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The evolution of resistance to drugs is a major public health concern as it erodes the efficacy of our therapeutic arsenal against

bacterial, viral, and fungal pathogens. Increasingly, it is recognized that the evolution of resistance involves genetic changes at

more than one locus, both in cases where multiple changes are required to obtain high-level resistance, and where compensatory

changes at secondary loci ameliorate the costs of resistance. Similarly, multiple loci are often involved in the evolution of multidrug

resistance. There has been widespread interest recently in understanding the evolutionary consequences of multilocus resistance,

with many empirical studies documenting extensive patterns of genetic interactions (i.e., epistasis) among the loci involved.

Currently, however, there are few general theoretical results available that bridge the gap between classical multilocus population

genetics and mathematical epidemiology. Here, such theory is developed to shed new light on these previous studies, and to

provide further guidance on the type of data required to predict the evolution of pathogens in response to drug pressure. Our

results reveal the importance of feedbacks between the epidemiological and evolutionary dynamics, and illustrate how these

feedbacks can be exploited to control resistance. In particular, we show how interventions such as social distancing and isolation

can influence rates of recombination, and how this then can slow the spread of multilocus resistance and increase the likelihood

of reversion to drug sensitivity once drug therapy has ceased.
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The evolution of drug resistance in pathogens often involves ge-

netic changes at more than one locus. This can occur when mul-

tiple changes are required to obtain high-level resistance, when

compensatory changes at secondary loci can ameliorate the costs

of resistance at a focal locus, or when resistance to multiple drugs

evolves (Maisnier-Patin and Andersson 2004; Weinreich et al.

2005; Poelwijk et al. 2007; Yeh et al. 2009; Andersson and Hughes

2010; MacLean et al. 2010). Interestingly, recent studies have also

begun to document extensive patterns of genetic interaction (i.e.,

epistasis) across multiple loci in a variety of microbes, from an-

tibiotic resistance in bacteria (Weinreich et al. 2006; Trindade

et al. 2009; Wiesch et al. 2010; Hall and MacLean 2011; Salverda

et al. 2011) to drug resistance in HIV (Hinkley et al. 2011), to

antigenic escape in influenza (Kryazhimskiy et al. 2011), to evolu-

tionary responses to new conditions (Chou et al. 2011; Kvitek and

Sherlock 2011; Khan et al. 2011; Rokyta et al. 2011). Together,

these findings call for a better understanding of multilocus evo-

lutionary dynamics within the context of infectious disease epi-

demiology. There has been considerable work in the population-

genetic literature on understanding the evolutionary dynamics of

populations when multiple loci affect the trait of interest (Crow

and Kimura 1970; Bürger 2000; Kirkpatrick et al. 2002), but sur-

prisingly little has been done integrating multilocus evolutionary

dynamics with mathematical models for the dynamics of infec-

tious diseases.

Here, we bridge this gap by developing theory for multi-

locus population genetics within the context of commonly used

compartment models in mathematical epidemiology (Hethcote
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2000). This not only allows us to use insights from the population

genetic literature to better understand the evolution of multilo-

cus drug resistance, but it also introduces some novel aspects to

the evolutionary dynamics of multilocus genotypes, arising from

evolutionary-epidemiological feedbacks. Our focus is on devel-

oping relatively generic models for the spread of drug resistance,

with the view that the very same processes elucidated here will

play out in models for specific diseases as well. Furthermore,

although our focus is on models for epidemiological dynamics

at the population level, the results are equally applicable to the

evolution of drug resistance within single, infected, individuals

as has been explored in many HIV studies (Bretscher et al. 2004;

Althaus and Bonhoeffer 2005; Fraser 2005; Carvajal-Rodrı́guez

et al. 2007).

In what follows, we first present the generic compartment

model that forms the epidemiological basis of our analysis, and we

then develop the multilocus population-genetic dynamics within

this context. After having described this complete evolutionary-

epidemiological system, we then examine the role of recombina-

tion, epistatic interactions, and heterogeneity in selection (both in

space and time), on the evolution of multilocus drug resistance. In

particular, we allow selection coefficients for each locus to depend

on both parasite transmission and recovery rates, in treated and

untreated environments. This yields a general theoretical frame-

work that can be used to shed light on many different scenarios

of drug resistance evolution. As will be shown, it also suggests

some novel ways in which interventions can be used to control

the evolutionary dynamics of resistance.

Evolutionary Epidemiology of Drug
Resistance
EPIDEMIOLOGY

We begin by describing the relatively simple epidemiologi-

cal model on which our results are based. The epidemiologi-

cal dynamics are described by a classical susceptible-infected-

susceptible compartment model (Hethcote 2000; Anderson and

May 2001). The susceptible population (whose density is de-

noted by S) is maintained by a constant influx of new individuals

balanced by a constant per capita mortality rate (see Table 1 for

notation). Susceptible individuals become infected according to

a law of mass action, and if they recover from infection they

are once again susceptible. Such a model is applicable to several

infectious diseases including most bacterial infections. Upon in-

fection, each individual has a probability τ of being treated with

a drug (e.g., an antibiotic), although we will also use the same

model for situations in which there are two drugs available, and τ

is then the probability that an infected individual is administered

drug 1 (as opposed to drug 2).

Allowing for genetic variation in the pathogen in terms of

transmission and recovery, the epidemiological dynamics for the

total numbers of susceptible, S, infected, I, and treated, T , indi-

viduals are given by (Appendix A; Table 1):

dS

dt
= θ − μS − (β̄I + β̄T T )S + (γ̄I + γ̄T T )

dI

dt
= (1 − τ)(β̄I + β̄T T )S − (μ + α + γ̄)I

dT

dt
= τ(β̄I + β̄T T )S − (μ + α + γ̄T )T ,

(1)

where θ is a constant immigration rate of susceptible hosts, μ

is the per capita mortality rate of hosts in the absence of infec-

tion, β is the transmission rate of the infection from infected

to susceptible hosts, γ is the per capita rate of clearance of

the infection, and α is the pathogen-induced host mortality rate

(i.e., virulence). The superscript “T” indicates parameters spe-

cific to the treated subpopulation. For example, drug treatment

might decrease transmission and/or increase recovery rate for a

given genotype of pathogen. Furthermore, this effect of treatment

will typically be different for different genotypes; and thus, the

“overbars” in equation (1) indicate averages over all pathogen

genotypes.

EVOLUTION WITH RECOMBINATION

Model (1) specifies how the total number of susceptible, infected,

and treated hosts change over time. To track the evolutionary dy-

namics of the parasite, we now need to describe the underlying

genetic variation in the pathogen population. For simplicity, we

suppose that drug resistance in the pathogen population is gov-

erned by two diallelic loci, and denote the four relevant alleles

by a/A and b/B. We assume that treatment affects transmission

and recovery only, and thus the genotype of the pathogen affects

these quantities as well. We denote the effect, on transmission, of

carrying the “A” allele instead of the “a” allele, by �βA, in an

untreated host. Likewise we use �βB for the effect of carrying the

“B” allele instead of the “b” allele, and �βE to denote the extra

effect (in addition to �βA and �βB) of carrying both alleles (i.e.,

the epistasis in transmission rate). Thus, a pathogen of genotype

“AB” has a transmission rate of β + �βA + �βB + �βE , where

β is the baseline transmission rate. Analogous definitions hold

for the recovery rate, γ, as well as for these parameters in treated

individuals (Table 2).

In order for recombination to occur, a host must first be

infected by more than one pathogen strain, and we incorporate

this into the model using a superinfection approach (Nowak and

May 1994). This approach posits that, upon coinfection, com-

petitive exclusion occurs rapidly relative to the timescale of the

epidemiological dynamics at the population level. During this
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Table 1. Table of notation

(in all cases a superscipt “T” denotes the value in treated hosts).

S Number of susceptible hosts.
I Number of infected, untreated, hosts.
T Number of infected, treated, hosts.
τ Probability of treatment upon infection.
θ Immigration rate of susceptible hosts.
μ Host natural mortality rate.
α Pathogen-induced mortality (e.g., virulence)
β Transmission rate (�βi defined in Table 2, β̄ = average over all pathogen genotypes).
γ Recovery rate (�γi defined in Table 2, γ̄ = average over all pathogen genotypes).
σ Relative efficiency of superinfection.
pi Frequency of allele i.
D Linkage disequilibrium, LD, between loci.
δT

j |i Probability that second contains allele j given the first contains i; δT
j |i = (pT

i pT
j + DT )/pT

i .

r Recombination rate.
si Selection coefficient i where i ∈ {A, B, E}; si = ((1 − τ)S + σI/2)�βi − �γi .
sT

i Selection coefficient i in treated hosts; sT
i = (τS + σT /2)�βT

i − �γT
i .

ŝi si in absence of recombination; that is, ŝi = ((1 − τ)S + (1 − r )σI/2)�βi − �γi .
ŝT

i sT
i in absence of recombination; that is, ŝT

i = (τS + (1 − r )σT /T 2)�βT
i − �γT

i .
fi j Frequency of untreated infections with genotype ij.
�T

pi
Allele i frequency difference between pool of propagules coming into the treated hosts from untreated infections, and this

frequency in treated infections; that is,
�T

pi
= pi

βi

β̄
− pT

i = (pi − pT
i ) + pi (

βi

β̄
− 1), where βi = � j

fi j

pi
βi j is the average transmission rate of allele i infections.

�T
D Difference in LD between pool of propagules coming into the treated hosts from untreated infections, and that of the

existing treated population; that is,
�T

D = ( f ABβAB

β̄

fabβab

β̄
− f AbβAb

β̄

fa Bβa B

β̄
) − DT .

Table 2. Summary of the transmission and clearance rates of each possible genotype in treated and untreated hosts.

Parasite traits

Transmission Clearance

Untreated Treated Untreated Treated

Parasite genotypes
Wild type ab β βT γ γT

Single mutants Ab β + �βA βT + �βT
A γ + �γA γT + �γT

A

aB β + �βB βT + �βT
B γ + �γB γT + �γT

B

Double mutant AB β + �βA + �βB + �βE βT + �βT
A + �βT

B +
�βT

E

γ + �γA + �γB +
�γE

γT + �γT
A + �γT

B +
�γT

E

transitory phase of coinfection, the two strains are allowed to re-

combine with probability r . Thus, after a superinfection event,

the strain that occupies the host is either one of the parental

strains (each with probability (1 − r )
/

2), or it is a recombinant

strain with probability r (a simple extension of the model would

allow for genotypic differences in within-host competition as

well, but we do not pursue these ideas here). We use the pa-

rameter σ to denote an infected individual’s relative susceptibility

to superinfection, with σ = 1 corresponding to the case where

infected hosts are equally susceptible as uninfected hosts, and

σ = 0 corresponding to the case where there is no superinfection

(Appendix A).

The evolutionary dynamics are modeled by tracking the allele

frequencies at each locus (denoted by pA and pB), along with

the linkage disequilibrium (LD) or genetic covariance between

the two loci (denoted by D). The dynamical equations for the
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allele frequencies in the treated population are (Appendix A):

dpT
i

dt
= pT

i

(
1 − pT

i

)(
sT

i + δT
j |i s

T
E

)
︸ ︷︷ ︸

direct selection

+ DT sT
j︸ ︷︷ ︸

indirect selection

+ I

T

(
τS + σT

/
2
)
β̄ �T

pi︸ ︷︷ ︸
gene flow

,

(2)

where i and j are either allele “A” or “B,” sT
i is the selection

coefficient for allele i, sT
E is the component of the selection

due to epistasis (Table 1), and δT
j |i = (pT

i pT
j + DT )/pT

i , which

is the probability that the allele at the second locus is j, given

that the allele at the first locus is i. Finally, �T
pi

is the differ-

ence between the frequency of allele i in the pool of propag-

ules coming into the treated hosts from untreated infections, and

this frequency in the treated infections (Table 1). The evolution-

ary dynamics in the untreated population are also as in equa-

tion (2) but with the superscripts T removed and the first fac-

tor of the third term in equation (2) being T
I ((1 − τ)S + σI/.2)

instead.

The first two terms in equation (2) are the effect of selection

on allele i. The factor pi (1 − pi ) is the genetic variance at this lo-

cus, and sT
i + δT

j |i s
T
E is the corresponding selection gradient, both

through the additive effect of allele i (referred to as direct selec-

tion below), as well as through epistatic interactions with allele

j at the second locus (referred to as the direct effect of epistasis

below). Notice that what matters from the standpoint of evolution

is epistasis in fitness which is related, but not equal, to epistasis in

the phenotypic traits, β and γ (Table 1). The second term, DT sT
j ,

is the indirect effect of selection on allele j at the second locus, on

the evolutionary dynamics of allele i at the first locus. Finally, the

third term in equation (2) represents gene flow from the untreated

to the treated population. The factor (τS + σT /2)β̄ is the sum of

the average rate at which new, treated, infections are generated by

untreated hosts τSβ̄, and the average rate at which already treated,

infected, hosts are superinfected by untreated hosts, σT β̄/2. The

quantity �T
pi

is a measure of differentiation and represents the dif-

ference in allele frequency between these new infections and the

infections already existing in the treated population. This differ-

ence can be regarded as being composed of two separate compo-

nents (Table 1). First, a component pi − pT
i , that accounts for any

difference in allele frequency between the untreated and treated

populations. Second, a component pi (βi/β̄ − 1), that accounts for

the fact that the most transmissible genotypes will tend to be the

ones most involved in gene flow. This will induce an evolutionary

effect even if there is no difference in allele frequency between

the two populations, provided that there are genotypic differences

in transmission rate (i.e., βi �= β̄; Day and Gandon 2006). Finally,

I/T scales these effects to account for differences in absolute size

between treated and untreated populations.

From equation (2) it can be seen that the evolutionary and

epidemiological dynamics interact through the process of gene

flow. An examination of the form of the selection coefficients,

however, reveals that these dynamics interact through selection as

well (Table 1). In fact, the selection coefficients reveal that im-

portant differences in the dynamics arise depending on whether

pathogen genotypes differ in transmissibility or recovery. If there

are genetic differences in transmissibility, then selection coeffi-

cients vary with the density of susceptible individuals in the pop-

ulation because a higher availability of susceptible hosts selects

more strongly for higher transmission (Day and Proulx 2004;

Day and Gandon 2007; Gandon and Day 2007). Notice also

that the presence of superinfection (i.e., σ �= 0) further increases

the strength of selection on transmission because it further in-

creases the size of the pool of hosts that can be infected (Day

and Gandon 2006). On the other hand, if pathogen genotype af-

fects the recovery rate only then the selection coefficients are

independent of the epidemiological dynamics. Thus, it is impor-

tant not only to understand how pathogen genotype affects fitness

in treated and untreated individuals, but to understand whether

these fitness effects act through transmission or clearance (or

both).

The equation for the dynamics of LD in the treated population

is

dDT

dt
= −σr

(
β̄T T + β̄I

)
DT︸ ︷︷ ︸

recombination

+ ((
1 − 2pT

A

)
ŝT

A + (
1 − 2pT

B

)
ŝT

B

)
DT︸ ︷︷ ︸

additive selection

+ (
DT + pT

A pT
B

) ((
1 − pT

A

)(
1 − pT

B

) − DT
)

ŝT
E︸ ︷︷ ︸

epistasis

+ β̄
I

T

(
Sτ + σT

2
(1 − r )

) (
�T

pA
�T

pB
+ �T

D

)
︸ ︷︷ ︸

gene flow

,
(3)

where ŝT
i is the selection coefficient accounting only for infections

that do not undergo recombination, and �T
D is the difference

between the LD in the pathogen pool that get transmitted from

the untreated to the treated population, and that of the existing

treated population (Table 1).

The first term in equation (3) accounts for how coinfection,

and subsequent recombination, randomizes the association be-

tween “A” and “B” and thus decreases the LD. The rate at which

this happens depends on the rate of superinfection as well as the

recombination rate, r. The second term accounts for how selective

changes in allele frequency alone can change the LD, provided

that it is nonzero. For example, positive LD will be amplified by

positive selection acting independently at each locus. The third

term accounts for how epistatic selection can alter the association
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between “A” and “B.” For example, if epistasis is positive (i.e.,

ŝT
E > 0) then “A” and “B” will do “extra well” when together, and

this thereby causes descendant pathogens to have “A” and “B”

associated with one another (i.e., to generate positive LD). Fi-

nally, the fourth term accounts for how LD changes through gene

flow, when the allelic frequencies or disequilibrium in the pool of

“migrants” from the untreated population differs from that of the

treated population. As described earlier, the �T
k are measures of

differentiation in quantity k between the new infections generated

by untreated, infected hosts, and hosts already in the treated class

(Table 1).

The model given by equations (1)–(3) is a nine-dimensional

(9D) system of dynamic variables, tracking the total number sus-

ceptible, infected, and treated hosts, along with the allele fre-

quencies and linkage disequilibria in each type of infection. An

alternative formulation, and one that is more common in the lit-

erature on infectious disease epidemiology, tracks the number of

infections of each genotype (see eq. A1, Appendix A). Each for-

mulation represents the same 9D dynamical system expressed in

different variables. There are, however, a couple of advantages

to the population-genetic formulation of equations (1)–(3). First,

it separates the epidemiological dynamics from the evolutionary

dynamics and thus allows one to use insights from the literature

in evolutionary biology to understand infectious disease evolu-

tion. Second, the population-genetic formulation also more read-

ily lends itself to simplifications under certain parameter regimes.

For example, if the rate of recombination is high relative to the

strength of selection, then the dynamics of LD will occur quickly

relative to those of the allele frequencies. In this case, we can use

a separation of timescales argument (i.e., a quasi-linkage equilib-

rium [QLE] approximation; [Crow and Kimura 1970; Kirkpatrick

et al. 2002; Otto and Day 2007]), and express both D and DT as

functions of the other variables, thereby reducing the dimension-

ality of the system by two (see section below on Temporally

Heterogeneous Treatment).

Results
We now use the above model to explore a variety of factors that

affect the evolution of multilocus drug resistance, paying particu-

lar attention to the potential feedbacks that can occur between the

epidemiological and evolutionary dynamics. Our analysis leads

to two broad kinds of results. First, we show how this theoretical

formalism lends new insight into previous studies of multilocus

resistance evolution, both in bacteria and in HIV. Second, we show

how the understanding provided by this formalism leads to new

suggestions for the control of resistance evolution. Throughout

we also use the analysis to highlight the kinds of data that are

required to adequately predict resistance evolution.

HOMOGENEOUS TREATMENT

The homogeneous treatment case allows us to explore the effects

of recombination and epistasis in the absence of the complicating

effects of treatment heterogeneity. For homogenous treatment, we

set τ = 1, and the number of untreated individuals is zero. Thus,

the third term of equation (2) disappears, as does the final term

of equation (3). Interestingly, this reveals that if only clearance

is affected by genotype, then the evolutionary dynamics are cou-

pled to the epidemiological dynamics only through the dynamics

of how LD decays (the first term in eq. 3). If genotype affects

transmission rates, however, then the coupling between evolution

and epidemiology is more complex as all selection coefficients

again depend on host densities. Again this reveals the importance

of knowing, not only the fitness consequences of resistance, but

also the way in which these effects arise.

With the above-mentioned simplifications to equation (2),

we can see that there are three mechanisms that determine the

rate at which drug resistance changes in frequency: (1) “di-

rect selection”—larger fitness differences between alleles (i.e.,

larger selection coefficients, sT
i ) lead to a faster spread of resis-

tance; (2) “direct epistasis”—positive epistasis leads to a faster

spread of resistance through the term δT
j |i s

T
E . In particular, δT

j |i
is the probability that the allele at the second locus is a mu-

tant, given the focal allele is mutant. In the absence of any LD,

this is equal to the frequency of the mutant allele at the sec-

ond locus (Table 1). More generally, δT
j |i is positive regardless

of the extent of LD and therefore positive epistasis always en-

hances the rate of spread of resistance through δT
j |i s

T
E ; and (3)

“linkage disequilibrium”—LD affects the evolutionary dynam-

ics, both through indirect selection (the term DT sT
j ) and through

its effects on δT
j |i . It is well known from population genetics (Crow

and Kimura 1970) that significant LD is generated in this con-

text (i.e., in a spatially homogeneous, deterministic model) only

if there is epistatic selection and if selection is strong relative

to recombination. Moreover, the LD that is generated has the

same sign as the epistasis. As a result, positive epistasis will

engender positive LD, and this will subsequently increase the

rate of spread of resistance through indirect selection, DT sT
j

(provided sT
j > 0; that is, the mutant allele at the second locus

is selectively favored), and though the resulting increase in δT
j |i .

As just described, epistasis plays a central role in the evo-

lutionary dynamics of resistance both directly, and indirectly

through its effects of LD. Such epistasis can arise from a num-

ber of different mechanisms. For example, it can occur if there

are different, interacting, mechanisms of resistance such that the

effect of one mechanism depends on the presence of the other.

Alternatively, epistasis can arise when one locus is involved in

resistance to a drug and the other locus compensates for the cost

of the resistance mutation (Weinreich et al. 2005). Yet, another

possibility occurs when treatment involves two drugs that interact
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Figure 1. Selection coefficients and different types of epistasis. We plot the fitness of the four different genotypes (see Table 1 for a

definition of these selection coefficients) under three different scenarios. We consider that in A both single mutants (the red dot) carry a

benefit relative to the wild type (gray dot), in B one single mutant carries a benefit whereas the other single mutant is deleterious and,

in C both single mutants are deleterious. In each case, the fitness of the double mutant (black dot) determines if there is epistasis, and

the type of epistasis. Any departure from the expectation (dashed line) that the fitness of the double mutant is simply the sum of the

effects of each mutant leads to positive (grades of red) or negative (grades of blue) epistasis. Magnitude epistasis (+ or −) implies that

the strength of selection at each locus depends on the allele present at the second locus. Single-sign epistasis (++ or −−) implies that

the direction of selection on one locus depends on the allele present at the second locus. Finally, reciprocal sign epistasis (+++ or−−−)

implies that the direction of selection on both loci depends on the allele present at the other locus.

antagonistically or synergistically, and where resistance to each

drug is governed by different loci (Yeh et al. 2009; MacLean

et al. 2010). Regardless of the underlying mechanism, however,

population geneticists have identified three qualitatively different

patterns of epistasis (Weinreich et al. 2005; Poelwijk et al. 2011,

Fig. 1): magnitude epistasis, in which the magnitude of the selec-

tive effect at one locus depends on the allele present at the second

locus; single-sign epistasis, in which the sign of the selective effect

at one locus depends on the allele present at the second locus; and

reciprocal (i.e., double) sign epistasis, in which sign epistasis is

present for both loci. The latter case is the most extreme possibility

and gives rise to multiple peaks in the fitness landscape (Fig. 1).

Interestingly, previous experimental studies have shown that

resistance to multiple drugs sometimes evolves more slowly when

drug combinations interact antagonistically than when they inter-

act synergistically (Chait et al. 2007; Hegreness et al. 2008).

Therefore, these studies suggest that using drugs in a way that

generates antagonistic interactions might be beneficial. Yeh et al.

(2009) have noted that such antagonistic patterns of drug inter-

action are analogous to negative epistasis, and therefore equation

(2) can help to better interpret these experimental findings, and to

pinpoint how and when such novel treatment suggestions might

be beneficial. In fact, as described above, the analysis of equation

(2) suggests that there are three possible explanations for these

experimental findings. Namely that the experimental conditions

that generated antagonistic interactions led to (1) weaker direct

selection, (2) negative direct epistasis, and/or (3) negative LD.

Although existing data do not allow one to distinguish among

these three possibilities, there is evidence that (1) alone might be

responsible for the results, suggesting that antagonism or epistasis

per se need not explain the results (Appendix B).

Well-known population-genetic results can also be called

upon to understand the evolutionary consequences of recombina-

tion on the spread of drug resistance (Crow and Kimura 1970).

In particular, as can be seen from equations (2) and (3), recom-

bination affects the spread of alleles at each locus only through

the dynamics of LD. In the absence of epistasis, LD will never be

generated when treatment is homogenous and therefore we expect

resistance alleles at each locus to spread independently of one an-

other. On the other hand, when there is epistasis, LD will build

up and recombination will affect resistance evolution through its

effect on the dynamics of LD. Negative magnitude epistasis will

generate negative LD, and equation (1) shows that evolution at a

given locus will be affected by indirect selection at the other lo-

cus, and through a change in the magnitude of δT
j |i . In particular,

the negative value of DT will slow the spread of resistance alleles

through both of these effects. In this case, heightened recombina-

tion will enhance the spread of resistance alleles at each locus by

decreasing the magnitude of DT . Conversely, positive magnitude

epistasis will generate positive DT , and in this case, heightened

recombination will then hinder the spread of resistance alleles at

each locus.

The above results are well known in the population genetic

literature, but the fact that the epidemiological dynamics can affect

the decay of LD in equation (3) introduces some novel effects.

Specifically, it demonstrates that the rate at which recombina-

tion erodes LD is proportional to the prevalence of infection.

If infection prevalence is high, then recombination will be high

and vice versa. Combining this finding with the above-mentioned

results from population-genetics, we arrive at the following pre-

diction: if epistasis is negative, then populations with high disease

prevalence will show a faster spread of drug resistance alleles than
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Figure 2. Evolutionary dynamics of drug resistance under negative epistasis for two different disease prevalences (obtained by varying

θ), assuming resistance acts through clearance rates only. Epidemiological dynamics were allowed to reach equilibrium before introducing

the drug resistance alleles. Solid: θ = 5.25. Dashed: θ = 25. Other parameter values: r = 0.5, μ = 0.01, βT = 0.00004, �βT
A = �βT

B = �βT
E =

0, γT = 0.01, �γT
A = �γT

B = −0.0045, �γT
E = 0.004, α = 0, σ = 1. (A) Allele frequency dynamics. (B) Linkage disequilibrium dynamics.

Linkage disequilibrium is always negative when epistasis is negative, and this hinders the spread of resistance alleles at each locus.

Populations with high disease prevalence (i.e., high θ), however, have higher levels of recombination. This reduces the magnitude of

linkage disequilibrium and thereby increases the rate of spread of resistance alleles. The opposite occurs under positive epistasis (not

shown).

populations with low disease prevalence (Fig. 2). Theoretical re-

sults based upon Fisher’s geometrical model of adaptation as well

as empirical studies (Martin et al. 2007; Chou et al. 2011; Khan

et al. 2011; Rokyta et al. 2011) suggest that negative epistasis

should be common during the spread of drug resistance, implying

that we might generally expect a positive correlation between the

prevalence of a disease and the rate at which multilocus resistance

spreads when treatment is homogeneous. This suggests a novel

way in which such feedbacks might be exploited. Interventions

such as social distancing and isolation will reduce the occurrence

of multiple infection and thus will reduce the rate of recombi-

nation. When epistasis is negative, this will slow the spread of

multilocus resistance.

SPATIALLY HETEROGENEOUS TREATMENT

We now consider a case where treatment levels are intermediate

and constant in time to illustrate how heterogeneity in selection

affects evolution. We focus primarily on heterogeneity arising

from the occurrence of treated and untreated subpopulations, but

the results apply equally to heterogeneity arising from the use of

different drugs in each of the subpopulations instead. For sim-

plicity, we refer to all such heterogeneity as spatial heterogeneity

although the subpopulations need not occupy different geographic

locations. The main difference from the homogeneous treatment

case is that, even in the absence of epistatic selection, LD can

now be generated by the effect of gene flow between the two

subpopulations (the last term in eq. 3). As a result, this can af-

fect the rate at which resistance spreads as well as the effect of

recombination.

Let us first consider the case where mutations affect only

recovery rates. In this case, a key component of the evolutionary

dynamics of LD is the product of the differentiation between new,

“immigrant,” infections and existing infections at each locus; that

is, �T
pA

�T
PB

in the final term of equation (3). One can view this

product as a measure of the covariance in selection across the

two loci (Lenormand and Otto 2002). It will be positive, and

thus generate positive LD, whenever the differentiation between

new, immigrant, infections and existing infections is in the same

direction at each locus.

As an example, positive covariance in selection will occur if

both allele A and allele B are selectively advantageous under drug

treatment and disadvantageous in untreated hosts (e.g., because

of the cost of resistance). Such a scenario is very likely if multiple

loci contribute to resistance toward a single drug. In such cases,

because of the positive LD generated by the spatially heteroge-

neous selection, recombination will tend to decrease the rate at

which such resistance alleles spread through the population. On

the other hand, the differentiation among subpopulations will be

in the opposite direction at each locus if different drugs are used in

each of the two subpopulations and if there is a cost to resistance

against each. In such situations, allele A might confer resistance

to drug A and allele B to drug B. As a result, the product �T
pA

�T
PB
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will tend to be negative, and recombination will tend to enhance

the rate at which the resistance alleles spread.

Again this suggests novel strategies for control. In the ab-

sence of epistasis among loci, interventions that decrease the

multiplicity of infection (e.g., social distancing and isolation),

and thus rates of recombination, should slow the spread of resis-

tance when multiple drugs are being deployed. The converse of

this argument is that higher recombination rates are potentially

desirable for slowing the spread of multilocus resistance to sin-

gle drugs; however, the risks associated with achieving this by

promoting enhanced multiple infection are likely to outweigh any

potential benefits.

If mutations also affect transmission, heterogeneity of treat-

ment may alter the evolutionary dynamics through additional

mechanisms. Indeed the fact that the most transmissible geno-

types will tend to be the ones most involved in gene flow will

affect the �T
k terms in equations (2) and (3). This will affect both

allele frequency change and the dynamics of LD. Interestingly,

this effect can influence the dynamics of LD even under homoge-

neous treatment provided there is some heterogeneity in the host

population. This recognition sheds some light on the contrasting

findings of many studies that have examined the effect of recom-

bination on the within-host evolution of chronic infections such

as HIV. For example, fast and slow turnover cells are thought to be

important in the within-host dynamics of HIV (Fraser 2005). This

heterogeneity in life expectancy between cell types can generate

enough differentiation between cells in pathogen genotypes to

potentially explain the contrasting effects of recombination doc-

umented in previous studies (Bretscher et al. 2004; Althaus and

Bonhoeffer 2005; Fraser 2005; Carvajal-Rodrı́guez et al. 2007;

Kouyos et al. 2009; Appendix C).

More generally, heterogeneity in epistasis may also affect

the build up of LD. This variation in epistasis might occur, for

instance, if one locus compensates for the cost of drug resistance

at the other locus. This compensation might be active in only one

environment (treated or untreated hosts), or in both environments

(Wiesch et al. 2010). In particular, one can imagine situations in

which epistasis has opposite signs in the two environments, which

could lead to LD of opposite signs in the two populations. In this

case, recombination would have opposite effects in the two types

of hosts on the speed of evolution. Considerations of these more

complicated scenarios are beyond the scope of the present study,

but the theoretical framework presented here reveals the kinds

of information that are required to make accurate evolutionary

predictions in these cases.

TEMPORALLY HETEROGENEOUS TREATMENT

In this final section, we consider the case where treatment level

varies over time. For simplicity, we assume that, at any given

time, treatment is either 100% or zero. As such there are two

different ways in which treatment might vary. The first is simply

where the treatment fraction, τ, varies over time between zero

and one. In this case, although the treatment fraction is never

intermediate, treated and untreated hosts will nevertheless coexist

temporarily. For example, after switching from τ = 1 to τ = 0, all

newly infected individuals will be untreated, but some previously

treated individuals will nevertheless still be circulating in the

population until they either die or recover. As a result, this form of

temporal heterogeneity generates the type of spatial heterogeneity

considered in the previous section. The second possibility is that,

upon changing the treatment fraction, τ, all currently infected

individuals also have their treatment status altered as well. This

will not generate any spatial heterogeneity in treatment and all the

results derived for homogeneous treatment will then apply within

any given treatment epoch. For simplicity, in all of the analyses

below, we employ the first kind of temporal heterogeneity.

One of the most significant questions related to temporally

varying drug treatment is the extent to which evolutionary rever-

sion to drug sensitivity occurs when drug pressure is removed

(Wijngaarden et al. 2005; Andersson and Hughes 2010; Wiesch

et al. 2010). Alleles conferring resistance to drugs often suffer

a fitness cost in the absence of treatment (Maisnier-Patin and

Andersson 2004; Andersson and Hughes 2010), and therefore

once treatment stops, we might expect resistance alleles to de-

crease in frequency. It is widely appreciated, however, that mu-

tations at secondary loci can sometimes compensate for this cost

of resistance, and these compensatory mutations might thereby

inhibit reversion to drug sensitivity, even once treatment has

stopped. The theoretical framework presented here helps to better

understand the conditions under which reversion is likely to occur.

Whether reversion occurs, and the way in which this happens,

depends critically on the fitness effects of the different alleles and

the pattern of epistasis in the treated and untreated environments.

The most extreme case is reciprocal sign epistasis (Weinreich

et al. 2005, 2006; Poelwijk et al. 2011). For example, reciprocal

sign epistasis in untreated individuals occurs if both resistance

alleles are individually selected against, but if each is selectively

advantageous whenever the other resistance allele is present. Such

patterns of sign epistasis are typical when there is compensation.

In this case, there will be two peaks in the fitness landscape in the

absence of treatment, one corresponding to genotype ab and the

other corresponding to genotype AB.

Previous studies have explored the evolutionary dynamics

of such systems in the absence of recombination and found that

reversion always occurs provided that the double mutant (e.g., the

compensated, resistant, genotype) is less fit than the wild type in

the absence of treatment (Wiesch et al. 2010). This has provided

a relatively simple criterion for understanding whether we might

expect reversion. The framework presented here reveals, however,

that this conclusion is fundamentally altered once recombination
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is allowed. In particular, if the recombination rate is large relative

to selection, then a bistability occurs. To understand why, a QLE

approximation (Crow and Kimura 1970; Kirkpatrick et al. 2002;

Otto and Day 2007) can be used to show that LD equilibrates at

D ≈ 1
rσβI pA(1 − pA)pB(1 − pB)ŝE . Substituting this into equa-

tion (2) gives dpi/dt ≈ pi (1 − pi )
(

si + p j sE

)
to first order in

the strength of selection. Thus, the rate of change of allele fre-

quency is negative (i.e., dpi/dt < 0) when both alleles are rare

(i.e., when pA ≈ 0, pB ≈ 0), and it is positive (i.e., dpi/dt > 0)

when both are common (i.e., when pi ≈ 1, pi ≈ 1). Biologically,

when recombination rates are high, even though the wild-type

genotype has a fitness advantage in the absence of treatment, it

cannot increase in frequency when rare because recombination

with the resident double mutant continually breaks it down. If

the wild-type genotype is frequent enough, however, then it is

able to further increase in frequency because most recombination

events are then with other wild-type genotypes. Conversely, when

recombination rates are low relative to the strength of selection,

the selectively advantageous wild-type genotype can remain in-

tact long enough for selection to drive it to fixation regardless of

its starting frequency (see also Fraser 2005).

The theoretical framework presented here can also be used

to find the critical recombination rate, rc, above which fixation of

the double mutant is locally stable in the absence of treatment:

rc = sA + sB + sE

σ Ĩ (β + (�βA + �βB + �βE )/2)
, (4)

where Ĩ is the equilibrium density of infected hosts when the

parasite population is fixed for the double mutant (i.e., the com-

pensated, resistant, genotype). Expressions analogous to (4) have

been derived previously in the population-genetic literature (e.g.,

Park and Krug 2011 and references therein), but expression (4)

differs from these previous results in that the denominator of

(4) accounts for the effect of epidemiological feedbacks. This

feedback operates in two ways. First, even if there is no genetic

variation in transmission rate (i.e., �β j = 0 for j = A, B, E), the

effective rate of recombination still depends on the occurrence of

multiple infections, and thus the critical recombination rate in (4)

is a decreasing function of disease prevalence, as βσ Ĩ still appears

in the denominator. Second, if genetic differences in transmission

do exist, then the critical recombination rate is further modi-

fied by the term (�βA + �βB + �βE )σ Ĩ/2, reflecting the fact

that the most transmissible genotypes are more often involved in

recombination.

The epidemiological feedback documented in equation (4)

again suggests novel strategies for increasing the likelihood of

reversion once treatment has ceased, and thus for maintaining the

effectiveness of a drug. For example, after stopping the use of the

drug, an effort to reduce transmission through social distancing,

isolation, and/or other hygiene measures will reduce both the

transmission rate and the density of infected hosts (i.e., it will

reduce Ĩ ) and thereby increase the critical recombination rate

(Fig. 3).

It is also interesting to note that even in the absence of recom-

bination, where reversion always occurs if the wild type is the most

fit genotype, this reversion can happen in different ways depend-

ing on the nature of epistasis. For example, with some patterns of

epistasis, both the resistance allele and the compensatory allele

spread under treatment, and when treatment is stopped, the loss of

both alleles occurs (as in Fig. 3). Under other patterns of epista-

sis, somewhat paradoxically, the compensatory allele spreads only

once treatment has ceased (T. Day and S. Gandon, unpubl. data).

As a result, in this second scenario, the compensated, resistant,

genotype is present in significant frequency only once treatment

has ended.

Discussion
The evolutionary dynamics of multilocus genetic systems are

well studied in the population-genetic literature. Likewise, the

dynamics of infectious diseases are well studied in the literature

on mathematical epidemiology. The theoretical results presented

here bridge the gap between these two important areas of re-

search, to better understand the processes involved in the evolution

of multilocus drug resistance. Central to our findings is the im-

portance of feedbacks between evolutionary and epidemiological

dynamics. We use this framework to shed new light on previous

empirical and theoretical studies of multilocus resistance, and to

reveal some new possibilities for the control of resistance based

on manipulations of recombination.

Our general analysis revealed three important factors govern-

ing the spread of drug resistance when treatment is homogenous

in time and space: (1) direct selection, (2) direct epistasis, and (3)

LD. Spatial heterogeneity, in the form of different drug treatments

for different individuals, or the existence of some untreated in-

dividuals, introduces an additional factor arising from the effects

of gene flow between subgroups. Such gene flow affects the evo-

lutionary dynamics of allele frequencies directly through mixing,

and it also can affect the evolutionary dynamics of LD. This then

can impose an indirect effect of gene flow on the allele frequency

dynamics as well. Temporal heterogeneity can introduce further

complications, although we illustrated how some forms of tem-

poral heterogeneity can be understood via the results from the

homogenous and spatially heterogeneous cases.

IMPLICATIONS FOR UNDERSTANDING PREVIOUS

STUDIES

It is well known from population genetics that patterns of epistasis

play a critically important role in the evolutionary dynamics of
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Figure 3. Evolution of drug resistance during and after the use of a drug when there is reciprocal sign epistasis. The use of the drug

selects for resistance at both loci (gray zone). When the drug is removed, the frequency of resistance drops rapidly if the parasite is

asexual (black line) or remains stuck near fixation if the parasite undergoes high levels of recombination (red line). Dashed red line shows

how interventions that decrease transmission rate (and thus decrease the extent of recombination) drive reversion to drug sensitivity.

Parameter values for dashed red line are identical to those for solid red line except that the overall transmission rate has been decreased

by 20%. Inset shows pattern of epistasis in fitness in the presence (red) and absence (blue) of drug treatment.

multilocus systems (Crow and Kimura 1970), and our findings

echo this importance. This is particularly evident in the results

for homogeneous treatment, where we demonstrate how epistasis

generates linkage disequilibria, and how recombination breaks

down these genetic associations. Empirical studies (Chait et al.

2007; Hegreness et al. 2008) have shown that interactions between

drugs can influence the dynamics of resistance evolution and it

has been suggested that these effects are analogous to epistasis

(Appendix B). The theoretical results presented here shed new

light on these findings and reveal that the above three factors (i.e.,

direct selection, direct epistasis, and LD) can each potentially

explain these results. Although existing data do not yet allow one

to distinguish among these possibilities, there is strong evidence

that differences in direct selection are an important component of

the explanation for these experimental findings.

The results for spatially heterogeneous treatment also demon-

strate that the importance of LD is not restricted to instances

where there is epistasis. Rather, any genetic differentiation at

both loci among subpopulations will generate LD through gene

flow (Slatkin 1975; Otto and Lenormand 2002). Our results also

show that heterogeneity in the host population can lead to such

genetic differentiation, and thus we often expect such LD to arise

in many cases where there are different kinds of susceptible in-

dividuals. These findings provide further insight into contrasting

results found in several previous studies that have examined the

role of recombination for the within-host evolution of multilocus

drug resistance in HIV (Appendix C).

Extreme forms of epistasis, such as reciprocal sign epistasis,

can further complicate the evolutionary outcome by generating

two peaks in the fitness landscape. Reciprocal sign epistasis can

arise for a variety of reasons, not the least of which is when

compensatory mutations at secondary loci ameliorate the costs

of drug resistance. Previous studies (Wiesch et al. 2010) have

explored the evolutionary consequences of such compensation on

the evolutionary reversion of drug resistance in the absence of

treatment. A key finding has been that reversion always occurs

if the double mutant (i.e., the compensated, resistant, genotype)

is less fit than the wild type in the absence of treatment. The

results presented here reveal more clearly why this happens, and

they demonstrate that this prediction is fundamentally altered by

recombination. In particular, a critical recombination rate exists

(eq. 4) above which reversion to the drug-sensitive, wild-type,

genotype can fail to occur even when it has a higher fitness than

the double mutant.

IMPLICATIONS FOR NOVEL THERAPEUTIC

INTERVENTIONS

In addition to the above-described insights, the theoretical results

present here suggest how the feedback between epidemiology and
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evolution might be manipulated to help control the spread of drug

resistance. Our focus has been on the feedback between disease

transmission and the rate of recombination that arises through

its effect on multiplicity of infection. On purely epidemiological

grounds, interventions that reduce transmission are typically de-

sirable, and therefore we explored how such interventions might

also be evolutionarily beneficial through their effects on reducing

the rate of recombination.

Although we have not conducted an exhaustive analysis, we

have identified three potential scenarios in which interventions

that reduce transmission (e.g., social distancing, isolation, in-

creased hygiene) will be evolutionarily beneficial through their

effects on reducing recombination: (1) when treatment is ho-

mogenous and there is negative epistasis among loci; (2) when

different drugs are deployed in different individuals and the loci

in question confer resistance to each drug independently; and (3)

when reciprocal sign epistasis exists (e.g., through compensation

of the costs of resistance) and drug treatment is removed to select

for reversion to sensitivity.

All three of the above effects arise as a result of the inter-

vention decreasing recombination and thereby encouraging the

maintenance of high levels of LD. In each scenario, however,

this LD is beneficial for different reasons. In scenario (1), neg-

ative epistasis among loci will generate negative LD, and this

disequilibrium will slow the spread of resistance. Indeed, recent

empirical studies have demonstrated that such interference among

selectively advantageous alleles is widespread in virus and bacte-

ria (Martin et al. 2007; Chou et al. 2011; Khan et al. 2011; Rokyta

et al. 2011). Thus, any intervention that encourages the main-

tenance of this LD (e.g., by reducing recombination) will slow

the spread of resistance. In scenario (2), even though epistasis is

absent, different alleles are selectively advantageous in different

subpopulations. As a result, genetic differentiation will arise be-

tween the two, ultimately leading to negative LD through gene

flow. Just as in scenario (1), this ought to then slow the spread of

resistance, and therefore reducing the rate of recombination will

be beneficial. In scenario (3), positive LD will arise because the

wild type and the double mutant each occupy a local fitness peak.

If the wild type is most fit once treatment has ceased however,

then interventions that reduce recombination will encourage the

maintenance of this positive LD, thereby allowing the wild type

to competitively exclude the double mutant.

IMPLICATIONS FOR FUTURE EMPIRICAL STUDIES

Although our results reveal that the evolution of multilocus drug

resistance can be quite complicated, they also identify the kinds of

information that are required to better understand the underlying

dynamics and, consequently, to make predictions. There has been

widespread recent interest quantifying patterns of epistasis among

loci, with the recognition that this will greatly affect the evolution-

ary dynamics of drug resistance. The framework presented here

helps to put these ideas into context through its direct connection

with classical results from population genetics, and it more clearly

reveals how the extent of recombination then interacts with this

epistasis to affect the evolutionary dynamics.

Importantly, however, the theoretical results also reveal other

important kinds of information that are required. For example, we

not only need to know the fitness effects of different alleles, but

we also need to know how these fitness effects are manifested in

the disease life-history traits of the genotypes. If fitness effects

occur through recovery rates only, then the epidemiological and

evolutionary dynamics are not as tightly coupled because the

selection coefficients are then independent of the epidemiological

dynamics. In such cases, the epidemiology drives evolution only

through the effects of gene flow between treated and untreated

individuals, and through the dynamics of LD (as a result of its

effects on recombination). On the other hand, if fitness effects also

occur through transmission rates, then a coupling arises through

the selection coefficients as well. To date, the effects of drug

resistance mutations on these disease life-history traits are largely

unknown for most pathogens, and we hope that our highlighting

the significance of these biological details will motivate further

experimental work in this direction.

OTHER APPLICATIONS AND EXTENSIONS

Another question that has been the subject of considerable inves-

tigation is whether, given the availability of two drugs, these drugs

should be used simultaneously or in a cyclic fashion to control

the spread of resistance (Bonhoeffer et al. 1997; Bergstrom et al.

2004). In most previous studies, the focus has been on single-

locus resistance and therefore the impact of recombination has

been largely ignored. Bergstrom et al. (2004) do demonstrate,

however, that a cycling strategy is expected to lead to a lower rate

of emergence of multiple resistance because it tends to ensure

that there are only high frequencies of resistance to one drug at

any given time. This effect of “segregation in time” of the single

mutants adapted to each drug can be obtained using the present

formalism as well (results not shown). However, a full analysis

of the consequences of mixing versus cycling on the evolutionary

dynamics of multilocus resistance remains to be done.

Our analysis has focused on a somewhat generic form of re-

combination between loci without explicitly saying much about

what this process represents. In fact, pathogens differ in the pro-

cess of genetic mixing from the organisms that are typically the

focus of population-genetics studies of recombination (Awadalla

2003). For example, influenza undergoes a process of genetic

mixing referred to as reassortment. This differs from true recom-

bination in that the viral genome is segmented, and coinfecting

viral strains containing different segments can then give rise to

novel, mixed, genotypes. Indeed this how new influenza subtypes
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arise. The formalism presented here can nevertheless be used

to model this process by interpreting the parameter r as reflect-

ing the extent of reassortment rather than it being a reflection

of physical proximity of the loci within a genome. As such, the

theoretical framework presented might shed interesting new light

on a variety of questions. For example, it has been suggested

that drug resistance in influenza has spread in the absence of

treatment through a process of hitchhiking with selectively ad-

vantageous antigenic escape mutants (Simonsen et al. 2007). The

approach presented here provides an explicit, quantitative, frame-

work for exploring the plausibility of this argument. Likewise,

it can be used to explore a variety of other questions including

the joint evolution of virulence and transmission when they are

encoded by different loci and the joint evolution of virulence and

antigenicity.

There are also a number of interesting avenues for further

theoretical development. For example, the present results con-

sider only two loci, but many more mutations can be involved in

drug resistance. Consequently, an extension to the present analysis

to an arbitrary number of loci might be worthwhile, particularly

if one is interested in making quantitative predictions. For sim-

plicity, we have also employed a deterministic model, but it is

known that stochasticity can affect the evolutionary dynamics of

multilocus systems through the build up of negative LD (Hill and

Robertson 1966). This has already been explored through simula-

tions in the context of the within-host evolution of drug resistance

in HIV (see Appendix C) but extensions to our model could pro-

vide a theoretical foundation for these results. Lastly, we have

made the simplifying assumption of superinfection, meaning that

each infected host contains only a single-pathogen genotype at

any given time. It would be interesting to relax this assumption

because many infections (e.g., HIV, malaria) are known to harbor

multiple strains for extended periods of time. Furthermore, such

an extension would open the door to exploring the consequences

of complementation, in which mutant alleles in one pathogen can

be masked by the presence of a wild-type allele in a coinfect-

ing pathogen strain (see Gao and Feldman 2009 and references

therein).
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Appendix A: Derivation of the Main
Equations
The model of the text assumes that there are four genotypes of

pathogen. We first derive the dynamics of the number of hosts

infected with each of these four genotypes, and we then change

variables to those used in the text.

DYNAMICS OF GENOTYPE DENSITIES

We use βi j and γi j to denote the transmission and recovery rates,

respectively, of genotype i j in untreated hosts, where i ∈ {a, A}
and j ∈ {b, B} (the model can be extended to allow for an effect

on virulence as well, using an analogous approach). We use a

superscript, “T” to indicate these same parameters in treated hosts.

The assumptions laid out in the main text then lead to the following

differential equations for each of the pathogen genotypes:

Ṡ = θ − μS − (
β̄I + β̄T T

)
S + (

γ̄I + γ̄T T
)

İi j = (1 − τ)
(
βij Iij + βT

ij Tij
)
S − (

μ + α + γij
)

Iij

− σ
(
β̄I + β̄T T

)
Iij + σπij

Ṫi j = τ
(
βij Ii j + βT

ij Tij
)
S − (

μ + α + γT
ij

)
Tij

− σ
(
β̄I + β̄T T

)
Tij + σπT

ij (A1)

where σ is a parameter that scales the efficiency of superinfection

(see main text), I = ∑
i, j Ii j denotes the total density of untreated

infected hosts, and the term σ(β̄I + β̄T T ) represents the loss of

infections through superinfection. The quantities β̄ = ∑
i, j pi jβi j

and γ̄ = ∑
i, j pi jγi j denote the average transmission and recov-

ery rates in untreated hosts, where pi j = Ii j/I is the frequency

of genotype i j in untreated hosts. Similarly, in treated hosts, we

define T = ∑
i, j Ti j , β̄T = ∑

i, j pT
i jβ

T
i j , γ̄T = ∑

i, j pT
i jγ

T
i j , and

pT
i j = Ti j/T . Note that equations (A1) consist of a total of nine dif-

ferential equations describing the evolutionary-epidemiological

dynamics.

The parameter πi j (πT
i j ) in equation (A1) denotes the rate of

production of strain Ii j (Ti j ) through all superinfection occurring

in the population. These can be derived by considering all the

1 5 9 4 EVOLUTION MAY 2012



EPIDEMIOLOGY OF MULTILOCUS DRUG RESISTANCE

ways in which secondary infection generates type Ii j (Ti j ), giving

πij = σ

2

(
Iijh + I hij

)
+ηi

j

σr

2
(I12h21 + I21h12 − I11h22 − I22h11)

πT
ij = σ

2

(
Tijh + T hij

)
+ηi

j
σr
2 (T12h21 + T21h12 − T11h22 − T22h11) ,

where h = β̄I + β̄T T , hi j = βi j Iij + βT
ij Tij, and

ηi
j =

{
−1 i �= j

1 i = j
.

With the above model, we can then perform a change of vari-

ables to obtain the equations of the text. In particular, in addition

to S, I, and T defined above, we also define the six new variables

pA = IAb + IAB

I
, pB = IaB + IAB

I
, D = Iab IAB

I 2
− IaB IAb

I 2

pT
A = TAb + TAB

T
, pT

B = TaB + TAB

T
,

DT = TabTAB

T 2
− TaBTAb

T 2
.

These represent allele frequencies in the two different kinds

of hosts (pi and pT
i ), along with the linkage disequilibrium (LD)

in each (D and DT ). Rewriting equation (A1) in terms of these

new nine variables then yields equations (1), (2), and (3) of the

main text.

Appendix B: Drug Interactions,
Epistasis, and the Evolution of
Resistance
In recent years, there has been an increased interest in using

combination drug therapy as a means of reducing the spread of

resistance. One reason why multidrug treatment guards against

resistance is that the probability of a mutant arising that is resistant

to multiple drugs is greatly reduced. Another potential benefit of

using multiple drugs, however, is that drugs can interact in ways

that reduce the spread of resistance alleles once they arise.

In a series of elegant papers (Chait et al. 2007; Hegreness

et al. 2008; Michel et al. 2008; Yeh et al. 2009; Torella et al.

2010), Kishony and colleagues have argued, both theoretically and

experimentally, that antagonistic drug interactions can have just

this effect. An antagonistic interaction is said to occur when two

drugs in combination have a lesser effect on suppressing pathogen

growth than would be predicted by their individual effects alone.

In the extreme case, the antagonism can be so strong that one drug

can completely lose its effectiveness if the concentration of the

second drug is high enough (and vice versa). Chait et al. (2007)

and Hegreness et al. (2008) have shown experimentally that such

antagonistic interactions can slow the spread of drug resistance

(reviewed in Yeh et al. 2009).

Yeh et al. (2009) have noted that patterns of drug interaction

are analogous to patterns of allelic epistatis in that the effects can

be synergistic (positive epistasis), additive, or antagonistic (nega-

tive epistasis; drugs can also vary in concentration, however, and

Yeh et al. [2009] review the ways in which this confounding ef-

fect can be controlled). Chait et al. (2007) have also noted that

the effect of mutant alleles on drug resistance can be viewed, in

effect, as simply reducing the effective concentration of the drug

in question. Thus, the occurrence of synergistic drug interactions

(when properly controlled for concentration) can be viewed as

giving rise to positive genetic epistasis (assuming different loci

effect resistance to the two drugs separately). Likewise, the oc-

currence of antagonistic drug interactions can be viewed as giving

rise to negative genetic epistasis. As such, the theoretical frame-

work presented here should speak to the experimental differences

in resistance evolution that occur under these different regimes

(Chait et al. 2007; Hegreness et al. 2008).

Equation (2) of the main text, under the assumption of 100%

treatment, can be used to better understand why the evolution-

ary dynamics of resistance are different under synergistic versus

antagonistic drug interactions:

dpT
i

dt
= pT

i

(
1 − pT

i

) (
sT

i + δT
j |i s

T
E

) + DT sT
j . (B1)

Suppose that antagonistic drug interactions give rise to nega-

tive epistasis and synergistic drug interactions give rise to positive

epistatis. Equation (B1) then reveals three potential reasons why

the spread of resistance might be slower under antagonistic drug

interactions when compared with synergistic drug interactions

(see also the explanation in the main text).

First, it is possible that the experimental conditions that give

rise to antagonism also give rise to a difference in direct selection

on the resistant allele in question, when compared with the syn-

ergistic case. In other words, although different patterns of drug

interaction give rise to corresponding patterns of epistasis, they

might also inadvertently give rise to differences in the strength of

selection as measured by sT
i in equation (B1). This would not be

an effect of synergy per se, but rather an effect that arises sim-

ply from differences in the strength of selection for single-allelic

substitutions in the two experimental treatments.

Second, because antagonistic drug interactions generate neg-

ative epistasis, sT
E is negative in this case, and positive in the

case of synergistic drug interactions. As a result, whenever the

focal resistance allele is paired with the resistant allele at the sec-

ond locus, the strength of selection on this focal allele will be

less in the antagonistic case. Specifically, such a pairing between
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resistance alleles occurs with probability δT
j |i , and because sT

E is

negative under antagonism and positive under synergism, the fac-

tor sT
i + δT

j |i s
T
E in (B1) will be smaller in the former case. This

will reduce the rate at which resistance spreads, and is termed

“direct epistasis” in the main text.

Third, because antagonistic drug interactions generate nega-

tive epistasis between resistance alleles at the two loci, this will

lead to negative LD, DT . Conversely, synergistic drug interac-

tions will lead to positive LD. Thus, the final term in (B1) will be

negative for antagonistic interactions and positive for synergistic

interactions. Moreover, the probability, δT
j |i , will be smaller for

antagonistic interactions that for synergistic interactions. Both ef-

fects of the negative LD will reduce the rate at which resistance

spreads.

Given the data currently available, it is not possible to un-

ambiguously determine which of the above three factors is most

important in explaining the experimental results of Chait et al.

(2007) and Hegreness et al. (2008). Nevertheless, there are rea-

sons to suspect that differences in direct selection (i.e., the first

factor) is very important. For example, an examination of the fit-

ness landscapes from the studies (e.g., Fig. 2, Chait et al. 2007;

Fig. 3, Hegreness et al. 2008) reveal that, if separate loci are in-

deed responsible for resistance to the two drugs, then there are

significant differences in the fitness effects of allelic substitution

at a single locus between the antagonistic and synergistic cases.

In other words, the value of sT
i does appear to be smaller in the an-

tagonistic case (Fig. 3B, Hegreness et al. 2008) and even becomes

negative under extreme antagonism (Fig. 2C, Chait et al. 2007). It

is possible, however, that the second factor, direct epistasis, also

played a role. It seems less likely, however, that LD would have

been important because the experimental conditions would need

to have allowed for genetic associations between loci conferring

resistance to the two drugs to build up over time. Although this

is possible, there is no evidence reported in the studies to suggest

that this is the case.

Appendix C: Effect of
Recombination on HIV Drug
Resistance
The model developed in the main text is primarily meant to de-

scribe a population of hosts infected by a pathogen but it can

also be used to shed some light on within-host evolution in

chronic infections. In particular, the impact of recombination on

drug resistance evolution in HIV has attracted a lot of theoretical

attention.

The first attempts to understand the effects of recombination

on the within-host evolution of drug resistance used a population-

genetics approach to show the impact of epistasis on the build up

of LD and how this is altered by recombination. Bretscher et al.

(2004) pointed out that combination therapy is likely to generate

positive epistasis (because a large increase in fitness is only likely

to occur when all the resistance alleles are combined within a

single-viral genome). In this case, recombination will slow the

emergence of multidrug resistance. Our model can readily be

used to show that this argument continues to hold if we allow

for dynamically varying viral densities within a host (something

that was absent from Bretscher et al. 2004). Indeed, our model

can be viewed as a description of the epidemiology and evolu-

tion of a virus population infecting a pool of susceptible cells

within an infected host. As pointed out in the main text (see also

Appendix B), equation (2) can then be used to show that pos-

itive (negative) epistasis speeds up (slows down) the spread of

multidrug resistance.

Another approach in the literature stems from a detailed de-

scription of the within-host dynamics of the virus. Fraser (2005)

used a simulation model of within-host HIV dynamics and pointed

out the impact of population dynamics on the evolutionary out-

come. This model also recovers the impact of epistasis on the

effect of recombination. Interestingly, however, in the absence

of epistasis, recombination was also shown to slow the spread

of multidrug resistance. Kouyos et al. (2009) also obtained this

result in a very similar model, and pointed out the importance

of the heterogeneity of different types of host cells. Indeed, both

the Fraser (2005) model and that of Kouyos et al. (2009) allow

for short-lived and long-lived virus-producing cells. Kouyos et al.

(2009) showed that this heterogeneity can lead to the build up of

strong positive LD. The framework presented here can be used

to better understand the importance of this heterogeneity. Indeed,

equations (2) and (3) can be modified to describe the evolution-

ary dynamics when the heterogeneity is not due to treatment, but

to differences in the life span of infected cells. Simulations (not

shown) reveal that, in the absence of epistasis, the only way to

recover an effect of this heterogeneity between cells is when the

resistance mutations affect transmission (an assumption made in

both Fraser 2005 and Kouyos et al. 2009). Indeed, there is no

effect when resistance mutations affect recovery only because, in

this case, if one starts with the same genotype frequency in both

types of cells, the dynamics are:

dpi

dt
= pi (1 − pi )si + Ds j

dpL
i

dt
= pL

i

(
1 − pL

i

)
si + DL s j ,

where L refers to long-lived cells and I to short-lived cells. Hence,

nothing can generate a difference in the two types of cells. In a

similar way, one can show that nothing generates LD.
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In contrast, if the mutations affect transmission, then with

the very same initial conditions, we obtain:

dpi

dt
= pi (1 − pi )si + Ds j + L

I
(τS + σI/2)pL

i

(
βL

i − β̄L
)

dpL
i

dt
= pL

i

(
1 − pL

i

)
si + DL s j + I

L
(τS + σL/2)pi (βi − β̄).

In this case, the final terms (which are positive because it

is assumed that drug resistance increases transmission) will be

different between the two types of cells because the ratios L/I

and I/L will be different. For example, in the extreme case where

the short-lived cells are very short lived, we have L/I >> I/L .

This will generate an asymmetry in the evolutionary dynamics

between the two types of cells, with the change in resistance

frequency being faster in short-lived cells. This will result in

differentiation between short-lived and long-lived cells, which

will subsequently impact the dynamics of allele frequencies and

LD. In particular, one can show that LD is going to build up when

mutations affect transmission. It will be positive in long-lived cells

but it will have a more complex dynamics in short-lived cells.

Note that, because the dynamics depend on the ratios between

the densities of different cell types, very different dynamics can

result from different assumptions regarding the proportion of cells

that can become long lived. When this proportion is low, we find

that the LD is positive in long-lived cells and drives positive

LD in short-lived cells. The overall LD thus becomes positive,

which is consistent with what has been found in Kouyos et al.

(2009).

Finally, a third factor that has been explored in sim-

ulation studies is the impact of stochasticity (Althaus and

Bonhoeffer 2005; Carvajal-Rodrı́guez et al. 2007; Kouyos et al.

2009). Stochasticity affects drug resistance evolution through its

impact on LD. As pointed out by earlier population-genetics stud-

ies, the interplay between natural selection and genetic drift tends

to generate negative LD (Hill and Robertson 1966). In HIV mod-

els, demographic stochasticity also results in the build up of LD.

Thus, in those situations, even in the absence of epistasis recom-

bination has an effect on the speed of adaptation and tends to

speed up the spread of multidrug resistance genotypes. The effect

of stochasticity is absent in our model that is fully deterministic.
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