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Mathematical models have been powerful tools in developing mechanistic
understanding of infectious diseases. Furthermore, they have allowed detailed
forecasting of epidemiological phenomena such as outbreak size, which is of
considerable public-health relevance. The short generation time of pathogens
and the strong selection they are subjected to (by host immunity, vaccines,
chemotherapy, etc.) mean that evolution is also a key driver of infectious disease
dynamics. Accurate forecasting of pathogen dynamics therefore calls for the
integration of epidemiological and evolutionary processes, yet this integration
remains relatively rare. We review previous attempts to model and predict
infectious disease dynamics with or without evolution and discuss major chal-
lenges facing the development of the emerging science of epidemic forecasting.

The Promise of Forecasting Natural Disasters
Part of the promise of scientific research into the fundamental drivers of natural processes is that
a deeper understanding of mechanism will improve our ability to forecast. The most immediate
example of our ability to predict the dynamics of our environment is perhaps weather forecasting.
It has long been recognized that, in principle, the laws of physics and thermodynamics can be
used to numerically predict dynamics occurring in the atmosphere [1]. Nevertheless, in practice
early attempts at prediction were overwhelmed by the complexity resulting from multiple
nonlinear interactions. Yet, the science of weather forecasting has made tremendous strides
over the past decades as a result of both refined theory and the availability of more detailed data
[2]. It is important to note that not all predictions are based on a detailed mechanistic under-
standing of underlying processes. For instance, the dynamics of cloud formation remains
particularly difficult to model because the processes involved occur at a scale below the current
meteorological grid size. Yet, a statistical description of the processes occurring at this scale can
be combined with mechanistic models at a larger spatial scale to generate remarkably accurate
predictions. For example, the trajectories of hurricanes can now be predicted several days in
advance (Figure 1). This improved ability to forecast the position in space and time of massive
storms undoubtedly carries major benefits for public safety and the economy.

Here we discuss some of the potential and challenges of forecasting another type of natural
disaster: infectious disease epidemics. Like hurricanes, epidemics are dynamical systems that
can be modeled mathematically [3–5]. Their dynamics are driven by transmission and recovery
events as well as by changing external conditions, including those arising from public-health
interventions (e.g., vaccination, drug treatment). Furthermore, because most pathogens have
the ability to adapt rapidly, evolutionary change can also affect disease epidemics. In these
situations, forecasting infectious disease dynamics requires a good understanding of both the
underlying ecology and the evolutionary processes driving these adaptations.

Trends
Long-term monitoring of infectious dis-
ease dynamics allows the estimation of
key parameters of epidemiological
models. These models can be used
to forecast future epidemics and to
implement effective public-health con-
trol measures.

Many pathogens exhibit extensive
genetic variation and so can readily
adapt to control measures like drugs
and vaccines. We review recent
attempts to combine epidemiology
and evolution to predict the evolution-
ary trajectories of pathogens.

Inspired by the success of weather
forecasting we discuss the current lim-
its of the predictive power of evolution-
ary epidemiology. The development of
the emerging science of epidemic fore-
casting requires better integration of
mathematical epidemiology, popula-
tion genetics, statistics, and numerical
computation.
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Here we review previous attempts to predict infectious disease dynamics. We start by
reviewing models that predict the epidemiology of infectious diseases under the assumption
that evolution is a much slower dynamical process than epidemiology. We show that this
assumption is often not tenable and we then review attempts to model both the epidemiology
and the evolutionary dynamics of pathogens, outlining major directions for further
development.

Forecasting the Epidemiology of Infection Diseases
Although the first epidemiological models were developed long ago [6–9], the field of mathe-
matical epidemiology has grown enormously during the past half-century [3–5]. Over this time
research has provided a general mathematical framework that can describe the dynamics of a
wide diversity of animal and plant pathogens. Many of the epidemiological models that have
been developed rely on the a priori assumption that the pathogen population is monomorphic;
that is, there are no differences in transmission, pathogenicity, or any other life history features of
the pathogens circulating within the population. When mutation is relatively rare and/or largely
deleterious, the adaptive potential of the pathogen remains very low and evolution can be safely
neglected when describing epidemiological dynamics.

Measles is arguably the best example to illustrate the predictive power of mathematical
epidemiology. This highly contagious human disease is caused by a horizontally transmitted
RNA virus. Infected individuals usually recover after a few days and acquire lifelong immunity, but
the case fatality rate may be high in situations such as low-resource contexts or in immuno-
compromised individuals [10]. An inexpensive and safe vaccine has been available since the
1960s and provides prolonged immunity. Despite the high mutation rate of RNA viruses,
measles viruses have not evolved escape strategies against host immunity. Previous studies
have shown that the epidemiology of the disease can be accurately described with the following
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Figure 1. The Improving Science of Weather Forecasting. Annual average official track errors (distance in nautical
miles between predictions and actual trajectories of tropical cyclones) for the Atlantic basin from 1970–2014 with least-
squares trend lines superimposed. Dots refer to predictions made 12 h, 24 h, 48 h, 72 h, 96 h, or 120 h in advance. Data
obtained from http://www.nhc.noaa.gov/verification/.
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set of differential equations:

_S ¼ u"dS" b

N
SI

_I ¼ b

N
SI"ðd þ gÞI

_R ¼ gI"dR

[1]

This simple compartmental model tracks the dynamics of susceptible, infected, and recovered
hosts (S, I, and R respectively). The total population size N may vary across time depending on u,
the influx of new susceptibles, and d, the natural death rate of the host. The spread of the
pathogen is governed by b, the transmission rate, and g, the recovery rate. Whether the number
of infected individuals grows is governed by r = bS/N " (d + g), which is the per capita rate of
change of the infected population (a per unit of time equivalent of the effective reproductive ratio
Re). If r > 0, the number of infections increases; and if r < 0, it decreases.

The epidemiological dynamics depend heavily on the density of susceptible hosts; this density is
determined by the depletion of susceptibles from previous epidemics (which immunize a fraction
of the population) and the influx of new susceptible individuals (resulting from birth or immigra-
tion). Seasonal forcing of the transmission rate b is also an important driver of measles dynamics.
Accurate estimates of the seasonal variation in b can be obtained from the discretized dynamics
of susceptible and infected individuals [11–13] (Box 1). This very simple model sheds light on an
array of historical patterns of measles dynamics. For instance, the sudden increase in the influx of
susceptibles following World War II (from the baby boom), led to a transitory shift from a biannual
to an annual periodicity of measles epidemiological dynamics (Box 1). These models provide
quantitative predictions under different control measures and constitute an effective tool to
optimize public-health strategies. For instance, Takahashi et al. [14] quantified the consequen-
ces of a drop in vaccination coverage against measles in West Africa due to the Ebola epidemic.
These predictions can be used to make practical recommendations to prevent future measles
epidemics in the area.

Nevertheless, several additional factors may alter the predictive power of these models. First, this
epidemiological model does not always generate simple periodic dynamics. For instance, strong
seasonality can push the system into a chaotic dynamical regime [15–17]. Second, when host
population size becomes very small, demographic stochasticity can have a major impact on
epidemiology [18,19] and this simple deterministic model is expected to lose its predictive power
[20]. Third, the life-history traits of the pathogen may change over time. The model described in
Box 1 allows transmission rates to vary periodically throughout the year but they are assumed to
remain constant across years. Thus, although predictable patterns are the norm for measles
dynamics (Box 1), the key result of the above work has been an understanding of limits on
predictability, based on remarkably simple models, illustrated by the impact of relatively modest
modifications, for example in the shape of the seasonal forcing function on periodicity [21], or
magnitude of transmission on the impact of stochasticity [22]. Similar arguments on quantifying
limits on prediction also arise in the forecasting of–often highly nonlinear and chaotic–weather
dynamics [2,23,24].

Forecasting the Evolution of Infectious Diseases
As mentioned above, antigenic evolution of measles (i.e., vaccine-escape mutations) has been
limited so far and thus is not a challenge for the forecasting of measles dynamics. Other
pathogens, however, may exhibit rapid changes in pathogen population composition that yield
dramatic perturbations of epidemiological dynamics. For example, the antigenic drift occurring in
influenza A provides a marked contrast to measles. Axelsen et al. [25] showed that accurately
describing influenza dynamics in Israel requires accounting for occasional modification of the
antigenic epitopes of the virus, which allows the pathogen to escape immune recognition by
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recovered individuals. Where such processes are at play, forecasting the dynamics of infectious
disease cannot focus solely on disease incidence: pathogens such as influenza challenge the
predictive power of epidemiological models because they require the inclusion of an evolutionary
dimension in forecasts.

Taking evolution into account in epidemiological models might involve a least two different
approaches. First, it might involve statistical models describing pathogen changes without a
formal description of the underlying processes leading to these evolutionary changes. For
instance, the influenza model of Axelsen et al. [25] better captures the epidemiological dynamics
only after taking into account evolutionary change occurring over years. However, this model
does not explicitly model this evolution and consequently cannot provide epidemiological
predictions across years. Second, taking into account evolution might involve a mechanistic
description of evolutionary processes if different pathogen strains are allowed to circulate

Box 1. Measles Dynamics: The Old Faithful of Epidemiology

Measles infection is associated with completely sterilizing immunity. This leads to strong feedbacks in dynamics, as infection is inevitably associated with susceptible
depletion (infected individuals are subsequently immune for life), which in turn restricts spread. Such strong feedbacks, combined with little additional complexity–for
example, there is no evidence of substantial immune escape following natural infection–strengthen our ability to forecast incidence.

Detailed understanding of the driving mechanisms of the dynamics of measles (susceptible depletion and replenishment via births) allows us to construct appropriate
models that can be used to make quantitative forecasts regarding the magnitude of the incidence (Figure I). The time-series susceptible–infected–recovered (TSIR)
model provides a mechanistic bridge between theoretical models and empirical data. For measles, the duration of the transition from infection to recovery and lifelong
immunity is 2 weeks. To fit the model, measles incidence data are accordingly aggregated into biweekly time steps. The analysis of the TSIR is based around taking
logs to linearize the discrete time dynamics It+1 = bs It St/Nt (where It reflects number of cases, Nt is the total population size, and St reflects the number of susceptibles
in each biweek obtained via susceptible reconstruction, which comprises depleting susceptibles by infection and increasing them by birth rate in each time step). This is
then fitted using linear regression to estimate the seasonal fluctuation in transmission bs, where the index s indicates the 26 biweeks in each year across the whole time
series. Forward simulation simply reverses this process but using a negative binomial model where It+1& NegBin(bs It St/Nt, It) and starting values are defined during the
original fitting process.

Se
as

on
al

 tr
an

sm
iss

io
n,

 β
s

20
25

30
35

40
45

50

Jan Mar May Jul Sep Nov

In
cid

en
ce

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

1944 194 6 194 8 195 0 195 2 195 4 195 6 195 8 196 0 196 2

(A) (B)

Figure I. Estimation and Simulation from a Time-Series Susceptible–Infected–Recovered (TSIR) Model. (A) Estimated seasonal transmission bs (y-axis)
over the course of the year (x-axis) indicating a pattern that broadly reflects school-term times; vertical lines show 95% confidence intervals. (B) Associated data on
measles incidence in London (black points) and quartiles of predicted incidence from stochastic simulations based around these estimates (light blue polygons;
medians shown by blue lines). This model can successfully capture the transition from annual dynamics after World War II and during the baby boom to biennial
dynamics thereafter, when the birth rate fell.
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simultaneously. In this case it is important to describe how these different strains interact with
each other. In the following we distinguish two extreme cases that cover very different biological
situations: complete cross-immunity and partial cross-immunity.

Life-History Evolution with Complete Cross-immunity
We start with a situation where all of the pathogen genotypes interact very strongly. For instance,
a host currently or previously infected with strain i cannot be infected by another strain, j. This
considerably simplifies the life cycle, because all pathogens are competing for a common
resource, S, the population of susceptible hosts. Consequently, the dynamics of multistrain
models with complete cross-immunity can be formalized using the following extension of the
dynamical system (Equation 1):

_S ¼ u"dS" b

N
SI

_Ii ¼
bi

N
SIi"ðd þ g iÞIi

_R ¼ gI"dR

[2]

where Ii is the density of hosts infected with strain i (one of the n different strains circulating in the
population) and I ¼

Pn
i¼1Ii is the total density of infected hosts. Each strain may have different

life-history traits bi and gi and overbars denote averages over all strains circulating in the
population. In this situation it is possible to track the evolution of the parasite population and
to recover classical population genetics results (Box 2). This framework has been used to study
and predict the evolution of key life-history traits of pathogens such as virulence and resistance
to chemotherapy.

Box 2. From Epidemiology to Quantitative Genetics and Back

The change in the frequency pi = Ii/I of strain i provides an array of important insights and can be expressed as:

_pi ¼ piðri"r Þ ¼ pið1"piÞsi [I]

where ri = biS/N " (d + gi) is the Malthusian growth rate of strain i and r ¼
Pn

i¼1ripi is the average Malthusian growth rate
of the total pathogen population: _I ¼ rI. The parameter si is the classical selection coefficient of population genetics and is
equal to [29,98]:

si ¼ ri"
Xn

j¼1; j 6¼ i

rjpj

1"pi
[II]

It is also possible to recover a classical quantitative genetics formulation of the evolution of the two pathogen life-history
traits of this model:

_z ¼ G S=N
"1

! "
[III]

where z ¼ ðb; gÞT is the average mean pathogen phenotype, G is the genetic variance–covariance matrix and (S/N, " 1)T

is the selection gradient [99,100]. In other words, the evolution of pathogen life history is constrained by the availability of
genetic variation, by possible covariation among traits (i.e., life-history tradeoffs), and by the direction of selection. It is
important to note that the direction of the selection gradient changes with the density S of susceptible hosts. Selection is
driven by the epidemiological state of the population and, in return, epidemiology is driven by the evolution of mean
phenotypes (see Equation 2). The dynamics of the host and pathogen populations thus results from the interplay
between epidemiology and evolution. Note that the model in Equation 2 describes a very simple scenario, but this
framework can be generalized to encompass more complex life cycles [29,73,98].

When genetic variance is very limited, evolutionary processes become much slower than epidemiological ones. In this
case we recover the classical assumptions of adaptive dynamics and the direction of evolution is given by maximization of
the basic reproductive ratio:

R0 ¼ b=ðd þ gÞ [IV]
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Virulence Evolution
Theoretical predictions of virulence evolution are often based on assumed genetic constraints
between virulence and other life-history traits. There is good experimental support for these
genetic constraints, but detailed quantification of genetic tradeoffs remains notoriously elusive
[26]. Furthermore, most virulence evolution models are based on the adaptive dynamics
approach and generate only long-term predictions (Box 2) rather than the shorter timescales
more likely to be directly observed. Consequently, most of these predictions remain qualitative
and are difficult to test using short-term experiments. In principle, however, strengthening of the
integration between theory and experimental testing is increasingly within reach. For instance,
Berngruber et al. [27] studied the effect of epidemiological perturbations on virulence evolution
occurring in bacteriophage chemostats. This experimental system allows the prevalence of the
infection and the frequency of two virus strains to be tracked through time. The match between
the predictions of a simple deterministic model and the transient dynamics observed in the
chemostats shows that, in controlled laboratory conditions, it is possible to predict the epide-
miology and evolution of a pathogen (Figure 2). Further work is needed to generate more
quantitative predictions and to find ways to estimate genetic constraints in wild pathogens. In a
more applied context, it is particularly important to predict both the short-term and the long-term
life-history adaptations of pathogens following human interventions like vaccination [28,29].
Detailed studies of life-history variation among different pathogen genotypes in different types of
host remain rare [30–32] but are essential for generating such predictions.

Drug Resistance Evolution
Drug resistance may be viewed as another important life-history trait that allows pathogens to
survive in treated hosts. Many theoretical models have been developed to help us understand
the interplay between several evolutionary forces on the evolution of drug resistance at different
spatial scales. For instance, drug resistance is expected to increase when drugs are used, but if
drug resistance carries intrinsic fitness costs this trend may be reversed in the absence of the
drug. Across European countries qualitative predictions regarding drug consumption and
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the ratio of virulent (lcI857) to avirulent (l)
phage among lysogenic bacteria. The
initial value of the lcI857:l ratio in the
provirus was 1:1 and two initial prevalence
values were considered: 1% (red) and
100% (blue). Ten thousand simulations
were performed, allowing some variation
over the phenotypic values of the two virus
strains (see Berngruber et al. [27] for
details). The gray envelopes show the
95% confidence intervals among all simu-
lation runs and colored lines show the
median of the log-transformed data. (B)
Change in the ratio of virulent (lcI857) to
avirulent (l) phage among lysogenic bac-
teria. As in (A), the initial value of the
lcI857:l ratio in the provirus was 1:1
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100% (blue). The lines are the means of
four chemostat experiments and the
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(see Berngruber et al. [27] for details).
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frequency of drug resistance are generally well supported by empirical studies [33]. Within
countries, as expected, reduction in drug use has led to substantial drops in drug resistance
after several years [34–36]. At the scale of hospitals, interventions aimed at controlling the spread
of drug resistance have often led to much faster declines in drug resistance [36]. This is expected
from the fast turnover of patients typically occurring in hospitals [37]. In other words, the
migration of sensitive bacteria acquired from the community can also be a potent evolutionary
force at this spatial scale. Studying drug resistance evolution at the scale of the individual host
requires additional evolutionary forces like mutation, within-host competition between bacterial
genotypes, and demographic stochasticity [38,39].

Hence, at each spatial scale predictions require the estimation of different parameters. This
information is often lacking and, in particular, estimates of the fitness cost of drug resistance
remain scarce. Luciani et al. [40], however, used approximate Bayesian computation and
molecular data to infer rates of evolution and transmission cost associated with drug resistance
in Mycobacterium tuberculosis across different countries. These estimations allowed them to
generate predictions for the evolution of drug resistance under different treatment scenarios. The
ability to make detailed quantitative predictions is key to identifying optimal therapeutic strategies
with these drugs and similar inference studies on other pathogens are urgently needed to
manage drug resistance at different spatial scales.

Antigenic Evolution with Partial Cross-immunity
Many infections generate only partial cross-immunity against other pathogens. These situations
are intrinsically more complex because each strain has access to a different number of hosts and
one needs to keep track of the number of the different types of hosts to understand and predict
the dynamics of the pathogen population. With partial cross-immunity the above epidemiological
model can be modified in the following way:

_S ¼ u"dS" b

N
SI

_Ii ¼
bi

N
IiðS þ s ijRjÞ"ðd þ g iÞIi

_Ri ¼ g i Ii"dRi

[3]

where the parameter sij governs the level of cross-immunity to strain i induced by previous
exposure to strain j. This is just one model among a wide diversity of partial cross-immunity
models where previous exposure could, for instance, affect transmission and/or recovery rates
[41]. From the perspective of model development, partial cross-immunity is rapidly overwhelm-
ing because of the multitude of possible scenarios. Under some assumptions (e.g., symmetric
interactions, effects on transmission rates only) it is possible to simplify and fully characterize the
dynamics of these models [42]; however, knowing whether specific pathogens follow one
scenario or another is itself a challenge [43].

The analysis of long-term epidemiological time series that keep track of the circulation of different
strains can help to illuminate these multiple strain dynamics. For instance, Koelle et al. [44]
examined the oscillations between two serotypes of cholera (Inaba and Ogawa) in Bangladesh
over 40 years. These two serotypes have very similar phenotypes (severity of the infection,
survival in the environment) but have distinct antigenic determinants. Koelle et al. [44] showed
that a high level of cross-immunity with demographic stochasticity could yield sustained cycles
among those serotypes. Reich et al. [45] analyzed the circulation of the four antigenically distinct
serotypes of dengue virus in Thailand over 40 years and inferred the level of short-term cross-
immunity among those different strains. In dengue, accurate prediction of the circulation of these
four serotypes is particularly relevant given that the more serious manifestation of the disease
(hemorrhagic fever) might occur more frequently on reinfection with a different serotype [46]. In
both of these analyses, the availability of long-term datasets is key to the reliable development of
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multistrain epidemiological models–and, of course, the higher the number of circulating strains
the more difficult such inference becomes [43]. One needs either to adopt simplifying assump-
tions or to reduce the ambition of the predictions. For instance, more than 90 different serotypes
of Streptococcus pneumoniae can induce pneumococcal disease. Because the pneumococcal
conjugate vaccine targets a subsample of seven of these serotypes, many studies have pooled
all of the non-vaccine serotypes (NVTs) into one compartment. This simplification allowed these
models to track serotype replacement following vaccination campaigns [47,48]. These different
studies demonstrate the predictive power of multistrain models based on the analysis of
longitudinal studies tracking the diversity of pathogens over time. Such longitudinal studies
remain relatively rare but the monitoring of the epidemiology and evolution of influenza virus
provides a notable exception.

Influenza Evolution and Optimization of Vaccination Design
The Spanish flu pandemic of 1918–1920 revealed the potential threat associated with the
emergence of new genetic variants in influenza. Since this pandemic, the molecular evolution of
influenza viruses has been monitored at a global scale and these data streams have been
invaluable in unveiling its intricate dynamics. As well as pandemic threats, the build-up of
immunity in human populations continually selects for new antigenic variants of seasonal
influenza, and the associated process of antigenic drift yields very specific patterns of molecular
evolution. In particular, the phylogeny of the hemagglutinin gene of influenza A has a distinct
shape that supports the idea that this gene is under very strong selection [44,49,50]. The rapid
turnover of influenza strains and the dominance of a limited number of antigenic variants at any
given point in time have stimulated research on the predictability of influenza evolution. Under-
standing this evolution has important practical implications because it could help us design
more effective vaccines. Influenza vaccines are regularly updated to keep up with the evolution of
the virus. The use of a predictive model of influenza evolution could greatly help in designing
vaccine with the variants that are most likely to spread successfully in the following seasons.

Various attempts have been made to predict this antigenic evolution. Bush et al. [51] identified
18 codons in the immunogenic part of hemagglutinin under strong positive selection. Plotkin
et al. [52] showed that strains that differ at these sites can be aggregated into antigenic clusters.
Mutations leading to the emergence of a new antigenic cluster are likely to seed the next
epidemics. The identification of relevant antigenic variation may be used to improve the
selection of influenza strains used to develop the next flu vaccine [52]. Luksza and Lässig
[53] improved this method with a more detailed estimation of the fitness of circulating variants.
This estimation of fitness accounts for the occurrence of both deleterious (non-epitope) and
beneficial (epitope) mutations in the virus genome as well as the epidemiological state of the
host. Interestingly, their model allows epidemiology to feedback on fitness; strains that have
been circulating for longer build up a higher level of herd immunity and thus have fewer
transmission opportunities (Figure 3). The optimal vaccine strains predicted by this model
better track the evolution of influenza than the actual vaccine strains recommended in the
Northern Hemisphere from 1994 to 2012 [53]. More recently, several studies improved these
predictions by combining information based on hemagglutination inhibition (HI) assays and
genetic information and the shape of genealogical trees [54–56]. The predictive power of these
models is encouraging, but once again their implementation illustrates the need for accurate
time series as well as additional phenotypic (e.g., HI) and genetic information on the circulation
of multiple strains.

Accounting for the Effects of Mutations
Most of the multistrain models described above are built on the standing genetic variation of the
pathogen population and do not take into account the influx of new pathogen genotypes by
mutation. Yet mutation (as well as horizontal gene transfer, recombination, and/or reassortment
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in some microbes) is key because it fuels the evolution of the pathogen population. Models of
adaptation show how the dynamics of adaption depends on the interplay between the influx of
new mutations, selection, and genetic drift [57–59]. When selection is strong relative to the input
of mutation, the population evolves through the independent fixation of isolated adaptive
substitutions. By contrast, when the input of mutation is large relative to selection several
different genotypes may circulate and interfere with one another. In this scenario, the balance
between mutation, selection, and genetic drift may result in the maintenance of genetic variation.
This heritable variation is the fuel of population adaptation and may be used to determine the
instantaneous rate of adaptation of the population. Gerrish and Sniegowski [60] developed an
algorithm to forecast the fitness and phenotypes of a population in a constant environment
several generations in the future. The algorithm derives from a description of evolution as an
unclosed hierarchy of dynamical equations for the cumulants of the distribution of fitness. A
major value of the above models of adaption is the identification of the type of information needed
to develop predictive models of infectious disease evolution.

To account for the influx of new mutations one first needs good estimates of the mutation rate.
Fortunately, estimates of mutation rates are available for a broad range of microorganisms
[61,62]. Second, it is important to take into account the phenotypic effects of these mutations.
The large number of possible mutations and their interactions may generate an intrinsic limit to
long-term evolutionary predictions [63]. However, short-term predictions may be feasible with
good approximate descriptions of the distribution of the fitness effects of these mutations.
Recently, several fitness-landscape models have been developed to derive expectations for the
distribution of fitness effects of new mutations [64,65]. For instance, the geometric model of
adaptation provides successful predictions of the distributions of the fitness effects of mutations
of microbes [66,67]. In particular, this model successfully captures the change of these dis-
tributions when the population is increasingly close to the fitness optimum [68,69]. Interestingly
the distribution of fitness effects of mutations may differ among different drugs. For instance,
Chevereau et al. [70] studied the effects of mutations on resistance in Escherichia coli against
nitrofurantoin is substantially lower than against other drugs. As expected by the theory, the
dynamics of adaptation are much slower against this drug.
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Vaccine Optimization. Schematic
description of influenza virus evolution
over three consecutive seasons. Each
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Theoretical models also show the impact of population size on the evolutionary process. First,
small populations cannot maintain a large amount of genetic variability and consequently
adaptation results from the sequential fixation of independent beneficial mutations. Second,
small populations allow deleterious mutations to become fixed. Although microbial populations
can reach large sizes they are often subject to strong bottlenecks and selective sweeps. For
instance, the antigenic evolution of influenza is characterized by selective sweeps of specific
antigenic mutants driven by the buildup of immunity in the host population. Because of the
limited amount of intrasegment recombination in influenza [71], each selective sweep is often
associated with hitchhiking by several deleterious mutations. As indicated by Koelle and
Rasmussen [72], the accumulation of deleterious mutations can affect the rate of antigenic
evolution and the shape of the influenza phylogenetic tree. Further theoretical work is required to
develop a comprehensive analytical framework accounting for the interplay between demo-
graphic stochasticity and the evolutionary dynamics of pathogens.

Models of adaptation are also often based on the simplifying assumption that the mean fitness is
entirely governed by the genetic composition of the evolving population [57–60]. Yet the
environment (i.e., the density and composition of the host population as well as the abiotic
environment) is also a dynamical variable that can change dramatically from one generation to
the next. This is particularly true for influenza (where the change in the immune status of
individuals drives antigenic evolution) but applies more broadly to host–parasite interactions
[72–74]. Taking into account these epidemiological feedbacks could further improve the
predictive power of evolutionary epidemiology theory.

Concluding Remarks
In our rapidly changing world, forecasting ecological dynamics has an expanding role in policy
and management [75–77]. In particular, being able to predict infectious disease dynamics is
necessary to generate useful recommendations for public-health management and interventions
[78–85]. Most epidemiological models are based on the simplifying assumption that pathogens
do not evolve. It is clear, however, that taking into account this evolution may help improve
predictions of epidemiological dynamics for a broad array of pathogens relevant to a diverse set
of public-health issues. Being able to predict the evolution of important pathogen traits may be
particularly relevant in settings including drug resistance, virulence, and vaccine escape. Here we
have reviewed recent attempts to predict the epidemiological and evolutionary dynamics of
pathogens.

Evolutionary biology provides a framework for both shaping our intuition and probing the data to
better understand and predict the effect of alternative public-health interventions on the
evolution of pathogens. Classically, studies have been based on adaptive dynamics-derived
approaches and thus make predictions in the very long term. Some of the most exciting studies
we reviewed here mix epidemiological and evolutionary dynamics to capture the transient
evolutionary dynamics of pathogens. To date, most predictions coupling epidemiology and
evolution remain qualitative but, in principle, more quantitative predictions are feasible. Two
factors are currently limiting this advance.

First, parameterizing multistrain models requires long-term studies by ‘epidemiological detec-
tives’ monitoring the circulation of many different pathogen genotypes [86]. An increasing
number of epidemiological studies provide genetic information on the pathogens. Real-time
tracking of virus evolution is feasible in influenza [87] and could be generalized to other
pathogens. To predict the competitive abilities of different genotypes additional information
is needed about the phenotypes of these genotypes. Some phenotypes, like drug resistance or
antigenicity, may be accessible through in vitro experiments, although translation to in vivo is
always challenging. Furthermore, the development of an international surveillance network is

Outstanding Questions
Is it possible to identify the factors lim-
iting the predictability of pathogen
dynamics? Are these factors intrinsic
properties of specific pathogens or
can the limits be pushed back with
more and/or better data?

Is it possible to develop predictive
numerical methods that can help us
design more effective vaccines against
seasonal influenza?

Can we use forecasting models to opti-
mize the use of antimicrobial drugs at
different spatial scales?

Is it possible to infer pathogen life-his-
tory traits like transmission rates and
recovery rates from phylogenetic trees
based on neutral genetic variation?

How do demographic and environ-
mental stochasticity affect the predic-
tive power of numerical models of
pathogen evolution?

Trends in Ecology & Evolution, October 2016, Vol. 31, No. 10 785



necessary to monitor the dynamics of pathogens with these specific phenotypes at different
spatial scales [88]. Other phenotypes like virulence and transmission are more difficult to
estimate because they often require in vivo experiments. Molecular epidemiology and phylody-
namics may provide an alternative to infer the relative fitness of different pathogen genotypes or
key life-history phenotypes (transmission, recovery, virulence) of different clades [40,55,56,89–91]
and thus bypass phenotypic assays (although this comes with limitations in terms of under-
standing the mechanisms). However, further theoretical development is required to obtain a
robust statistical framework to infer variations of life-history traits from phylogenetic trees [55,92].
In addition, more appropriate sampling may need to be developed to extract population-level
information from sequence data [93].

Second, modeling the interplay between epidemiology and evolution raises several theoretical
challenges. For instance, the management of multidrug resistance requires models with
multiple loci [94]. Other difficulties remain to be addressed, like the effects of demographic
stochasticity, environmental stochasticity, and spatial structure on the evolutionary epidemi-
ology of pathogens. Like weather forecasting, it seems likely that numerical models should be
able to incorporate the increasing amount of information that is becoming available on a
growing number of pathogens [95]. Interestingly, the success of weather forecasting despite
the complex nonlinear dynamics of meteorological phenomena may inspire new ways to cope
with our ignorance regarding the mechanistic details of epidemiological processes. Elaborate
ensemble forecasting methods have been developed to incorporate uncertainties in initial
conditions and model formulations [2,23,24]. The development of such a probabilistic
approach of forecasting allows us to evaluate the predictability of different meteorological
events in different geographical areas. For instance, the climate in the tropics is strongly
determined by the underlying sea-surface temperature and is weakly affected by the initial
conditions of the atmosphere [96]. This allows us to predict large-scale seasonal circulation and
rainfall several seasons in advance. It would be particularly useful to evaluate the predictability of
the epidemiological and evolutionary dynamics of different infectious diseases. Like the tropical
weather, the dynamics of some pathogens may be more predictable because they are forced
by potent environmental factors (e.g., influx of susceptible hosts in measles). By contrast, other
pathogens may be sensitive to a plethora of complex forces that may reduce the forecast
horizon [76]. A major advantage of numerical weather forecasting is the possibility of testing
predictions with a constant flux of observations so that success and failure can be used to
continuously improve predictive skills. Similarly, future progress in forecasting the epidemiology
and evolution of infectious diseases hinges on the development of inference methods, evolu-
tionary epidemiology theory, and epidemiological surveillance networks to allow validation of
past predictions.

As J.B.S Haldane said in his collection of writings Adventures of a Biologist, ‘No scientific
theory is worth anything unless it enables us to predict something which is actually going on.
Until that is done, theories are a mere game of words, and not such a good game as
poetry’ [97]. Previous attempts to predict the dynamics of infectious diseases indicate that
combining epidemiological and evolutionary models is often necessary to elucidate and
forecast the complexity of pathogen dynamics. In particular these models may be used to
explore the factors that limit the predictability of pathogen dynamics (e.g., chaotic dynamics,
behavioral changes affecting epidemiology, lack of information on the amount of genetic
variation in key life-history traits). Identifying these limiting factors will be particularly useful
for exploring new ways to improve the forecasting of infectious disease dynamics (see
Outstanding Questions).
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