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ABSTRACT: Most theory on the evolution of virulence is based on
a game-theoretic approach. One potential shortcoming of this ap-
proach is that it does not allow the prediction of the evolutionary
dynamics of virulence. Such dynamics are of interest for several
reasons: for experimental tests of theory, for the development of
useful virulence management protocols, and for understanding vir-
ulence evolution in situations where the epidemiological dynamics
never reach equilibrium and/or when evolutionary change occurs on
a timescale comparable to that of the epidemiological dynamics. Here
we present a general theory similar to that of quantitative genetics
in evolutionary biology that allows for the easy construction of mod-
els that include both within-host mutation as well as superinfection
and that is capable of predicting both the short- and long-term
evolution of virulence. We illustrate the generality and intuitive ap-
peal of the theory through a series of examples showing how it can
lead to transparent interpretations of the selective forces governing
virulence evolution. It also leads to novel predictions that are not
possible using the game-theoretic approach. The general theory can
be used to model the evolution of other pathogen traits as well.

Keywords: pathogen, disease, quantitative genetics, superinfection,
mutation, parasite.

The trade-off hypothesis for virulence evolution postulates
that a trade-off exists among parasite life-history charac-
ters such that those parasites with a high rate of host-to-
host transmission necessarily also induce a high rate of
mortality in their hosts (Bull 1994; Read 1994; Ebert and
Herre 1996; Frank 1996; Levin 1996; Galvani 2003). It is
this additional host mortality rate caused by infection that
is typically taken as the definition of virulence in the the-
oretical literature (Bull 1994; Day 20024), and although it
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is undoubtedly affected by both host and parasite char-
acteristics, most theory assumes that virulence evolution
is governed solely by evolutionary change in the parasite
population (but see van Baalen 1998; Gandon et al. 2002;
Day and Burns 2003; Restif and Koella 2003). Mechanis-
tically, such trade-offs are believed to occur because high
rates of transmission are obtained only by having a high
rate of host exploitation, and this also causes high host
mortality (Galvani 2003). Thus the level of virulence ex-
pected to evolve depends on the relative magnitude of
these costs and benefits of host exploitation. The utility
of this theory is still unresolved (Ebert and Bull 2003),
but there are a growing number of empirical studies aimed
at testing several of its assumptions and predictions (An-
derson and May 1982; Massad 1987; Bull et al. 1991; Ewald
1991; Ebert 1994, 1998; Jaenike 1996; Ebert and Mangin
1997; Kover et al. 1997; Lipsitch and Moxon 1997; Kover
and Clay 1998; Taylor et al. 1998; Mackinnon and Read
1999; Messenger et al. 1999; Davies et al. 2001; Elena 2001;
Cooper et al. 2002; Perlman and Jaenike 2003).

The majority of theory on virulence evolution is
grounded in mathematical epidemiology (Diekmann and
Heesterbeek 2000). This theory views the host population
as a series of compartments between which hosts can move
(i.e., the susceptible-infected-recovered models and vari-
ants thereof; Anderson and May 1979; May and Anderson
1979; Hethcote 2000) and was originally designed to model
the epidemiological dynamics of host-parasite systems.
These models have been extended to make predictions
about parasite evolution (particularly virulence evolution)
through the use of game-theoretic techniques (Frank
1996). This approach begins by assuming that there is a
single parasite strain present and then supposes that the
epidemiological dynamics reach equilibrium (nearly with-
out exception, this theory considers only stable equilibria).
Then it asks whether a mutant strain with different char-
acteristics can invade the host-parasite system. The as-
sumption is that over a series of such invasions and re-
placements (with the epidemiological dynamics reaching
an equilibrium between successive invasions), the system
will often end up with a single parasite strain that cannot
be invaded by any other mutant. This is the evolutionarily
stable strain (Frank 1996).



The first models of this sort to appear in the literature
demonstrated that the evolutionarily stable strain is the
one that generates the largest number of new infections
in an otherwise entirely susceptible population of hosts
(per infected host; Anderson and May 1982; Bremermann
and Thieme 1989). This quantity is analogous to lifetime
reproductive output from life-history theory (Roff 1992;
Stearns 1992) and has become known as R, (Diekmann
et al. 1990; Frank 1996). This result is extremely useful
because one can then derive an expression for R, incor-
porate the assumptions of the trade-off hypothesis by spec-
ifying constraints among the various parameters that make
up R,, and then calculate the level of virulence that max-
imizes this quantity.

The number of studies using this game-theoretic ap-
proach has grown rapidly over the past 10-20 yr, in part
because it is relatively simple and intuitive and also because
it has a clear connection with the threshold results for the
occurrence of epidemics (e.g., a disease can spread into a
host population only if R, > 1; Hethcote 2000). Indeed,
this approach has become a mainstay of the theoretical
literature on virulence evolution to the extent that it is
now routine for authors to specify an epidemiological set-
ting of interest and then to derive an expression for R, to
understand and make predictions about virulence evolu-
tion (the “maximize R,” technique).

We step back from this approach for a moment and ask
the question, Are there other techniques for understanding
(and making testable predictions about) virulence evolu-
tion that might offer some advantages? We suggest that
the answer is yes. In particular, an approach analogous to
that of quantitative genetics (QG; Lande 1976, 1979; Lande
and Arnold 1983) can often have advantages in terms of
its generality, intuitive appeal, and utility for making pre-
dictions that are closely tied to empirical tests of theory.
As such, we will refer to the theory developed below as a
QG approach although we note that the results presented
here involve models with a single quantitative trait with
a continuum of alleles rather than the more common sit-
uation of multiple quantitative traits in standard theory
of quantitative genetics. Extensions for multiple traits will
be published elsewhere, and therefore we retain the label
QG here for consistency.

Our motivation for developing a QG theory stems
from several sources. To begin, the assumption of game-
theoretic models that an epidemiological equilibrium is
reached between successive invasions by different parasite
strains is unsatisfying for many reasons. First, this as-
sumption implies that evolutionary change is very slow
relative to epidemiological change. The production of sub-
stantial genetic variation and the occurrence of evolution-
ary change in the genetic composition of parasite popu-
lations can occur, even within a single host (Levin et al.
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1991), and it therefore seems worthwhile to develop a
theoretical approach capable of reflecting this fact. Second,
many host-parasite complexes do not display equilibrium
dynamics, highlighting the need for a dynamic theory of
virulence evolution. Third, because of the equilibrium as-
sumption, nearly all game-theoretic models of virulence
evolution predict only the long-term equilibrium level of
virulence. In fact, because there is no explicit evolutionary
dynamic inherent in this approach, game-theoretic models
have a very limited capacity to make predictions about the
short-term evolutionary dynamics. We feel that this is a
significant omission because many empirical measure-
ments aimed at testing theory are made over the short
term (i.e., after experimental perturbations have oc-
curred). Moreover, understanding and being able to pre-
dict short-term evolutionary dynamics will probably be an
essential component of any theory for making virulence
management suggestions (Williams and Nesse 1991;
Stearns 1999; Trevathan et al. 1999; Stearns and Ebert 2001;
Dieckman et al. 2002; Ebert and Bull 2003).

Of course, the development of a suitably general dy-
namic framework would be of less interest if it were too
cumbersome and difficult to use or if its results were too
complex to interpret. Fortunately that is not the case. As
we will show, a QG approach is at least as easy (and prob-
ably easier) to use than the game-theoretic approach. It
also allows for any relative timescale of the epidemiological
and evolutionary processes, and thus it provides a way to
unify and generalize the common dichotomy between ep-
idemic and endemic diseases (Frank 1996). It provides a
route toward building relatively simple analytical and sim-
ulation models of virulence evolution in more realistic
ecological settings that place the host within an explicit
food web. It also provides a natural point of departure for
developing theory where natural selection on virulence
varies spatially throughout the host’s habitat.

We also suggest that the QG approach is well suited to
experimental tests of virulence evolution because it clearly
separates epidemiological and evolutionary processes
(these are somewhat confounded in the single quantity
R, in the game-theoretic approach). Specifically, most
game-theoretic models assume that the parasite regulates
the density of susceptible and infected hosts, and this gen-
erates evolutionary-epidemiological feedbacks. Impor-
tantly, in many experiments this feedback might not occur
because the experimenter often controls the host density
either purposefully or inadvertently. Therefore, it seems
desirable to have a theoretical framework that can easily
include or exclude these types of feedback, and the QG
approach does so in a very natural way.
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Theoretical Development

We begin with a particular epidemiological model of the
continuous-time, susceptible-infected-susceptible variety
(Anderson and May 1979; May and Anderson 1979; Heth-
cote 2000) that incorporates all of the relevant transmis-
sion dynamics as well as the host-specific ecological in-
teractions that are of interest. To aid intuition we use a
simple running example and comment on how the results
apply more generally in appendix B. For example, although
our focus here is on virulence evolution, the results in
appendix B can be used to model any other pathogen trait
as well (e.g., transmission rate).

The running example considers a host population con-
sisting of a susceptible and an infected class of individuals
whose densities are denoted by S and I (fig. 1):

ds
P 0 + bsS + bl — dS — ¢sp7uSI+ cl, @
dI
d_t = ¢, 7uSI— (d+ ¢+ »)l )

(see table 1 for notation). Equation (1) represents the dy-
namics of the susceptible class. In the absence of an in-
fection, the number of individuals will increase through
immigration (6) and birth (bs) but decrease through mor-
tality (d). In the presence of the parasite, the number of
susceptible individuals can increase because infected in-
dividuals give birth to susceptible offspring (&;) or because
infected individuals successfully clear the infection (c).
Susceptible individuals can become infected with a rate
that depends on the probability that they come in contact
with infected individuals (¢S x ¢,I) and the probability
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of transmission per interaction (7ug). The probability that
a susceptible individual interacts with an infected individ-
ual takes into account the possibility that infected indi-
viduals have altered behavior. Similar to Day (2001), ¢
and ¢, represent the activity level of susceptible and in-
fected hosts, and ¢, might depend on virulence in such a
way that ¢,(0) = ¢, (i.e., the activity level of a host in-
fected with a completely benign parasite is the same as
that of an uninfected host; Day 2001). The components
¢ and ¢, can be viewed as factors that convert the density
of susceptible and infected hosts into “effective densities”
that account for their activity levels (which might change
as a result of infection). As such, we will usually take
¢s = 1 without loss of generality. The 7 is the probability
that the parasite is transmitted between hosts, and wu is
the probability that, given the parasite is transmitted to a
susceptible host, it successfully causes infection. Note that
ug is typically set equal to 1 or subsumed in 7 in many
models, but it is useful to keep it separate here. The dy-
namics of infected individuals mirrors that of the suscep-
tible class. More infected individuals are created when a
susceptible individual becomes infected, while infected in-
dividuals are lost to normal mortality (d), virulence-
related mortality (»), and clearance of the infection (c).
We define virulence (») as the additional per capita mor-
tality rate caused by infection (Bull 1994; Frank 1996; Day
2002a).

Before proceeding, we also note that all parameters in
model 1-2 (eqq. [1], [2]) might depend on the density of
susceptible hosts as well as the total density of infected
hosts. Thus model 1-2 (eqq. [1], [2]) is quite general,
allowing for arbitrary forms of density dependence in the
host population as well as nonlinear transmission dynam-
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Figure 1: Flow diagram of the epidemiological model 1-2 (eqq. [1], [2])



Table 1: Notation
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Term Definition

bs, b, Birth rates by susceptible and infected hosts

c Instantaneous rate of infection clearance through host defense mechanisms

d Natural instantaneous mortality rate of hosts

o(v) Mean displacement (i.e., mutational bias) of strains arising in a host infected with a strain of virulence »
&,(v), & Activity levels of infection and susceptible hosts, respectively; ¢,(0) = ¢

(), 1,(¥)
infection, respectively

Evolutionary effects of the mean level of virulence arising from within host mutation and secondary

I(v) Density of infected hosts (with strain »)

I Total density of all infected hosts

K Scaling factor that allows ,(5) to be less than #,(8); ¥k < 1

w Genetic variance in strain type among infected hosts

0 Net immigration rate of susceptible hosts

r Instantaneous rate of increase of infected hosts

7(v) Probability of transmission of a strain of virulence » between hosts, given that a contact occurs

P Rate of mutation per unit time

S Density of susceptible hosts

o Second moment of the mutational distribution

7(v) Probability of transmission of a strain of virulence » between hosts, given that a contact occurs

U Probability that a susceptible that is inoculated actually becomes infected

1(6) Probability that a mutant parasite strain with its virulence displaced by an amount 6 from that of the
strain infecting the host in which it arises actually takes over the host; the function 14(8) = v, + v ,6
is usually used

,(0) Probability that a secondary invading parasite strain, with its virulence displaced by an amount é from
that of the strain currently infecting the host, actually causes secondary infection and takes over the
host; we use 1, = k()

v Virulence (instantaneous parasite-induced host mortality rate)

v Mean level of virulence across all infected hosts

¢ Fraction of offspring of infected hosts that are infected in “Example 3”

¢ Variance in displacement of infection type among hosts

ics (as opposed to simple mass action transmission;
McCallum et al. 2001). For example, ¢sand ¢, might be
decreasing functions of the total host density such that the
total transmission rate of the parasite, ¢s¢,7uSI, increases
less than linearly with S and/or I (McCallum et al. 2001).
Finally, to simplify notation, we define r = ¢y, 7S —
(d + ¢ + v), which represents the per capita rate of change
of infected hosts (i.e., dI/dt = rI).

Our goal is to derive a model that tracks the evolu-
tionary dynamics of virulence as well as the epidemiolog-
ical dynamics, allowing for both within-host and between-
host selection (Levin and Pimentel 1981; Bremermann and
Pickering 1983; Frank 1992; Bonhoeffer and Nowak 1994;
Nowak and May 1994; May and Nowak 1995; van Baalen
and Sabelis 1995a; Frank 1996; Mosquera and Adler 1998;
Gandon et al. 2001a). To do so, we suppose there is a
continuum of variation in virulence among infected hosts
and that all parasite strains are characterized by the level
of virulence, », that they induce. We consider only the case
of superinfection (Nowak and May 1994; Mosquera and
Adler 1998; Gandon et al. 20014), in which any given host

can be infected by at most one strain of parasite at a time,
and we suppose that new strains continually arise through
within-host mutation (Bonhoeffer and Nowak 1994).
These new strains either immediately displace the prior
resident strain or they die out. Additionally, infected hosts
might acquire secondary infections, at which point either
the original strain immediately excludes the secondary in-
vader or vice versa. Under these assumptions, the epide-
miological model (eqq. [1], [2]) can be extended to include
evolutionary dynamics of the mean level of virulence, »,
as follows (app. A):

ds

o = 0+ bS— dS) + (bl + cI, — ¢, TuSL), (3)
dI

d_tT = L 4)
dv or . -

PPl + 1,(7) + 9,(»), )
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where

Ma(?) = pul1:6(7) + 7,01, ©)

I ¢,(9) ke (7)

7,(¥)

dr
Yo d_ + 27
14

v=v

In the above equations, all quantities depending on vir-
ulence are evaluated at v = ». The I, is the total density
of infected hosts, p,, is the rate of mutation, w is the genetic
variance in strain type among infected hosts, and
u,(6) = v, + v,6 is the probability that a mutant strain
with a virulence level displaced by an amount é from that
of the strain from which it arose succeeds in taking over
the host (i.e., the host becomes an infected host of type
v + 0). The constant vy, represents the baseline probability
of such an event, and v, represents the extent to which
virulence is associated with within-host competitive ability
(i.e., v, > 0 if higher virulence confers greater within-host
competitive ability). Also, 6(v) is the mean displacement
in virulence of newly arising mutations within a host in-
fected by strain » (i.e., it is the mean value of 6 for mu-
tations arising within the host), and o is the second mo-
ment of the mutational distribution (i.e., the expected
value of the squared deviation of a mutant’s virulence).
We allow for the possibility of mutational bias within hosts
because we might expect most new mutations to decrease
virulence in hosts already infected with extremely virulent
strains and vice versa. Alternatively, there might be a con-
sistent directionality to mutation for some pathogens (see
Bergstrom et al. 1999 for related suggestions). Finally, we
define u, = ku, with k <1 as the corresponding proba-
bility of taking over a host for the case where the mutant
strain arises from secondary infection. This allows for the
possibility that this process is less effective than within-
host mutation in causing within-host evolution (e.g., be-
cause strains arising from secondary infection have to pass
more levels of host defense mechanisms than those arising
from mutation before they compete with the strain cur-
rently infecting the host). The primary assumption in-
volved in the derivation of these equations is that the
distribution of parasite strains that infect hosts is Gaussian
and has a small variance (see Abrams 2001). Results where
the genetic variance, w, is not necessarily small are found
in appendix D (and “Example 4” below).

Several features of model 3-7 (eqq. [3]-[7]) hold more
generally for models of virulence evolution involving eco-
logical and epidemiological dynamics (app. B). First, the
epidemiological equations (3) and (4) are identical to the
original model (eqq. [1], [2]), except that I is replaced
with the total density of infected hosts of all strain types.
Second, any parameter that depends on the level of vir-

ulence, », is evaluated at the population average, ». Third,
equation (5), which gives the coupled evolutionary dy-
namics of the joint evo-epidemiological system, contains
three terms representing the three ways in which selection
affects virulence evolution as described below.

Between-Host Selection (wdr/dv). The first term repre-
sents the effect of selection on virulence as a result of
between-host selection. This is the classic trade-off model
introduced by Anderson and May (1982) and accounts
for increases in infection rate and decreases in host survival
with virulence. It is simply the genetic variance in strain
type among hosts, w, multiplied by the selection gradient
(i.e., the derivative specifies the way in which a unit in-
crease in virulence affects the parasite’s ability to spread
through the host population). For instance, in our running
example, we have r = ¢s¢,7uS— (d+ c+ »). Using
¢s = 1 and supposing that both ¢, and 7 are functions
of », this term becomes

w(d(bIT ugS — 1). (8)
dv

Equation (8) reveals the intuitive fact that between-host
selection arises as a result of the benefit of virulence for
transmission to susceptible hosts (the first term) and the
cost of virulence in terms of mortality of infected hosts
(the second term). The benefit of virulence is proportional
to the density of susceptible hosts, whereas the mortality
cost of virulence is a constant (scaled to —1) by the def-
inition of virulence (Frank 1996). Also notice that the
speed of evolution as a result of between-host selection
depends on the amount of genetic variation in strain type
among hosts, w.

Within-Host Mutation (n,[v]). The second term in
equation (5), 7,.(v), represents the effect of within-host
mutation and is specified more explicitly in equation (6).
There are two ways in which within-host mutation can
impart a directional force in virulence evolution. First, the
displacement of the mutations that arise can be biased
(6 # 0). For example, if mutations that cause an increase
in virulence are more common than those that cause a
decrease in virulence, then this will cause levels of virulence
to rise. This effect is represented by the first term in equa-
tion (6), where 6 is weighted by the baseline probability
that new mutants take over the host. Second, even if the
displacement of newly arising mutations is unbiased (i.e.,
6 = 0), within-host mutation can still lead to a directional
force in virulence evolution if there is a relationship be-
tween a strain’s displacement and its within-host com-
petitive ability. For example, if higher virulence is asso-
ciated with a within-host competitive advantage, then
du,/dé6 = v, > 0, imparting an evolutionary force toward



higher levels of virulence (Bonhoeffer and Nowak 1994).
This effect is weighted by the second moment of the dis-
tribution of new mutations that arise, o, and it drops out
if virulence is unrelated to within-host competitive ability
(i.e., if du,/dé6 = v, = 0).

Secondary Infection (ns[v]). The third term in equation
(5), ms(v), represents the effect of secondary infection and
is specified more explicitly in equation (7). Secondary in-
fection requires that the infected host contact another in-
fected host. Assuming that the distribution of infection
types in the host population is narrow, this will occur at
arate I.¢,(»)*. Given such a contact occurs, this can impart
a directional force on virulence evolution for two reasons.
First, if strains with higher virulence are more likely to be
transmitted (as is commonly assumed; i.e., if d7/dv > 0),
then secondary inoculations will tend to be biased toward
higher virulence. This is analogous to mutational bias in
within-host mutation and is represented by the first term
in equation (7). Second, if there is a relationship between
a strain’s virulence and its within-host competitive ability
(e.g., if higher virulence is associated with a within-host
competitive advantage: du,/dé = ky, >0), this too will
impart an evolutionary force toward higher levels of vir-
ulence (Gandon et al. 2001a). This is the second term in
equation (7). Both of these effects are weighted by w,
meaning that the evolutionary effect of selection arising
from secondary infection is greater if there is more genetic
variation in strain type circulating in the population. Ad-
ditionally, both terms are weighted by x <1 to allow for
differences in the effectiveness of within-host mutation
versus secondary infection in causing within-host
evolution.

Equation (5) reveals that within-host evolution arising
from either mutation or from secondary infection both re-
sult in a component of directional selection on virulence in
addition to the effect of selection arising from between-host
selection. Indeed, both forms of within-host evolution can
be viewed as a process whereby a new strain is introduced
into an already infected host (either by mutation or sec-
ondary infection), and this new strain then either reaches
fixation in the host or dies out. Despite their superficial
similarity, however, the QG approach also reveals funda-
mental differences between these two sources of within-host
evolution. First, within-host evolution through secondary
infection depends on the prevalence of the disease in the
population, I, whereas within-host evolution through mu-
tation does not. Second, equations (6) and (7) reveal that
the importance of secondary infections also depends on the
way in which virulence affects the activity level of infected
hosts, ¢, as well as the genetic variance in strain type among
hosts, w. Third, secondary infection can result in the evo-
lution of higher virulence, even in the absence of a rela-
tionship between virulence and within-host competitive
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ability, if more virulent strains have a greater transmission
rate. This is not true of mutation unless there is also mu-
tational bias. Therefore it is of interest to know whether
within-host genetic variation in natural pathogen popula-
tions is primarily a result of within-host mutation or sec-
ondary infection.

Example 1: A Standard SIS Model

As a simple example, suppose that the host population is
maintained by immigration; we have

ds
— =0—dS— ¢ 7uSI+ I, )
dt
dI
gy 10
il (10)

where r = ¢,7uS — (d + v + ¢), and all parameters are as
defined earlier (see table 1). We assume that 7 is increasing,
with virulence and concave down, and that ¢, is either a
constant or it is either strictly increasing or strictly de-
creasing, with virulence and concave down. Together this
implies that the transmission rate from infected to sus-
ceptible hosts is either increasing with diminishing returns
or else is hump shaped and, therefore, that d*¢,7/dv> <
0. This assumption is characteristic of nearly all game-
theoretic models of virulence evolution (Frank 1996; Ebert
and Bull 2003).

Following the general recipe of appendix B, the evo-
lutionary dynamics of virulence for this model are

dv or
= = @+ (7)) + (7 11
w9, No(¥) + n,(v) 11
or
dv do,r -
T w( d; usS — 1|+ p,,(v,0 + v,0)
dr
+ Ipikw|y,— + .27}, 12)
dv

where for notational simplicity we have used I to represent
the total density of infected hosts of all strain types, and
all terms in equations (9), (10), and (12) are evaluated at
v =7

Secondary Infection Absent

For simplicity, here we assume there is no mutational bias
(i.e., 6 = 0) and no relationship between virulence and
within-host competitive ability (i.e., y, = 0). As a result,
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within-host mutation has no directional effect on virulence
evolution (i.e., n,, = 0). For the moment, we also assume
that secondary infection does not occur (i.e., k = 0). As
a result, equation (12) becomes

dv (d¢IT w3

ar ¢ dv

a ugS — 1).

An interpretation of each of the terms in equation (13)
provides some clear insights into virulence evolution. The
first term in parentheses (i.e., [d¢,7/dv]usS) represents the
selective benefit obtained by strains with higher virulence;
they have a higher transmission potential, 7¢,, and the
evolutionary advantage of this heightened potential is
larger whenever there are abundant hosts available for in-
fection (i.e., whenever S is large). The second term in
parenthesis (i.e., —1) is the selective cost paid by strains
with higher virulence; they kill their hosts more quickly,
which, from how we have defined virulence, imposes a
constant cost of —1.

These considerations also suggest that a higher density
of susceptible hosts selects for higher virulence because it
enhances the benefit of virulence. Over the course of an
epidemic, however, the density of susceptible hosts will
decline as more infections occur, thereby eventually re-
ducing this advantage. This suggests that we should ob-
serve an evolutionary escalation in virulence at the begin-
ning of an epidemic, followed by an evolutionary
reduction in virulence as the disease spreads and the den-
sity of susceptible hosts declines. This has been predicted
previously (Lenski and May 1994), and the QG approach
illustrates this effect (and why it occurs) very clearly. It
also reveals the way in which the magnitude of the initial
increase in virulence depends on the speed of the epide-
miological dynamics relative to the amount of genetic var-
iance in strain type among hosts (fig. 2).

Comparison with Previous Results. It is useful to contrast
this QG approach with that of previous theory. To use the
game-theoretic approach, we need to calculate R,. For the
present model we have

¢ Tu N

R, = 27U 14

*dtvte (9

where N is the density of susceptible hosts in the absence

of the infection. The first derivative condition that must
be satisfied by the ESS virulence is therefore

dé,r/dv 1
¢  d+v+c

(15)

m=35

Virulence

Time

Figure 2: Effect of genetic variation in strain type w; evolutionary dy-
namics of virulence using the function 7(») = 7,»/(7, + ») and the ar-
bitrary parameter values 6§ =10, d =0.1, c=1, 7, =2, 7, = 0.5,
S(0) = 10, I(0) = 1, »(0) = 0.2, and different levels of genetic variance
in virulence w.

Notice that N has dropped out of equation (15) because
it is a multiplicative constant in equation (14) and there-
fore does not affect the optimal level of virulence. Equation
(15) can be interpreted as stating that the proportional
increase in transmission that comes from an increase in
virulence (i.e., the fitness benefit) must equal the propor-
tional increase in the total loss rate of infected hosts that
comes from this increase in virulence (i.e., the fitness cost).
In other words, at the ESS, the transmission benefits of a
further increase in virulence must be balanced by the mor-
tality costs.

It is worth noting that equation (15) can be derived
from the QG approach as well. Assuming that the epi-
demiological equilibrium has been reached, we can solve
equation (10) for Sto get S = (d + v + ¢)/¢,7u,. This can
then be substituted into equation (13), giving the evolu-
tionary dynamics of virulence under the assumption that
evolution is very slow relative to epidemiology (i.e., the
genetic variance, w, is vanishingly small). At evolutionary
equilibrium, equation (13) will also equal 0, and this can
then be rearranged to obtain equation (15).

Much has been learned from theory based on R,. First,
equation (15) has been used to demonstrate that an in-
crease in natural mortality rate of the host, d, results in
the evolution of higher virulence because it decreases the
mortality cost of virulence (Anderson and May 1982; Sa-
saki and Iwasa 1991; Kakehashi and Yoshinaga 1992; Len-
ski and May 1994; Ebert and Weisser 1997; Day 2001,
2002a; Williams and Day 2001). A consideration of equa-
tion (13), however, suggests that the increase in mortality
should first select for a decrease in virulence because it
will initially decrease the density of susceptible hosts. This
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Figure 3: Effect of natural mortality, d, and clearance rate, c. Evolutionary
dynamics of virulence using the function 7(») = 7»/(7, + ») and the
arbitrary parameter values 6 = 10, 7, = 1, 7, = 0.5, and w = 5. The
curves represent two different scenarios: in ¢ increased, d = 0.1, and ¢
increases from 0.1 to 2; in d increased, c = 0.1, and d increases from 0.1
to 2. Initial conditions were set to S(0) = 1.33, I(0) = 23.7, and
»(0) = 0.32, which are the equilibrium values corresponding to the
above-mentioned parameter values before the change in either d or c.

also causes a reduction in the density of infected hosts,
however, and over time this will counteract the decline in
susceptible hosts because the force of infection will decline.
Indeed, at equilibrium it can be shown that the density
of susceptible hosts in this model is actually higher when
the natural host mortality rate, d, is higher (fig. 3). Thus,
the evolutionary predictions obtained from the game-
theoretic approach miss an underlying level of complexity
related to the evolutionary dynamics that can be under-
stood only through the use of a dynamic model.

Previous results based on equation (15) have also sug-
gested that an increase in the clearance rate of infection,
¢, has an identical effect on virulence evolution as an in-
crease in the natural mortality rate, d, because both enter
equation (15) in an identical way (in the denominator of
the right-hand side; Frank 1996). The QG approach, how-
ever, demonstrates that there are important differences
between these two cases that are masked by the game-
theoretic approach. Increasing the clearance rate, ¢, will
immediately increase the density of susceptible hosts, S,
and decrease the density of infected hosts, I. Therefore,
we expect an immediate evolutionary increase in virulence
when c is increased (fig. 3).

Previous theory based on equation (15) has also pre-
dicted that changing the transmission rate by a multipli-
cative constant will have no effect on virulence evolution.
This led some to question verbal theories of virulence
management that are based on such manipulations (Ewald
1994, 1995; van Baalen and Sabelis 1995b). The QG ap-
proach demonstrates that there again is a hidden layer of
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complexity that is ignored by these previous results. Ac-
cording to equation (13), increasing 7 by a multiplicative
constant will increase the transmission rate and therefore
immediately select for an evolutionary increase in viru-
lence. This will eventually result in a reduction in the
density of susceptible hosts, however, which will counter-
act the initial increase in such a way that the equilibrium
level of virulence remains unchanged (fig. 4). The mag-
nitude of this initial increase in virulence will depend on
the level of genetic variance in virulence relative to the
timescale of the epidemiological dynamics.

Secondary Infection Present

We now incorporate secondary infection into the above
model. We assume that activity level of infected hosts is
unaffected by virulence (i.e., ¢; = 1). In this case, again
supposing that there is no mutational bias (i.e., 6 = 0)
and that there is no relationship between virulence and
within-host competitive ability (i.e., 7, = 0), equation
(12) simplifies to

i

dr (16)

= w

d ~
—T(uSS +ul) — 1].
dv

Equations (9), (10), and (16) now give the coupled evo-
lutionary-epidemiological dynamics.

A comparison of equations (16) and (13) reveals that
secondary infection affects virulence evolution simply by
changing uS in the first term to uS + I (note that ¢,
drops out of equation [13] when ¢, = 1). Secondary in-
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Figure 4: Effect of infected activity level ¢,. Evolutionary dynamics of
virulence using the function 7(v) = 7,»/(7, + ») and the arbitrary pa-
rameter values 6 = 10, d = 0.1, c= 1,7, =5, 7, = 0.5, and ¢, = 1.
System was allowed to reach the equilibrium values of S(0) = 3.1,
I(0) = 11.5, and »(0) = 0.74, and the plot then begins after ¢, is in-
creased to 5. The plot shows results for two different values for the genetic
variance.
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fection therefore has a directional effect on virulence evo-
lution, even though there is no relationship between
within-host competitive ability and virulence, because
strains that cause secondary infections tend to have higher
than average virulence (because dr/dv > 0).

Comparison with Previous Results. Previous theory has
demonstrated that secondary infection can result in the
evolution of higher virulence in the absence of a relation-
ship between virulence and within-host competitive ability
(Gandon et al. 2001a). Interestingly, different interpreta-
tions of the biological reason behind this can emerge in
the game-theoretic versus the QG approach. Gandon et
al. (2001a) have shown that, in a model analogous to that
above, the evolutionarily stable level of virulence, v*, sat-
isfies an equation identical to equation (15) (with ¢, =
1) except with an additional term, 71, in the denominator
of the right-hand side (Gandon et al. 20014, eq. [4]). A
cursory reading of this result would suggest that secondary
infection selects for higher virulence by increasing the loss
rate of infected hosts (through their being secondarily in-
fected) in much the same way that an increase in host
mortality rate, d, can select for higher virulence (Frank
1996). On the other hand, the QG approach (eq. [16])
suggests that higher virulence evolves because secondary
infections are caused by parasite strains with a higher than
average virulence (because the transmission probability, 7,
is higher for more virulent strains). In this way, the effect
is analogous to that of biased within-host mutation (see
discussion after eq. [8]).

This discrepancy in interpretation can be resolved by
conducting a thought experiment. Suppose we could elim-
inate the relationship between virulence and transmission
probability for secondary infections only (i.e., 7 is an in-
creasing function of » for interactions between susceptible
and infected hosts but not for interactions between two
infected hosts). In this way, we can maintain the height-
ened loss rate of infected hosts, but now these secondary
infections are caused by strains with a random level of
virulence. The QG approach then clearly predicts that
secondary infection should have no effect on virulence
evolution because equation (16) becomes dv/df =
w [(drldv)usS — 1], which is identical to the case of no sec-
ondary infection (i.e., eq. [13]). Importantly, the deriva-
tion of Gandon et al. (20014) can be followed through in
this case to give the exact same prediction; it is not the
heightened loss rate per se that causes the evolution of
higher virulence, but rather it is the fact that secondary
infections are caused by strains with higher-than-average
virulence. Thus, although the predictions of the game-
theoretic approach are certainly correct, the correct bio-
logical interpretation of these predictions is immediately

apparent in the QG approach, whereas it is somewhat
obscured in the game-theoretic approach.

Previous theoretical results have also demonstrated that
changes in the host mortality rate, d, and the infection
clearance rate, ¢, can have different effects once secondary
infection is allowed (Gandon et al. 2001a). The QG ap-
proach provides further insights into why this occurs.
Equation (16) reveals that it is the total “effective” host
density, ugS + 1, that determines the level of virulence
that evolves because this controls the selective advantage
of virulence. It can be shown that when the mortality rate
dis increased in the model used here, this quantity changes
in a direction given by the sign of

1 =MW+ d) — Rugd + cv), (17)
where i = #,/ug. Thus virulence changes in a direction
given by the sign of equation (17). In the absence of sec-
ondary infection, @ = 0, and we can see that virulence
always evolves to be larger (as seen earlier). The reason is
that the density of susceptible hosts at equilibrium will be
higher in this case (as detailed earlier). With secondary
infection, however, >0, and if N is big enough, then
virulence will evolve to be lower under higher host mor-
tality. The reason is that although the density of susceptible
hosts at equilibrium will be higher, the density of infected
hosts will be lower. Depending on the relative importance
of these two host types in the spread of infection (i.e.,
depending on the relative sizes of us and ), the total
effective host density usS + I can either increase or de-
crease, and this either increases or decreases the selective
advantage of virulence.

It can also be shown that if the clearance rate, ¢, is
increased, the total effective host density, ugS + ul, and
thus virulence, changes in a direction given by the sign of

(1—=9Nd+» (18)
Notice that, as with mortality, in the absence of secondary
infection, the equilibrium level of virulence always in-
creases. Unlike with mortality, however, an increase in ¢
can result in a decrease in the equilibrium level of virulence
only if infected hosts are more important in the spread of
the disease than susceptible hosts (i.e., if " > ug).

The QG approach also provides some clear insights into
potential explanations for the results of selection experi-
ments. For example, using a Daphnia-microsporidium sys-
tem, Ebert and Mangin (1997) experimentally increased
clearance rate by periodically replacing infected Daphnia
with uninfected ones in such a way that the total host
density remained largely constant. Thus, the treatment in-
creased S and decreased I'in such a way that S + Iremained
constant. In the absence of secondary infection, equation



(13) predicts an evolutionary increase in virulence because
the transmission benefits are higher (the anticipated re-
sponse; Ebert and Mangin 1997). Interestingly, the op-
posite actually occurred, and Ebert and Mangin (1997)
suggested that this was because of secondary infection, a
possibility that has been given theoretical support by Gan-
don et al. (2001aq).

Using the QG approach, we can clearly see the condi-
tions under which this explanation is valid. Equation (16)
reveals that virulence should decrease provided that
usS + w1 decreases. Recalling that the treatment effectively
changed some of the I hosts into S hosts, we can imme-
diately see that this will select for a decrease in virulence
only if (as already mentioned) u < 1, that is, if the prob-
ability that the parasite causes infection (given that it is
transmitted) is larger for secondary infections than for
primary infections (as might occur if infected hosts are
less able to defend themselves against further infection).
If this is not the case, then further conditions are required
for secondary infection to explain the experimental find-
ings. In particular, if there is a relationship between vir-
ulence and within-host competitive ability, then equation
(16) extends to

dv dr
P =w d—V(uSS + &y, I) + 2xy,71 — 1,

(19)
where we have used the fact that % = ku, and u, =
Yo T 76. The third term clearly reveals that a decrease in
I (as a result of replacement with susceptible hosts) will
then weaken selection for virulence. If this effect is larger
than the increase in the first term (assuming here that
ug > K7,), then it might explain the empirical results.

Finally, we note that Gandon et al. (2001a) have re-
marked how introducing a relationship between virulence
and within-host competitive ability can result in the evo-
lutionary diversification of parasites with differing levels
of virulence (provided this relationship is strong enough).
Analogous findings are obtained with the QG approach.
In particular, appendix C shows that the evolutionary dy-
namics of the variance in parasite strains need not reach
an equilibrium if equation (C6) is positive. It can be seen
that in the present model, this can be the case if v, (which
represents the strength of the relationship between viru-
lence and within-host competitive ability) is large enough.
More generally, the relationship between the present ap-
proach and the game-theoretic approach is detailed in ap-
pendix E.

Example 2: Horizontal versus Vertical Transmission

There has been considerable interest in determining the
effects of vertical versus horizontal parasite transmission
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on virulence evolution (Bull et al. 1991; Sasaki and Iwasa
1991; Ewald 1994; Lipsitch et al. 1995, 1996; Frank 1996;
Kover et al. 1997; Kover and Clay 1998; Messenger et al.
1999). We illustrate how the QG approach can be used to
gain insight into this question as well. Consider a simple
epidemiological model of the form

ds N N
— = bSS(l -= +b,Il——)
dt K K
x (1 — &) — dS— rus¢,SI, (20)

dI
i Tug, SI— (v + d)I + b1

1— %])g 1)

Here b and b, are the (constant) per capita birth rates by
susceptible and infected hosts when the total host popu-
lation density, N = S + I, is low, and we allow for b, to
be a function of virulence, v. Notice that, overall, the birth
rates are density dependent, and K is the host density at
which the birth rates equal 0. Finally, £ is the fraction of
offspring produced by infected hosts that are themselves
infected. When £ = 0, there is no vertical transmission,
and when ¢ = 1, there is perfect vertical transmission (i.e.,
all offspring of infected hosts are infected).

For this example, we will suppose that there is no sec-
ondary infection (y; = 0) and no directional force to vir-
ulence evolution arising through within-host mutation
(Mm = 0). Therefore, following appendix B, the evolu-
tionary dynamics of virulence are

dv

Pl

dr db,
wl—ugp,S—1+—

N 22
dv dv @2)

N
=

where we have assumed that ¢, is independent of ».
Equations (20)—(22) give the coupled evolutionary-
epidemiological dynamics of this system.

Several clear predictions can be drawn from equation
(22). First, in the absence of horizontal transmission (i.e.,
with purely vertical transmission; 7 = 0), the first term
disappears. Therefore, under the assumption that virulence
either decreases the reproductive output of infected hosts
or leaves it unchanged, equation (22) makes the well-
known prediction that, under purely vertical transmission,
the parasite will evolve toward avirulence (Lipsitch et al.
1995, 1996). Second, if we instead assume that the parasite
has no effect on the reproductive rate of infected hosts,
then the third term in equation (22) disappears. Therefore
we are left with the same evolutionary dynamic as we had
in equation (13) of example 1. Under such conditions,
vertical transmission affects virulence evolution only
through its effects on the density of susceptible hosts.
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From these simple observations, if virulence does not
affect fecundity, then we can also easily derive the pre-
diction that the presence of vertical transmission reduces
the equilibrium level of virulence by showing that vertical
transmission reduces the density of susceptible hosts (and
thus, from eq. [22], decreases the selective advantage of
virulence). To do so, we simply solve equation (21) for S
to obtain

§ = d+v— bl — (NIK)E

TUsP,

. (23)

We know that at equilibrium we must have N < K because
otherwise the birth rates would be negative and the pop-
ulation would go extinct. Therefore, we know that the third
term in the numerator of equation (23) is positive, pro-
vided that vertical transmission occurs (i.e., when £ # 0).
Thus, the equilibrium density of susceptible hosts must
be lower when vertical transmission occurs, and this leads
to the evolution of lower virulence (at equilibrium).

It has also been noted that an increase in the propensity
for horizontal transmission that comes about from an in-
crease in the contact rate, ¢,, actually leads to the evolution
of lower virulence in this model (Lipsitch et al. 1996). This
at first is counterintuitive because we might expect in-
creased horizontal transmission to lead to higher virulence
because it should make the importance of vertical trans-
mission in the reproduction of the parasite relatively less
important. Some insight into the reason for this prediction
can be gained by recalling what happened in example 1
when the contact rate was increased. If virulence does not
affect fecundity (i.e., db,/dv = 0), we have

. (24)

dv  [dr

a = w 5 usp,S—1
As in example 1, an increase in the contact rate, ¢, im-
mediately increases the selective advantage of virulence.
Initially, provided there is ample genetic variance in vir-
ulence, this leads to the evolution of higher virulence. Over
time, however, the density of susceptible hosts declines to
compensate for the change in contact rate. In the case of
example 1, this compensatory decrease was equal to the
increase in contact rate, and this left the mean level of
virulence unchanged at equilibrium. In the present case,
the decline in the density of susceptible hosts more than
compensates, and at equilibrium the mean level of viru-
lence is actually lower. Such overcompensation occurs here
because the presence of vertical transmission essentially
provides another route through which the density of in-
fected hosts can increase at the expense of susceptible
hosts.

Experiments have been conducted to test theory about
how the extent of horizontal versus vertical transmission
affects virulence evolution (Bull et al. 1991; Messenger et
al. 1999). The results have been interpreted using theory
based on the game-theoretic approach of maximizing R,
and this assumes that epidemiological equilibrium is
reached. In experimental manipulations, however, this is
probably often not the case, and the QG approach provides
a clear conceptual route for making predictions for these
sorts of experiments. For example, equation (24) reveals
that if one experimentally manipulates the extent of ver-
tical transmission by altering the proportion of offspring
produced from infected hosts that are themselves infected
(i.e., £), then we expect no evolutionary response in vir-
ulence unless this alteration is allowed to feed back on the
density of susceptible hosts. Otherwise, the manipulation
does not alter anything in equation (24). This sort of ep-
idemiological feedback is probably often precluded in
many experiments, and thus no evolutionary response is
expected.

Interestingly, the experiments that have demonstrated
the evolutionary consequences of these two transmission
routes have tended to use a different manipulation. For
example, horizontal transmission is largely prevented in
one treatment (making d7/dv = 0) or largely enforced in
another treatment (e.g., Bull et al. 1991). Equation (24)
predicts an immediate selection for reduced virulence in
the former case relative to the latter. Other protocols have
enforced periods of solely vertical transmission followed
by periods of solely horizontal transmission but have ma-
nipulated the amount of the life cycle that is made up of
each of these types of transmission (e.g., Messenger et al.
1999). Results have shown that lower virulence evolves in
treatments that spend a greater proportion of time under
enforced vertical transmission. This is also expected from
equation (24). Indeed, the QG approach can be used in-
dependent of any feedback in the epidemiological dynam-
ics. One simply needs to specify the relevant quantities in
the equation for the evolutionary dynamics of virulence.
For example, the present situation might be modeled by
assuming that S is constant (disallowing any epidemio-
logical feedback) but where d7/dv fluctuates between 0 and
some positive value over time. Predictions obtained are in
qualitative agreement with experimental results (fig. 5).

Example 3: Mutation and Virulence Evolution

Interest has also focused on determining how within-host
mutation affects virulence evolution (Bonhoeffer and No-
wak 1994). As a simple example, consider the epidemio-
logical model 9-10 (eqq. [9], [10]) but ignore secondary
infection. In this case, the coupled -evolutionary-
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Figure 5: Evolutionary dynamics under the proposed experimental ma-
nipulation involving horizontal and vertical transmission. We used
7(v) = 7v/(7, + ») and the arbitrary parameter values 7, = 2, 7, =
0.5, w = 0.25, and S = 10. We assumed that the system spends one unit
of time with enforced horizontal transmission followed by a period of
length vertical transmission time with enforced vertical transmission.

epidemiological dynamics are given by equations (9) and
(10), along with

=

(25)

dv do,7 -
w( : + 0(v0 + 110).

& uS—1

Equation (25) reveals that virulence evolution is governed
by a compromise between within-host selection (the sec-
ond term) and between-host selection (the first term). For
simplicity, we will assume that the genetic variance in
strain type is always at its equilibrium value, which, from
equation (C6) of appendix C, is

\/ P
@ = N(=9*ov?),_,

(26)
Substituting this into equation (25) then yields
dv — \E‘ dé,r S—1
— = 4/ ————— u -
dt — P =omar | dv
+ \Pu1ed + 110) (27)

for the evolutionary dynamics. Several interesting predic-
tions can be obtained from equation (27). First, if there
is no relationship between within-host competitive ability
and virulence (y,) and no bias in the mutations that arise
(6 = 0), then mutation has no directional effect on vir-
ulence evolution. Assuming that virulence is positively re-
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lated to within-host competitive ability, however, then the
equilibrium level of virulence will be higher than that pre-
dicted from a consideration of between-host selection
alone. The reason is that the second term in equation (27)
is then positive, pulling the mean level of virulence up-
ward. Also notice from equation (27) that, as the mutation
rate gets small (p_, — 0), the effect of within-host selection
gets weak relative to the effect of between-host selection,
and the predicted equilibrium level of virulence then ap-
proaches that which occurs in the absence of mutation
(the second term in eq. [27] goes to 0). Of course the rate
of evolution also then gets very small, so that this equi-
librium will be reached only after a very long period of
time. Interestingly, this suggests that, from a biological
standpoint, it is inconsistent to explore the effects of such
within-host mutation on virulence evolution without also
then explicitly considering the evolutionary dynamics of
virulence evolution. In other words, if we want to assume
that mutation rates are large enough to have a substantial
effect on the predicted level of virulence, then this will
also mean that there is substantial variation in virulence
between hosts, which implies that we cannot assume that
evolutionary change is slow relative to the epidemiological
dynamics.

Finally, as pointed out in Bonhoeffer and Nowak (1994),
within-host mutation can result in there being an inter-
mediate level of virulence at equilibrium, even in the ab-
sence of a relationship between transmission and viru-
lence. To see this, suppose that the probability of
transmission is no longer a function of virulence. The
evolutionary dynamics in equation (27) then become

v | — -
@ el T VPu(Yed + 110)|- (28)
A
At equilibrium, dv/dt = 0, and therefore
¢ .
=i Om(¥60 + 710), (29)

which can be satisfied for an intermediate level of virulence
depending on the function r as well as how the mutational
bias is a function of the mean level of virulence. In such
cases, between-host selection always favors reduced viru-
lence, but this is countered by selection for increased vir-
ulence within hosts.
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Example 4: An Exact Model with Mutation
and Secondary Infection

It is also possible to obtain exact equations for the joint
evolutionary-epidemiological dynamics for certain choices
of the functions 7 and ¢ under the assumption that the
parasite distribution remains Gaussian (app. D). In this
case, the dynamics of the mean and variance of virulence
are sufficient for modeling the dynamics of the entire
distribution.

Using the results of appendix D, suppose that the host
population is maintained by immigration, that 7(») =
n1—e™), ¢, = ¢ =1,u; =1, k = 1, and that there
is no relationship between virulence and within-host com-
petitive ability (y, = 0) as well as no mutational bias
(6 = 0). In this case, the evolution of virulence is governed
by both between-host selection and within-host selection
arising from secondary infection. The equations of ap-
pendix D reduce to

%%:0—d8—ﬂﬂ+d; (30)
%%=7ﬂ—m+ﬁ+dL @31
L T+ D) - 1], (32
L oﬂ%(s D) + o (33)

where all instances of » appearing in the function 7 (or
any of its derivatives) are evaluated at v = » — (7,/2) w.
System 30-33 (eqq. [30]—[33]) gives the exact epidemi-
ological dynamics along with the exact evolutionary dy-
namics of the entire parasite distribution.

aFigure 6 gives an example of the dynamics of the system.
It can also be shown that for the case where x = 0 (i.e., no
secondary infection), the equilibrium mean level of viru-
lence in this situation increases with mutational input,
on¢. In particular, from equation (33) we can see that the
equilibrium level of variance increases with mutational in-
put, p,.{. Using equations (31) and (32), one can also show
that the equilibrium mean level of virulence must satisfy

dr/dv _ 1
Td+i+c

(34)
;

r=p—Tyw/2

A simple graphical argument for the values of » satisfied
by equation (34) reveals that » is an increasing function
of w (fig. 7). Notice, however, that if w is small (as was

Figure 6: Evolutionary dynamics of the entire distribution of parasite
virulence (assuming it remains Gaussian). Parameter values and functions
are 7(v) = 7p/(r,+v) and § =10, { =1, d=01, c=1, 7, = 2,
7, = 0.5, S(0) = 100, I(0) = 1, »(0) = 0.2. a, a low mutation rate,
pm = 0.01. b, a high mutation rate, p,, = 1.

assumed in example 3), then this effect of variance in strain
type is negligible.

Conclusions and Future Prospects

We have attempted to illustrate how a QG approach
to modeling virulence evolution can sometimes be both
more general and more transparent than previous game-
theoretic approaches. We suggest that the benefits of this
QG approach lie in four main areas. (1) It allows predic-
tion of the short-term evolutionary dynamics of virulence.
This is significant because the short-term evolution of vir-



ulence is often in a direction opposite to that of its long-
term evolution. (2) It explicitly separates evolutionary
change from any epidemiological feedback. This tends to
make the causes of virulence evolution more transparent
because it illustrates how the epidemiological and ecolog-
ical circumstances at any given time (regardless of their
dynamics) give rise to the selective regime that governs
virulence evolution. This yields considerable generality,
and it also makes this approach readily applicable to many
experimental techniques for testing theory. (3) It allows
the construction of models in which evolutionary and ep-
idemiological processes occur on any relative timescale,
and it also allows for any form of nonequilibrium dynam-
ics. (4) It is at least as easy (and usually easier) to apply
than previous game-theoretic techniques.

The set of examples presented here was chosen to illus-
trate the breadth of applicability of the approach and the
ease with which predictions can often be obtained. No doubt
there are many other questions of interest that can be ad-
dressed using the results derived here, but there are also a
number of important extensions of this framework that are
required before it will be a completely satisfying theory.

First, the theory presented here is applicable only to
situations in which there is a single type of host that can
become infected. More realistically, we would want to al-
low for various types of host heterogeneity (Regoes et al.
2000; Gandon et al. 2001b; Ganusov et al. 2002; Pfennig
2001), including different host species or environments.
Additionally, we have assumed that random environmental
variation in virulence is negligible in the present results.
In many cases this assumption is probably not reasonable,
and it is relatively easy to extend the QG approach outlined
here to incorporate both of the above effects (T. Day, un-
published manuscript). Additionally, we have assumed
that there is a single parasite trait of interest, but it is
clearly desirable to have a comparable theory that incor-
porates the simultaneous evolution of multiple parasite
traits (e.g., that treats virulence and transmission as two
separate traits that are potentially genetically correlated).
Due to space limitations, we have reserved these results
for a future publication as well.

Aside from the above extensions, there are two other
areas to which this approach might be well suited. First,
many host-parasite systems experience considerable spatial
variation in the selective pressures on virulence as a result
of abiotic environmental variation as well as endogenously
generated spatial variation in biotic conditions (as a result
of local ecological and epidemiological dynamics coupled
with dispersal). For example, avian malaria in the Ha-
waiian Islands displays strong epidemiological variation
across altitudinal gradients as a result of temperature
changes (van Riper et al. 1986; Benning et al. 2002). Little
theory has been developed to model virulence evolution
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Figure 7: Graphical depiction of the prediction that the mean level of
virulence is expected to be higher when there is higher variation in
virulence among strains. The curve representing the left-hand side of
equation (15) (i.e., the transmission benefit) is simply shifted to the right
as the level of genetic variance w increases. Therefore, the equilibrium
level of virulence (i.e., where this curve crosses the curve representing
the cost of virulence; the right-hand side of eq. [15]) increases.

in such situations, and the QG approach presented here
is perhaps one way in which such spatial variation could
be incorporated. There is already a considerable body of
quantitative genetic theory similar to that used here for
the evolution of traits in continuous spatial domains (Na-
gylaki 1975; Pease et al. 1989; Garcia-Ramos and Kirk-
patrick 1997; Kirkpatrick and Barton 1997; Day 2000; app.
A). It should be relatively straightforward to use a similar
approach for evolutionary-epidemiological models as well.

Second, an increasing body of theory is directed toward
linking within-host dynamics of parasite replication with
between-host epidemiological and evolutionary dynamics
(Diekmann et al. 1990; Anderson and May 1991, chap. 11;
Sasaki and Iwasa 1991; Antia et al. 1994; Smith and Holt
1996; Ganusov et al. 2002; Day 2001, 20025, 2003). There
are also previous quantitative genetic techniques that have
been developed to model the evolution of “infinite-
dimensional” characters such as reaction norms (Gomulkie-
wicz and Kirkpatrick 1992), and these techniques can prob-
ably be used to extend the results presented here to allow
for temporal changes in virulence (and possibly other pa-
rameters) over the course of an infection as well (see Day
2003).
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APPENDIX A

Derivation of Equations (3)—(7)

We allow a continuum of parasite strains (indexed by »)
and suppose that new strains continually arise through
within-host mutation. A new strain either immediately dis-
places the prior resident strain or else dies out. Additionally,
we allow infected hosts to acquire secondary infections from
other infected hosts, at which point either the original strain
immediately excludes the secondary invader or vice versa.
Letting I(», t) denote the density of infected hosts of strain
v at time t, equation (1) generalizes to

ds
— =0+ 0bS
dr s

o o

+ f biqw) dvl, — dS — ¢>Su5f¢,7q(v) dvSI;, (Al

—o —o

o
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where I, = J'io I(v)dv is the total density of infected hosts
and ¢g(v) is the probability density q(») = I»)/I; (i.e., the
proportion of hosts infected with strain »).

To generalize equation (2), more specific assumptions
are required regarding the dynamics of the distribution of
infection types, I(v). We suppose that this distribution
changes through time because of three processes. First, the
generation of new infections from previously susceptible
hosts changes the total number of infected hosts, I, as
well as the way in which these are distributed among dif-
ferent parasite strains. Second, within-host mutation and
secondary infection redistribute the strain types in some
way, potentially imposing some form of directionality on
virulence evolution (although this does not affect the total
number of infected hosts). Third, we suppose there is a
purely random, unbiased component of mutation within
hosts that allows for the continued maintenance of vari-
ation in parasite strains. These three effects are modeled
using a reaction-advection-diffusion process whose dy-
namics are described by the Fokker-Planck equation (or,
equivalently, the forward Kolmogorov equation) with a
reaction term (Okubo and Levin 2001):

ol P ¢l
D=L+ S 2L A2
e = T, MD F eyt (A2)

The first term in equation (A2) is the reaction term, and
it represents the generation of new infections of type » from

previously susceptible hosts. The second term is the advec-
tion term, and it represents the mean flow of one infection
type to another as a result of within-host mutation and
secondary infection. This is the redistribution process men-
tioned above. The third term is the diffusion term, and it
represents random changes in infection type as a result of
random within-host mutation and serves to maintain ge-
netic variation in virulence. Mathematically, M(») (which
depends on strain type, ») represents the infinitesimal mean
of the diffusion process (essentially the average change in
strain type for hosts infected with strain » in a small interval
of time through within-host mutation and secondary in-
fection), and { (which, for simplicity, we assume is a con-
stant) represents the infinitesimal variance of the diffusion
process (essentially the second moment of the change in
strain type in a small interval of time). The parameter p,,
is the rate of mutation.

To further specify the model, we need to derive an ex-
pression for M. The mean change in strain type in a small
interval of time, At, is given by

M)At = p,@W)p, At + pv)o, At

+ (1 — p, At — p,At) - 0 (A3)

= PP AL + p)o AL

where p, (v) and p (v) represent the mean change through
mutation and secondary infection, respectively (given such
events occur), and p,, and p, are the rates of occurrence
of these events (e.g., p,, At is the probability that a mutation
occurs in time interval At). We derive expressions for each
of u_(») and p,(v) in turn.

Mutation. Let ] be a random variable denoting the jump
size in strain type and ¥ be a random variable denoting
the virulence displacement (from ») of the new strain aris-
ing by mutation. Then,

o

b)) = JE(Il‘I’ = O)B(¥ = 6)ds, (A4)

—oo

where the probability density of mutations, P, (¥ = §),
might depend on the strain of the host in question, .
Using u©,(6) to denote the probability that a strain with
virulence displacement 6 takes over the host infected with
strain », we have E(J|¥ =6) = uy(8) -6+ [1—
u,(6)] -+ 0 = u,(6)6. Therefore,

%

Pm®) = Ju1(5)5P,(‘I’ = 6)dé.

—o0

(A5)



For mathematical simplicity we use the specific function
u,(8) = v, t v,6. Note that this represents a probability,
and under the assumption that § is not too large (i.e.,
mutations are of small effect), this will lie between 0 and
1. The parameter 7, is the baseline probability that any
strain will take over an already infected host, and the pa-
rameter vy, denotes the extent to which virulence is as-
sociated with within-host competitive ability; for example,
v, >0 means that strains with higher virulence have a
within-host competitive advantage, whereasy, = 0 means
that there is no relationship between virulence and within-
host competitive ability. We will assume that P, has a mean
6 and second moment, g, and therefore equation (A5)
simplifies to

:u’m(V) = 706(1}) + 710‘ (A6)
We assume that the rate of mutation, p_, and the second
moment, g, are constant, and therefore we have

Lu®)Pn = 010 + v,0]. (A7)
Secondary Infection. The treatment of secondary infection
is more complicated because, given that a host infected
with strain » contacts an infected host with strain 7, two
events can happen. The host with strain type v can become
a host with strain type » and vice versa. We need to derive
an expression for the mean change in strain type for hosts
of type » as a result of these two possibilities. Let J again
be a random variable denoting the jump size in strain type
at v, and let C be a random variable denoting the type of
infected host that is contacted. Then,

o

mw=J€m6=mmc=mﬁ. (A8)
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We obtain an expression for E (J|C = ») by further con-
ditioning on whether strain type » gets transferred to the
host with strain type » and vice versa. There are four
possible events: (1) »—w», v—p (with probability
7[»]7[¥]); (2) » = v (with probability 7(») [1 — 7(»)]); (3)
v — » (with probability [1 — 7(»)] 7(»)); and (4) no transfer
occurs (with probability [1 — 7(»)] [1 — 7(»)]). We use
(v — ») to denote the probability that a strain of type
» supplants a strain of type » (once secondary infection
has occurred), and we define this as wu(» —») =
ku,(» — »). Here, k < 1 is a factor that allows for the pos-
sibility that secondary infections are less likely to succeed
in colonizing an infected host than are new mutations.
Therefore the expected jump size for each of the above
four events is:
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(1)
w(» — vl — u — )y — /2
+ (v —vue — ) —/Q+ @ — )2
+ [0 —w@—vl - -0
+ 1 — u(»— »u—»)y— )2
= [w(r —v) —ul —»)] x [v—)/2;
(2)
w(» — vy — v]/2;
(3)
wv — vy — v/2;
(4) 0.
Therefore we obtain
E(JIC = »)
= 7)1 [ —») — w —»)] - (v — /2

+ 7M1 — @) — vy — v]/2
+ [1 — 7)) @ — vy — v)/2

= [t u(r — v) — 7@ — »)(» — »)/2.

We also have P(C = 7) = q(»)é(»)/$, where ¢ =
[g¢dw. Therefore, equation (A8) can be simplified as
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¢ g»)d(»)[r(v) + 7()(» — »)*dr.

(A9D)

The rate of secondary contact is given by p, =
¢() [¢Idv = ¢(»)¢l;, and therefore we have
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M(») is given by the sum of equations (A7) and (A10).

System A1-A2 (eqq. Al, A2; with appropriate boundary
and initial conditions) completely determines the evolu-
tionary and epidemiological dynamics of interest. One
might analyze this system to get a complete understanding
of virulence evolution, but here we make some simplifying
assumptions to derive a more manageable model. We as-
sume that the distribution of strain types in the population
is Gaussian and has a small variance, and therefore we will
simply track the mean level of virulence (and assume that
the distribution remains Gaussian with a small variance).
We derive the conditions under which the variance will
be small in appendix C and derive results for arbitrary
levels of variance in appendix D.

To track the evolutionary dynamics of the mean level
of virulence, we first derive an equation for the dynamics
of q from equation (A2):

dq _ollor  dl/dt

All
FYERE A (Alla)
d(Mq) §d°q
= - —F4p. i+
v pm281/2 "
d(Mq) $a’q
—q | [FEE2 1 2 gy (Al
qf[ Jdv '0"'281/2 rqdv ( )
.0 ¢ad’q
= qr— D ——(Mg) + p,> s, All
q(r— 1) ay( 9 Py (Allc)

where 7 = [rgdp. The mean level of virulence at time ¢ is
v = [qvdy, and therefore the dynamics of the mean level
of virulence are

dv aq
- _ -1 Al2
dt Jyatdv (Al2a)
_ d $%q
= -1 ——WMq) +p,~—|d A12b
IV[q(r r) 61/( 9 Py | ( )
= jvq(r— rdv — (VMq — qudv)
| 9q 9q
+ = = p— _
p’“Z(Vay B faydv (A12¢)
= Jrq(v —v)dy + Jquv. (Al12d)

Finally, under the assumption that q is Gaussian, equation
(A12d) can be simplified (Taylor and Day 1997; eqq. [A1]—
[A3]) to

Jar

v

dv
= wE

e + E[M®@)], (A13)

where E() is the expectation over the distribution g.

Equation (A13) gives the evolution of the mean level
of virulence. We can evaluate the expectations in (A13)
more explicitly using equations (A7) and (A10) for M(»).
Doing so results (after considerable calculation) in the
expression

dv or o g + v0)
hud g
ds wav PmYo Y

| 4 _
+ ITquﬁ(y[)d)d—: +y287| + o), (Ald)

where overbars denote expectations over the distribution,
¢ and o(w) represents a quantity such that
lim_ ., 0(w)/w = 0. Therefore, if we assume that the var-
iance in the strain distribution, w, is relatively small, we
obtain the approximation
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where, in (A15b), we have assumed that the mutational
bias, 6(»), is a linear function of » (i.e., d*6/d»* = 0). This
is equation (5) of the text. Of course the variance, w, is
itself a dynamic variable, but appendix C provides con-
ditions under which this will be small. Additionally, for a
particular (but still quite general) choice of the functions
7 and ¢, one can obtain the exact equations for the dy-
namics of the mean and variance (app. D).

To complete the model, we need a closed system of
equations for the joint evolutionary and epidemiological
dynamics of the model. This can be obtained by noting

dL;
dt

LE()

Q2

Lr| (A16)

y=»

which gives equation (4) of the text. Assuming that the
variance in strain type is small, equation (Al) can then
be approximated by equation (3) of the text (where all
parameters involving » are evaluated at v = »).

APPENDIX B

General Recipe for QG Approach

Our results are applicable to any model in which there
is a single category of infected hosts (although there is
a continuum of strain types that might infect hosts of
this category) and a single phenotype of the parasite of
interest (which in the text we have taken to be virulence:
the parasite-induced instantaneous mortality rate). We
extend this approach for questions involving multiple
host species or other types of host heterogeneity as well
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as multivariate in a future
publication.

The first step in applying the QG approach is to for-
mulate the epidemiological model of interest under the
assumption that there is a single parasite strain. We sup-

pose that the model of interest can be written as

parasite phenotypes

(B1)

dx
P flx, I p)], (B2)

where [ is the density of infected hosts, x is a vector of
the remaining state variables of the model (i.e., the vari-
ables whose epidemiological and ecological dynamics are
also of interest, e.g., susceptible host density, predator den-
sity, competitor density, resource density, etc.). Here, »
denotes any phenotype of the parasite that is of interest.
We have assumed that » denotes the parasite-induced mor-
tality rate, that is, virulence, in the simple model of the
text, but this need not be the case. For example, it might
represent the level of host exploitation by the parasite. The
p is a vector of all the parameters in the model (which
might themselves be functions of the phenotype, »). Fi-
nally, fis the vector whose elements are the expressions
for the dynamics of all of the state variables in the vector
X.

Given model B1-B2 (eqq. [B1], [B2]), the approach
derived in appendix A shows that the coupled evolution-
ary-ecological-epidemiological dynamics are given by the
exact same system ([B1], [B2]), except where I is replaced
with I, the total density of infected hosts (of all strain
types), where all instances of v are evaluated at » and where
the evolutionary dynamics of the mean level of virulence
are given by

dv or
.

Tk R RORION (B3)

v=v

where w is the variance in strain type among hosts and
7., and 7, are the evolutionary effects of within-host mu-
tation and secondary infection, respectively (and are spec-
ified explicitly by eqq. [6] and [7] of the text). The coupled
system (eqq. [B1]—[B3]) is based on an assumption that
the variance, w, is small, which will be reasonable provided
that selection does not favor an evolutionary diversifica-
tion of parasite strains (see app. C) and that the rate mu-
tation, p,,, is small.
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APPENDIX C

Evolutionary Dynamics of the Variance

Here we derive an equation governing the evolutionary
dynamics of the variance in strain type. This allows us to
determine the conditions under which we expect our as-
sumption of small variance among hosts to be valid. The
evolutionary dynamics of the genetic variance in strain
types between hosts is

do d >
i _dtJ(V v)*qdv

o

dv d
= — 2d—I:f (v —v)qdv + f - ﬁ)za—(idv. (Cy
The first term of (C1) is 0, and the second term evaluates

as follows:
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and therefore

dw - a’r . EdM ot 3
= W= WElE2 ’
dt ov? dv Prm

where the first two terms in equation (C2c) follow from
the assumption that g is Gaussian with mean » and var-
iance w (Taylor and Day 1997, appendixes), and E() is the
expectation over the distribution, g. This equation, along
with equation (A14) of appendix A can, for some cases,
be used as an exact model of the evolutionary dynamics

of the entire distribution of parasite strains under the as-
sumption that it is Gaussian (see app. D). Using the ex-
pression for M(v) derived in appendix A, we can evaluate
(C3) more explicitly to obtain

d_w — 2@ +2 d_(_s
dt =~ © a2 Py,
+ L’ zd—(bg& + &qﬁ
T\ qy dy dv’
+ 2w’ @¢—+d—¢ $+d—7¢$
TN, T g, T dv
+ 0.0+ o(w?). (C4)
Therefore, we obtain the approximation
d_w — 2& +2 d_(_s
dt =w de wpm’YOdV
+ Lw’ky,d 2d—¢g + qsﬁ
T KN dy dv?
d d
T R P TR (0
dv dv

where all terms are evaluated at v = ».

The approximations used in appendix A for the general
QG approach assume that the genetic variance remains
approximately constant and small during evolutionary
change in the mean phenotype. We can set equation (C5)
equal to 0 to obtain an expression for the equilibrium level
of variance, and from this we may determine the condi-
tions on the parameters under which this small variance
assumption is valid. One can use the quadratic formula
with equation (C5) to do so, but here we concern ourselves
only with case where the bias in mutations that arises
within an infected host is independent of the strain in-
fecting the host (i.e., d6/dv = 0). In this case, the second
term in equation (C5) drops out, and the equilibrium
variance is given simply by

w = =p,{/D, (Ce)
where
D = '+ Ly, 28’7 + ¢7")
T v.@e'T + 267, C7)

and we have simplified notation by using primes for dif-
ferentiation with respect to ». From equations (C6) and



(C7), we can see that an equilibrium level of variance
occurs if and only if D < 0. Moreover, in this case, the
equilibrium level of virulence will tend to be small, pro-
vided that the rate of mutational input, p,{; is small (as-
suming, of course, that D is bounded away from 0).

APPENDIX D
Exact Results for a Special Case

Here we illustrate how the QG approach can also be used
to obtain a relatively simple, exact model for the joint
epidemiological-evolutionary dynamics of the entire dis-
tribution of parasite strains if we assume that this distri-
bution remains Gaussian and if we use some specific (but
still quite general) functions for 7 and ¢. There are un-
doubtedly other scenarios for which a similar derivation
can be carried out, and the calculations presented here
can be used as a template for doing so.

Under the assumption that the distribution of parasite
strains remains Gaussian, we can model the dynamics of
this entire distribution by simply modeling the dynamics
of its mean and variance. The assumptions used here allow
for both within-host mutation as well as secondary infec-
tion as before, but we now use the specific functional forms
70 = 7(1—e™), ¢ = e *”, and u,(0) = v, + 6,
where 7, 7,, and @, are constant parameters (note that
¢(0) = ¢, in the earlier notation, reflecting the assump-
tion that hosts infected with an avirulent strain have a
contact rate equal to that of susceptible hosts). The exact
evolutionary-epidemiological model for the entire distri-
bution of strains is given by

ds
o 0 + bS+ bl — dS
- fd)scblmsq(v)dVSIT + I, (Dla)
dI;
PP (s, 7usS — (d + v + Jlgw)dvL;, (D1b)
dv d
el J L g dv + J M)q)dv, (Do)
dt v
dw a°r dM
— = | — + — + p,.0.
& w fayzq(u)dv ZwJ o qwdv + p,0. (D1d)

—o —o
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Under the above assumptions, the integral terms can be
solved explicitly. These calculations are tedious, but are
easily conducted using software such as Mathematica
(Wolfram Research 2003). One obtains

ds
5, =0+ bST bl dS— guSl +c,  (D20)
dI, _
i o TuSL — (d+ v + Ol (D2b)
dv , =
a = w[(@7)'S — 1] + p,,(y,0 + 110)
+ wkd’ L (y,m’ + v,27) (D2¢)
- szd)zIT('YszT,)’
d_w — 2.1 + 2 @
dt = wTr WY0Pm dV
+ W’klpy, Q20’7 + ¢7")
+ wkly,d4d'T + 2¢7) (D2d)

+ &’k oy [T'7,(7, + 26)] + 0,6

where primes denote differentiation with respect to », and
in all of the above expressions, all instances of v appearing
in the function 7 (or any of its derivatives) are evaluated
at

T
V=V_EZ+¢ICU, (D3)

and all instances of » appearing in the function ¢ (or any
of its derivatives) are evaluated at

NS

. (D4)

“Example 4” of the text illustrates an application of these
exact dynamics.

APPENDIX E

Comparison with Game-Theoretic Models

Here we illustrate how the condition for the existence of
an equilibrium level of variance in the QG approach is
related to the condition for there being a single evolu-
tionarily stable (ESS) parasite strain under the game-
theoretic approach. In game-theoretic models, a single ESS
strain will exist if the intrinsic growth rate of any mutant
is negative when attempting to invade (Maynard Smith
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1982). Using A(», ») to denote the intrinsic growth rate of
a mutant with virulence » in a population where the res-
ident strain has virulence », we have

A, ») = ¢, 7uSH») — d+v+ 0
+ &, (MI(») 1 — )7(v)

= &, (MI»)w(r — »)7(»)

(ED)

(Gandon et al. 2001a). The first two terms of equation
(E1) represent the production of new mutant infections
in susceptible hosts and the loss of mutant infections
through mortality and disease clearance mechanisms of
the host. The last two terms represent the production of
new mutant infections through the secondary infection of
hosts infected with the resident strain and the loss of mu-
tant infections through the secondary infection of them
by the resident strain. Note that the notation S(»), I(?)
reflects the assumption of such game-theoretic models that
the epidemiological dynamics are always at equilibrium,
and hence the density of susceptible and infected hosts
can be expressed as functions of the resident level of vir-
ulence, ». An ESS level of virulence, »*, must then max-
imize equation (E1) in » at v = »* (when » = »*). The
first and second order conditions for this are

d\ ]
= = |[Z@ns—1
dv |,_;_,- 6V(¢T)
dr
+ oIy, + .27k =0 (B2
dV yv=p=p*
and
N 9° do dr d’r
W= ﬁ(dﬂ)s Tyl 2 T ¢ﬁ)
+ ol 4d—¢ + 2¢g <0
olé dv 7 dvf|,=s=0s ’
(E3)

Notice that in the absence of mutational bias (6 = 0),
equation (E2) is nearly identical to the equilibrium con-
dition from the approximation to the evolutionary dy-
namics of virulence derived in appendix A, equation
(A16). There are two differences. First, when there is a
relationship between a parasite’s virulence and its within-
host competitive ability (i.e., 4, # 0), equation (A16) re-
veals that there is then an implicit form of mutational bias

that is absent from the game-theoretic equation (E2) (i.e.,
the term p,;y,0 in eq. [A16]). Although mutations are not
biased when they arise, the fact that higher levels of vir-
ulence are associated with greater within-host competitive
ability means that unbiased mutation alone will never-
theless impart a directional force on virulence evolution
because it then tends to be those strains with higher vir-
ulence that are most successful in taking over an already
infected host. The QG model incorporates this effect,
whereas the game-theoretic model does not. Second, the
QG approach has a parameter reflecting the genetic
variance in strain type w, whereas the game-
theoretic approach does not. Finally, notice that both the
game-theoretic and the QG approximation differ from the
exact QG model derived under the assumptions of ap-
pendix D, equation (D2c), in that the latter is evaluated
using equations (D3) and (D4), and there is a fourth term
appearing in equation (D2c).

Comparing the second-order condition (E3) with the
results for the evolutionary dynamics of the variance in
appendix C (neglecting any mutation bias) reveals that
(E2) is equivalent to condition D < 0 where D is defined
in (C7). This is simply the condition that there be an
equilibrium level of genetic variance. Conditions under
which this is not true are the same conditions under which
we expect some sort of evolutionary diversification in
game-theoretic models (e.g., Gandon et al. 2001a).
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