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ABSTRACT

We investigate the correspondence between discrete-trait games (for example, matrix games)
and continuous-trait games, paying particular attention to the standard criteria for evolution-
ary stability. We show that the standard evolutionarily stable strategy conditions for discrete-
trait games can be seen as a special case of the conditions employed in continuous-trait games.

Keywords: adaptive and replicator dynamics, discrete and continuous games, evolutionary
stability.

INTRODUCTION

When constructing a mathematical model of some evolutionary phenomenon, there are
several different possible approaches. For example, when modelling the evolution of a
population’s sex ratio (i.e. the proportion of individuals in the population that are male), it
is possible to use a single-locus genetic model, an inclusive fitness model, any of a few
different types of game-theoretic models, among other approaches (Crow and Kimura,
1970; Charnov, 1982; Bulmer, 1994). Each approach embodies a slightly different set of
assumptions, and each has different strengths and weaknesses. Clearly, it is desirable that
the biological conclusions that are drawn are, in large part, independent of the type of
model used. Whether this is the case can be checked for any given model simply by con-
structing different types of models and comparing their predictions. It would be more
useful, however, to have general theoretical results that specify when different approaches
give similar results irrespective of the biological phenomenon being modelled.

Over the last few years, such results have been obtained for some different modelling
approaches. In particular, several authors have detailed the general correspondence between
phenotypic quantitative genetic models and game-theoretic models for continuous traits
(Charlesworth, 1990; Iwasa et al., 1991; Taper and Case, 1992; Abrams et al., 1993a; Taylor,
1996; Taylor and Day, 1997). This has clarified the interrelationships between these model-
ling approaches, and it has also made the assumptions embodied by each more transparent.
Moreover, connecting these two techniques has shed some light on the various stability
conditions that are sometimes employed in evolutionary game theory (see, for example,
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Taylor and Day, 1997). The fact that such game-theoretic models are now known to give the
same predictions as phenotypic quantitative genetic models under certain assumptions is
extremely useful because game-theoretic models are typically far easier to analyse.

Within the context of game-theoretic modelling itself, however, a dichotomy has
developed between discrete-trait game theory (which often involves matrix games) and
continuous-trait game theory (Bulmer, 1994); these two game-theoretic approaches each
have their own sets of conditions for characterizing evolutionary outcomes. Our purpose
here is to illustrate a simple correspondence between these two types of game-theoretic
models. By doing so, the methods used for continuous-trait games shed some light on those
used in discrete-trait games (and vice versa). In particular, discrete-trait games can be
formulated as special cases of the more general continuous-trait approach. As a result, the
well-known conditions for characterizing evolutionary outcomes in discrete-trait games can
be seen as special cases of the conditions employed in continuous-trait games. We focus here
on symmetric games, although similar results can be obtained for asymmetric games.

We begin with a brief but systematic account of evolutionary stability for continuous-
trait games, and then we consider discrete-trait games and relate the two types of models.

CONTINUOUS TRAITS

We work here with a one- or multi-dimensional quantitative trait z, determined by a large
number of loci. For simplicity, we suppose that gene action is additive in all respects, so that
z is also the additive genetic value of the trait. The population will be described by the
distribution of z.

We suppose that selection acts on z and we are interested in the way in which it causes the
population distribution to change. We are particularly interested to identify equilibrium
distributions that are stable under the action of selection, in the sense that if the distribution
is perturbed it will tend to return to the equilibrium. To get hold of the action of selection,
we need to know how the fitness of an individual is determined and it is often assumed that
this depends upon: (i) the individual’s own trait; (ii) the trait distribution in the population
(frequency dependence); and (iii) the population size (density dependence).

Here, we ignore (iii) and restrict ourselves to the dependence in (i) and (ii). A common
assumption, which we shall adopt here, is that the frequency dependence works only
through the population mean z

__
; that is, individual fitness has the form:

W(z, z
__
) (1)

This assumption is referred to as playing the field (Maynard Smith, 1982).
Turning now to the question of stability, a particularly simple situation occurs if the

population is concentrated at a single point z*. In this case, we say that z* is an evolution-
arily stable strategy (ESS) if

W(z, z
__
) < W(z*, z

__
) (2)

for any z ≠ z* and sufficiently small ε > 0, where z
__
 = εz + (1 − ε) z* is the mean of a population

with trait z at frequency ε and trait z* at frequency 1 − ε. Condition (2) says that when a
proportion, ε, of the population plays a mutant strategy, z, and 1 − ε plays the ESS strategy
z*, then the z players are less fit. In the limit as ε → 0, we get the Nash equilibrium condition

W(z, z*) ≤ W(z*, z*) (3)
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which says that the fitness of any rare mutant playing z in a z*-population is maximized by
using the strategy z*. Conditions (2) and (3) can be global and hold for any z, or local and
hold for z sufficiently close to z*. Locally, the Nash condition (3) implies the first-order
equilibrium condition

�W | z = z
__ = z* = 0 (4)

where � = (∂/∂z1, ∂/∂z2, . . ., ∂/∂zn) is the gradient operator, and the second-order evolution-
ary stability (ES) condition, that the Hessian matrix,

Hij = � ∂2W

∂zi∂zj
�

z = z
__ = z*

(5)

be negative semi-definite. The one-dimensional (scalar z) versions of these are the
equilibrium condition

∂W

∂z �
z = z̄ = z*

= 0 (6)

and the ES condition

∂2W

∂z2 �
z = z̄ = z*

 ≤ 0 (7)

The field known as ‘adaptive dynamics’ refers to values of z* that satisfy the equilibrium
condition (4) or (6) as evolutionarily singular states (Dieckmann and Law, 1996; Geritz
et al., 1998) and it refers to those values of z* that satisfy (4) or (6) but that do not satisfy (5)
or (7) as branching points (technically, branching points also must satisfy the convergence
stability condition, which is outlined below as well). Interestingly, it has been shown that
condition (7) is related to stability conditions for the evolution of the genetic variance in
quantitative genetic models as well (Taylor and Day, 1997).

This conception of evolutionary stability is static in that it says nothing about how
a population evolves. Considerable work over the past 20 years has explored ways in which
a dynamic might be introduced. As a first step, Eshel and Motro (1981) and Eshel (1983)
proposed a condition that should hold for a scalar equilibrium z* to be dynamically stable:
for a population mean z̄ just below, z*, mutants just above z̄ should be favoured, and for
a population mean z̄ just above z*, mutants just below z̄ should be favoured. This is

accomplished by requiring the derivative 
∂W

∂z �
z = z̄

 to be positive when z̄ < z* and negative

when z̄ > z*. This can be formulated algebraically as

(z̄ − z*) 
∂W

∂z �
z = z̄ = z*

< 0 (8)

or with a slightly stronger local second-derivative condition as

d

dz̄ �∂W

∂z �
z = z̄�z̄ = z*

< 0 (9)
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We term (8) or (9) the convergence stability (CS) condition (Christiansen, 1991). An obvious
candidate for a multi-dimensional version of this condition (Leimar, in press) is to
generalize (8) as

(z
__ − z*)T ·�W � z = z

__ < 0 (10)

which says that the gradient �W | z = z
__ should point more in the direction of z* − z

__
 than

in the opposite direction. We will refer to (10) as the multi-dimensional CS condition and, as
we will see (equation 22), it provides a useful connection to discrete-trait games.

A full dynamic requires a specification of the rate of frequency change of each z value
and a common assumption is that this is proportional to its relative fitness. If these changes
are averaged, we get a fundamental equation for the rate of change of the population mean:

dz
__

dt
= cov(z, W(z, z

__
)) (11)

This classic equation, which displays the change in character mean as a covariance between
the character value and fitness, is valid for both a discrete and a continuous distribution and
was independently discovered by Robertson (1966), Li (1967) and Price (1970). We might
have inserted a constant into equation (11) to translate fitness into rate of change, but we
will assume that fitness has been scaled to accomplish this.

A simple approximation of equation (11) is obtained if we assume that the first derivative
of W does not change much over the bulk of the z-distribution. In this case cov(z, W) can be
approximated by G�W | z = z̄, where G is the covariance matrix of the trait z and � is
the gradient operator. This approximation is exact if W is a linear function of z, having the
form W = a(z

__
) + b(z

__
)T z. With this approximation, (11) becomes

dz
__

dt
= G(z

__
)�W � z = z

__ (12)

where we have allowed the additive covariance to depend on the population mean. The
scalar version of equation (12) is

dz̄

dt
 = G(z̄)

∂W

∂z �
z = z̄

(13)

(Iwasa et al., 1991; Abrams et al., 1993b; Taylor, 1996; for the derivation of a similar
equation, see Roughgarden, 1983; Vincent and Brown, 1988). Additionally, an important
special case of equation (12) arises when the z-distribution is Gaussian; in this case,
integration by parts yields

dz
__

dt
= G(z

__
)E(�W � z = z

__) (14)

(Lande and Arnold, 1983; Taylor and Day, 1997). Equation (14) is exact for any smooth
fitness function W.

Further justification for the dynamic (12) comes from the fact that it provides an
approximation to phenotypic quantitative genetic models under certain assumptions
(Charlesworth, 1990; Iwasa et al., 1991; Taper and Case, 1992; Abrams et al., 1993a;
Taylor, 1996). We refer to the evolutionary dynamic (12) and (13) as the adaptive dynamic
(Hofbauer and Sigmund, 1998; also see Dieckmann and Law, 1996; Geritz et al., 1998).
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Note that the equilibria of (12) and (13) correspond to values of z̄ that satisfy the first-order
condition (4) and (6) (neglecting equilibria that occur where the genetic variance is zero),
and we can use the local stability condition for (12) and (13) near such equilibria as a
stability condition guaranteeing evolution towards such equilibria. We refer to this stability
condition as the ‘adaptive dynamic stability’ condition (the ADS condition).

Note that, in the scalar case, the ADS condition (stability of 13) is equivalent to the CS
condition (9), but this is not so in the multivariate case; that is, the stability of (12) is not
equivalent to the multi-dimensional CS condition (10). Similar findings have been discussed
by Takada and Kigami (1991).

DISCRETE TRAITS

We now see how discrete-trait games correspond to the general theory presented above. The
exposition below is presented for quite a broad class of discrete-trait games, although our
primary focus will be on the special case of matrix games, as this has received most of the
attention in the literature. In the typical set-up, there are a finite number of alternative
discrete actions indexed by i with i = 1, . . ., n. An individual that plays action i with
probability pi will have strategy vector p = (pi) and the population average strategy will be
denoted p

__
. Here, p plays the role of the vector z in the general theory above. The population

can be viewed in one of two ways. In the first (the ‘mixed-strategy’ interpretation), each
individual randomly chooses an action on any given encounter according to the probability
distribution p. In the second interpretation (the ‘pure-strategy’ interpretation), each
individual within the population uses only one of the n actions. An individual’s strategy can
still be represented by a vector of probabilities but only one entry is non-zero (and it is equal
to 1). Under this interpretation, the components of p

__
 give the proportion of the population

using different actions i.
We now specify fitness. In the pure-strategy interpretation, we define the fitness of

an i-individual in a p
__
 population to be wi(p

__
). In the mixed-strategy interpretation, we assume

that the fitness of a p-strategist is the p-average of such wi. Fitness is then

W(p, p
__
) = pT w(p

__
) (15)

where w(p
__
) is the vector with components wi(p

__
). Games with this property are called linear,

because W is a linear function of p.
In an important class of games, called matrix games, W is also linear in p

__
 and thus w has

the form w(p
__
) = Ap

__
 for an n × n matrix A = (aij). Such games can be regarded as the result of

a sequence of pairwise encounters with random individuals in the population. Here we take
aij to be the fitness of an i-strategist against a j-opponent, and assume that overall fitness is
the average fitness over many bouts, then wi(p

__
) = Σjaij p̄j and

W(p, p
__
) = pT Ap

__
(16)

Much of the classical work in evolutionary game theory is concerned with matrix games.
We now interpret the stability results of the continuous-trait theory in the discrete-trait

game set-up. The Nash equilibrium condition (3) is

pT w(p*) ≤ p*T w(p*) (17)

and the ESS condition (2) is

pT w(p
__
) < p*T w(p

__
) (18)
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for any p ≠ p* and sufficiently small ε > 0, where p
__
 = εp + (1 − ε) p* (Hofbauer and Sigmund,

1998). For matrix games, this condition becomes

pT Ap
__ < p*T Ap

__
(19)

In this case, if we take the limit as ε → 0, we get

pT Ap* ≤ p*T Ap* (20)

and, if equality holds in (20), then for (19) to hold, we must have

pT Ap < p*T Ap (21)

Conditions (20) and (21) are the classic matrix ESS conditions on p* (Maynard Smith, 1974;
Hofbauer and Sigmund, 1998, ch. 6). In the mixed-strategy interpretation we call p* an
evolutionarily stable strategy, and in the pure-strategy interpretation it is called an evolution-
arily stable state. Thus, for linear games, the continuous and discrete formulations of the
ESS are equivalent.

Now we look at dynamic stability. The CS condition (10) becomes

(p
__ − p*)T w(p

__
) < 0 (22)

If we write p
__
 = εp + (1 − ε) p*, this becomes

pT w(p
__
) < p*T w(p

__
) (23)

which is the ESS condition (18). In other words, for linear games, the CSS and ESS con-
ditions are equivalent. Incidentally, this implies that so-called branching points (Dieckmann
and Law, 1996; Geritz et al., 1998) cannot occur in linear games.

We turn now to the adaptive dynamics equation (12), which becomes:

dp
__

dt
= cov(p, pT w(p

__
)) = cov(p, p)w(p

__
) = G(p

__
)w(p

__
) (24)

This equation holds for both the pure- and the mixed-strategy interpretation and any
distribution on the p-simplex. An important special case is found for the pure-strategy
interpretation. In this case, the distribution is concentrated on the vertices of the simplex
(with mass pi at the pure strategy i), and

cov(pi, pi) = pi(1 − pi)

cov(pi, pj) = −pipi (i ≠ j)

With this, equation (24) can be written

dp̄i

dt
 = p̄i(wi(p

__
) − Σj p̄jwj (p

__
)) = p̄i(wi (p

__
) − W̄̄) (25)

For the special case of matrix games, this is the well-known replicator dynamic (Taylor and
Jonker, 1978; Zeeman, 1980; Hofbauer and Sigmund, 1998):

dp̄i

dt
 = p̄i((Ap

__
)i − p

__
Ap

__
) (26)

To our knowledge, this has not been noted before, that the replicator dynamics (26) is
a special case of the adaptive dynamics (12) with the genetic covariance matrix resulting
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from the constraint on the pi’s that they sum to unity. Consequently, anything that is true
for the adaptive dynamics will also be true of the replicator dynamics. We note that a
similar correspondence exists between explicit population genetic models and phenotypic
quantitative genetic models (see, for example, Barton and Turelli, 1987).

CONCLUSIONS

The principal notions of evolutionary stability have evolved over the past 30 years. Often
the notation and terminology have been awkward and temporary, but some clear concepts
and terminology have now emerged. In the formulation of static stability, two aspects have
been identified. For the population to persist in a uniform state, it must be the case that rare
deviants are punished, where ‘rare’ signifies that the deviants have no effect on population-
wide average behaviour. Secondly, if the population as a whole is shifted away from this
equilibrium, a deviant behaviour which moves the average state back towards equilibrium
is favoured. The first of these is now called evolutionary stability and the second of these is
called convergence stability. The term evolutionarily stable state (ESS) is reserved for a
condition that has aspects of both evolutionary and convergence stability. Importantly,
however, as shown above, these two types of stability are equivalent for linear games.

More recently, the notion of convergence stability was sharpened through explicit
dynamic equations that attempted to track the average evolutionary trajectory of a popu-
lation which was disturbed from equilibrium. The two notions of replicator dynamics
for discrete-trait games and adaptive dynamics for continuous-trait games shared these
objectives but developed largely independently of one another.

In terms of these notions, we have here pointed to some general correspondences between
discrete- and continuous-trait games. A discrete-trait game can always be recast within the
framework of continuous-trait games by defining a suitable fitness function. The classic
ESS condition for discrete-trait games (20–21) is seen to follow from the ESS condition (2)
for continuous-trait games. Moreover, the discrete-trait replicator dynamics is seen as a
special case of the more general adaptive dynamics of continuous-trait games. The main
difference is that the replicator dynamics has a very special form for the genetic covariance
matrix, whereas this matrix is less restricted under the general adaptive dynamics.

The results derived here demonstrate a nice correspondence between discrete- and
continuous-trait games that helps to better reveal the underlying structure of both
approaches. These results, combined with previous studies that demonstrate the relationship
between quantitative-genetic models and continuous-trait game theoretical models (i.e.
Charlesworth, 1990; Iwasa et al., 1991; Taper and Case, 1992; Abrams et al., 1993a; Taylor,
1996; Taylor and Day, 1997), illustrate that there are fundamental commonalities among
these three seemingly disparate and widely used modelling approaches. It is interesting that
all three types of model have been developed largely independently of one another, starting
from very different ideas and sets of assumptions, yet all have arrived at what is essentially
the same approach for characterizing evolution.
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