population size that results means that DD gets weaker.380

Here, however, this weaker DD affects the mortality rates and this exactly counteracts the381

effect that Williams [5] identified. Put another way, with this form of DD, when extrinsic382

mortality is increased, the compensation that occurs through DD means that the overall383

probability of surviving to any given age is unchanged (and thus Williams’ hypothesis does384

not hold).385

Whether one chooses to view the above conclusions as meaning that Williams’ [5]386

reasoning was wrong, conceptually flawed, etc. is a matter of opinion, but the above387

predictions themselves are facts not opinions.388

So why all the confusion in the literature?389

To finish we summarize exactly what previous theory tells us about Williams’ hypothesis,390

with the aim of dispelling some of the confusion on the topic that seems to have crept into391

the literature. To do so we also comment upon three other papers on this topic that have392

been published and that are discussed in Moorad et al. [1].393

We begin with the results of Abrams [2], that show three unambiguous facts about394

Williams’ hypothesis:395
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1. If a population is growing exponentially, then a change in age-independent mortality396

will not affect selection on senescence (i.e., Williams hypothesis is not valid).397

2. For populations subject to density dependence, and where this DD is age-independent398

and leads to a stable population size, Williams hypothesis is valid if the DD acts399

solely through fertility and it is invalid if the DD acts solely through mortality.400

3. For populations subject to other forms density dependence the outcome can be more401

complex.402

Thus, without question, it is a fact that age-dependency of external mortality (as defined403

here) is not required for Williams hypothesis to be valid (incidentally, [2] also shows that,404

when mortality is age- or condition-dependent, selection can be changed in either direction405

- a point on which Moorad et al [1] agree). In 1995 Mylius and Diekmann [6] then406

published a paper that provided a very general and simpler way to model life history407

evolution under density dependence. Williams and Day [3] then used the theoretical results408

in [6] to extend the analysis of [2] other ways, part of which involved independently409

re-deriving the above three facts.410

With this as a backdrop, it is indeed confusing that at least three other theoretical studies411

published since then seem to contradict these facts and to contradict one another as well.412

First, Caswell [8] and Caswell and Shyu [9] make the very same point as Moorad et al.’s [1]413

main thesis; namely, that Williams hypothesis is never valid unless the extrinsic mortality414

is age-dependent. To make matters even more confusing, they come to their conclusion for415

entirely different reasons than those Moorad et al. [1]. So, taken at face value, their results416

seem to directly contradict fact (2) above. Then, in 2018, da Silva [10] also examined417

Williams’ hypothesis and claimed exactly the opposite of Caswell et al. [8, 9]; namely, that418

under density dependence, Williams’s hypothesis is always valid. Clearly these claims can’t419

all be correct.420
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Unlike Moorad et al. [1], the discrepancy between the results of Caswell et al. [8, 9] and421

fact (2) above stem entirely from a difference in definitions. Caswell et al. [8, 9] (implicitly)422

define age-independent DD as DD that affects all entries of the Leslie matrix in the same423

way. In our simple example this is mathematically equivalent to assuming that DD acts424

solely on mortality in an age-independent way. As a result, the findings of Caswell et al.425

[8, 9] are actually in complete agreement with fact (2) - Williams’ hypothesis does not hold426

when DD acts uniformly on mortality rates. However, from a biological standpoint, it427

seems reasonable to consider DD acting uniformly on fertility across all ages as being428

age-independent as well. This is the case we explored above where Williams’ hypothesis is429

valid. In this case not all entries of the Leslie matrix are affected by DD in the same way430

(only the top row is affected) and so Caswell et al. [8, 9] simply excluded it from their431

analysis. Again, it is important to stress, however, that this simple difference in definition432

is not what underlies the discrepancy between Moorad et al. [1] and previous findings (as433

we have explained in detail in the bulk of this appendix).434

In the case of da Silva [10], however, unfortunately the problem is simply that the analysis435

is incorrect. In particular, the analysis is mathematically inconsistent because, while it436

correctly notes that λ = 1 in the DD case (r = 0 in [10]), it does not actually incorporate437

the very DD in the vital rates that causes λ to equal 1. As a result, [10] simply recovers438

only part of the story; namely, the part that was identified by Williams [5] and that439

assumes all else is equal. As we have explained above, however, when DD is explicitly440

incorporated into the vital rates, all else need not be equal - it depends on how the DD441

operates, exactly as detailed in fact (2).442

References443

[1] J. Moorad, D. Promislow, and J. Silvertown. Evolutionary ecology of senescence and a444

reassessment of williams extrinsic mortality hypothesis. Trends in Ecology and445

22



Evolution, 34:519–530, 2019.446

[2] P.A. Abrams. Does increased mortality favor the evolution of more rapid senescence?447

Evolution, 47:877–887, 1993.448

[3] P.D. Williams and T. Day. Antagonistic pleiotropy, mortality source interactions, and449

the evolutionary theory of senescence. Evolution, 57:1478–1488, 2003.450

[4] W.D. Hamilton. The moulding of senescence by natural selection. Journal of451

Theoretical Biology, 12:12–45, 1966.452

[5] G.C. Williams. Pleiotropy, natural selection, and the evolution of senescence.453

Evolution, 11:398–411, 1957.454

[6] S. Mylius and O. Diekmann. On evolutionarily stable life histories, optimization and455

the need to be specific about density dependence. Oikos, 74:218–224, 1995.456

[7] S.P. Otto and T. Day. A biologist’s guide to mathematical modeling in ecology and457

evolution. Princeton University Press, 2007.458

[8] H. Caswell. Extrinsic mortality and the evolution of senescence. Trends in Ecology459

and Evolution, 22:173–174, 2007.460

[9] H. Caswell and E. Shyu. Senescence, selection gradients and mortality. In461

R. Shefferson, O. Jones, and R. Salguero-Gomez, editors, The Evolution of Senescence462

in the Tree of Life, pages 56–82. Cambridge University Press, Cambridge, 2017.463

[10] J. da Silva. Reports of the death of extrinsic mortality moulding senescence have been464

greatly exaggerated. Evolutionary Biology, 45:140–143, 2018.465

23


