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Optimal antiviral treatment strategies
and the effects of resistance

Elsa Hansen1,* and Troy Day1,2
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Recent pandemic planning has highlighted the importance of understanding the effect that widespread

antiviral use will have on the emergence and spread of resistance. A number of recent studies have deter-

mined that if resistance to antiviral medication can evolve, then deploying treatment at a less than

maximum rate often minimizes the outbreak size. This finding, however, involves the assumption that

treatment levels remain constant during the entire outbreak. Using optimal control theory, we address

the question of optimal antiviral use by considering a large class of time-varying treatment strategies.

We prove that, contrary to previous results, it is always optimal to treat at the maximum rate provided

that this treatment occurs at the right time. In general the optimal strategy is to wait some fixed

amount of time and then to deploy treatment at the maximum rate for the remainder of the outbreak.

We derive analytical conditions that characterize this optimal amount of delay. Our results show that it

is optimal to start treatment immediately when one of the following conditions holds: (i) immediate treat-

ment can prevent an outbreak, (ii) the initial pool of susceptibles is small, or (iii) when the maximum

possible rate of treatment is low, such that there is little de novo emergence of resistant strains. Finally,

we use numerical simulations to verify that the results also hold under more general conditions.

Keywords: optimal control; resistance; antiviral; treatment; influenza
1. INTRODUCTION
The current interest in influenza pandemics has empha-

sized the importance of understanding the implications

of drug resistance for different types of public health

interventions. Recent studies have considered the conse-

quences of drug resistance on the effectiveness of

several intervention strategies, including drug prophylaxis

and treatment, vaccination, non-drug interventions, as

well as combinations of interventions and multi-drug

therapy [1–17]. Many of these studies have revealed

interesting and unexpected behaviour. In particular,

numerous studies have now demonstrated that, with

respect to drug treatments, there is sometimes an inter-

mediate optimal level of treatment that minimizes the

total outbreak size [8,9,12–14].

This result is somewhat counterintuitive, and arises

from a trade-off between the costs and benefits of treating

infected individuals. In fact, treatment has three effects on

the total outbreak size: (i) treatment is beneficial because

it suppresses the spread of the sensitive strain, (ii) treat-

ment is costly because it leads to the de novo

appearance of resistant infections, and (iii) treatment is

costly because suppression of the sensitive strain frees

up susceptible hosts that can then be infected by the

resistant strain [9]. The treatment level that minimizes

the total outbreak size should thus strike the optimal

balance among these three effects.

These findings clearly reveal that the prospect of

pathogen evolution during a disease outbreak can have a

significant impact on the design of optimal intervention
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strategies. Nevertheless, it is important to note that

most of these results make a key implicit assumption;

namely that, whatever treatment level is chosen, it must

remain constant during the entire course of the outbreak.

An interesting exception is the studies by Moghadas et al.

[12,13], where numerical examples are used to illustrate

that an even smaller total outbreak size can sometimes

be obtained by switching from one level of treatment to

another once the outbreak is underway.

Given the above collection of results, it is clear that

the optimal treatment strategy during an outbreak is not

yet completely understood. In this paper, we address

this issue through the use of optimal control theory

[18–21]. In particular, we consider a model in which

we allow for arbitrary, time-varying, treatment strategies

during an outbreak, and we derive analytical expressions

that characterize the form of the optimal strategy. We

prove that, contrary to the implications of previous

studies, it is always optimal to use maximum treatment

levels provided that this treatment occurs at the right time.

In general, the optimal strategy is to wait some fixed

period of time once the outbreak has begun, and then

to deploy treatment at a maximum level. We show that

the optimal delay is one that balances the above-men-

tioned costs and benefits. Finally, we explore extensions

of the model to more complex scenarios in order to

illustrate the robustness of our conclusions.
2. MATHEMATICAL MODEL
The model, depicted in figure 1a, describes the basic

transmission dynamics of an infectious disease and

includes the effects of treatment, as well as the presence

of a strain resistant to treatment. An individual can be

susceptible (S), infected with a sensitive strain (I),
This journal is q 2010 The Royal Society
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Figure 1. Model structure. (a) Schematic for the treatment model that is used to motivate model (2.1). An individual can be
susceptible (S), infected with a sensitive strain (I), infected with a sensitive strain and treated (T ) or infected with a resistant
strain (R). The dynamics of the treated class have been enclosed in dashed boxes to emphasize the difference between this

figure and the equations for model (2.1). All analytic results are derived using model (2.1), which does not include the
dynamics of the treated class. (b) Schematic for the detailed model. Using numerical simulations, the analytic results for
model (2.1) have been extended to this more detailed model that includes the dynamics of the treated class.
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infected with a sensitive strain and treated (T ) or infected

with a resistant strain (R). Susceptible individuals become

infected with the sensitive strain through contact with

individuals in the I and T compartments (with contact

parameters bI and bT, respectively), and become infected

with the resistant strain through contact with individuals

in the R compartment (with contact parameter bR). Indi-

viduals infected with the sensitive strain can move into the

treated class at some (time-varying) per capita rate, u(t),

where u is the treatment strategy of interest. Treated indi-

viduals can develop resistance at some constant per capita

rate, n, and finally, individuals in each of the three

infected classes can leave the system, through either

death or recovery with immunity, at constant per capita

rates mI, mT and mR (also see electronic supplementary

material, §1).

The objective of the analysis is to determine the opti-

mal time-varying treatment strategy, u, that minimizes

the total attack ratio (i.e. minimizes the attack ratio of

the sensitive strain plus the attack ratio of the resistant

strain), given by

A ¼ Sðt0Þ � Sðtf Þ
Sðt0Þ

;

which is equivalent to minimizing the total outbreak size

(and to maximizing the final number of susceptibles).

The quantities t0 and tf are the start and end times of

the outbreak, respectively. We say that the outbreak has

ended as soon as the total number of all disease-transmit-

ting individuals is equal to 1. In other words, for the

model depicted in figure 1a, tf ¼minftj I(t) þ T(t) þ
R(t) � 1g. By defining tf in this way, we avoid the situation

where an unrealistically small number of infecteds

(namely less than one infected) initiates an outbreak.

The rational for this definition of tf is further detailed in

electronic supplementary material, §2 and in Hansen &

Day [22].

The treatment level, u, can vary through time, and can

take on any value from 0 to some maximum value, umax.

The upper bound, umax, reflects the fact that, regardless of

how much we strive to increase the rate of treatment, it

will typically be unavoidable that infected individuals

spend some amount of time circulating in the population

before they are treated. This will occur because of con-

straints on treatment delivery (e.g. having a finite

number of health professionals available to deliver
Proc. R. Soc. B
treatment), as well as constraints imposed by the biology

of the disease (e.g. if there is an asymptomatic stage).

The above model is qualitatively similar to those exam-

ined by Handel et al. [8], Lipsitch et al. [9], Moghadas

et al. [13] and Qiu & Feng [14], but we make a further

pair of simplifying assumptions to facilitate mathematical

analysis: (i) that treatment is perfectly effective, meaning

that essentially no transmission occurs from treated

individuals, and (ii) that the time dynamics of the treated

class are fast relative to those of the other classes. In this

case, we can use the quasi-equilibrium value of T to sim-

plify the model (electronic supplementary material, §1).

This simplification removes the highlighted elements of

the flow diagram in figure 1a, and yields the following

equations:

_S ¼ �bIIS � bRRS;

_I ¼ bIIS � ðmI þ uÞI
_R ¼ bRRS � mRRþ kuI ;

9>>>=
>>>;
; ð2:1Þ

where k denotes the probability that a treated individual

develops resistance.

Although the above simplifying assumptions might not

be particularly realistic for some situations, our primary

aim is to develop a broad conceptual understanding of

the optimal treatment strategy during an outbreak. More-

over, these assumptions do not appear to qualitatively

alter the results, as evidenced by the numerical simu-

lations presented later. In fact, these simplifications

primarily accentuate the three key effects of treatment

that were discussed in §1. First, model (2.1) assumes

that treatment completely suppresses the spread of the

sensitive strain and therefore it maximizes the first effect

of treatment (i.e. the suppression of sensitive infections).

Second, model (2.1) assumes that, if de novo resistance

appears at all, it arises immediately upon treatment

because the dynamics of the treated class are assumed

to be fast relative to the other classes. Third, model

(2.1) also removes the impact of treated individuals on

the depletion of susceptible hosts, therefore maximizing

the third effect of treatment (i.e. the freeing-up of

susceptible hosts for infection by resistant strains).
3. RESULTS
To facilitate the understanding of our results, we first

define some important quantities and briefly describe

http://rspb.royalsocietypublishing.org/
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some of the basic features of the optimal treatment strat-

egy. We then give a complete characterization of the

optimal treatment strategy in two steps. First, we consider

a special case (situation 1) in which we can use standard

techniques from calculus to gain an intuition for the

results. Second, we characterize the optimal treatment

strategy in general (situation 2). Analysis of the latter

case requires techniques from optimal control theory,

and these details are presented in the electronic

supplementary material.

The optimal treatment strategy for model (2.1) is

characterized by the following three quantities:

RI ¼
bI

mI

Sðt0Þ ¼
Sðt0Þ

SI

;ðiÞ

RR ¼
bR

mR

Sðt0Þ ¼
Sðt0Þ
SR

; andðiiÞ

RIR ¼
bI

mI þ umax

þ bR

mR

kumax

mI þ umax

� �
Sðt0Þ:ðiiiÞ

Here, RI and RR are the basic reproduction numbers of

the sensitive and resistant strain, respectively [23–25].

The quantities SI ¼ mI/bI and SR ¼ mR/bR represent

threshold parameters, and denote the number of suscep-

tibles above which a sensitive and resistant outbreak can

occur, respectively. To understand the constant RIR, con-

sider the possible paths that a new sensitive infection can

take. If the population is receiving treatment (i.e. u = 0),

then an initially sensitive infection may develop resistance

and so some initially sensitive infections will generate

both sensitive and resistant infections during their life-

time. The constant RIR can be interpreted as the total

expected number of secondary infections (both sensitive

and resistant) caused by an individual initially infected

with the sensitive strain in a wholly susceptible population

that is receiving maximum treatment (i.e. u ; umax).

Specifically, the first term represents the number of infec-

tions generated while infected with the sensitive strain,

and the second term represents the probability of devel-

oping resistance, multiplied by the number of infections

generated while infected with this newly evolved resistant

strain.

A few more general observations will be helpful before

stating the results. First, RIR can be expressed as RIR ¼ RI

(1 2 x) þ xkRR, where x ¼ umax/(mI þ umax) is the pro-

bability of an infected individual receiving treatment

when the treatment effort is u ; umax. This expresses

RIR as a mixture of the two reproduction numbers, RI

and RR. Second, because the number of susceptibles

always decreases through time, it is sometimes easier to

express the optimal treatment strategy as a function of

the size of the susceptible pool rather than as a function

of time per se. This is also more useful from a health

policy point of view because ‘number of susceptibles’ is

a much more meaningful (and more easily measured)

quantity than ‘time since start of outbreak’. Thus,

although in the sequel we will discuss ‘treatment start

time’ and ‘delay’, these will sometimes be measured in

terms of the corresponding number of susceptible indi-

viduals. For reference all symbols have been defined in

table 1.
Proc. R. Soc. B
(a) The optimal treatment strategy

The optimal treatment strategy is to delay treatment until some

fixed time t* (possibly t* ¼ t0) and then to treat maximally

for the remainder of the epidemic. Thus, higher treatment

levels are always better provided that the onset of

treatment is delayed by the optimal amount.
(b) The optimal amount of delay

To simplify the conditions for the optimal delay, suppose

that RI � RR (the resistant strain suffers a fitness cost in

the absence of treatment) and k , 1 (not all treated infec-

tions develop resistance; the complete analysis is

presented in the electronic supplementary material). In

this case, the optimal delay can be characterized in

terms of a critical number of susceptible hosts, defined by

Smin ¼ SR þ
k

1� k
ðSR � SIÞ:

The optimal delay is achieved by balancing the effect

that delay has on the sensitive and resistant outbreaks,

and this is best understood by considering two separate

situations: (1) the maximum treatment level is very

large (umax!1) and (2) the maximum treatment level

is not very large (umax is finite).

Situation 1. If the maximum treatment level is very

large, then some insight into the optimal treatment strat-

egy can be gained using basic calculus. In particular, if the

maximum level of treatment is used, then the onset of

treatment effectively ends the sensitive epidemic and

initiates the start of the resistant epidemic. This is because

at the onset of treatment, all sensitive-infected individuals

enter either the removed compartment (i.e. they are trea-

ted and no longer transmitting the infection) or the

resistant compartment (i.e. treatment causes them to

immediately develop resistance). Therefore, before

treatment begins, model (2.1) simplifies to

_S ¼ �bIIS

_I ¼ bIIS � mII ;

)
; ð3:1Þ

with initial conditions (S(t0),I(t0)). Once treatment

begins at time t ¼ t, all of the sensitive-infected individ-

uals either (i) immediately become resistant or

(ii) immediately stop transmitting the infection. Thus,

for t . t, model (2.1) simplifies to

_S ¼ �bRRS

_R ¼ bRRS � mRR;

)
; ð3:2Þ

with (S(t),R(t)) ¼ (S(t),kI(t)). Hence, in this special

case, determining the optimal treatment strategy amounts

to determining the optimal time to switch from model

(3.1) to model (3.2).

Integrating and rearranging the equations for model

(3.1) and model (3.2) give (see electronic supplementary

material, §3, for details):

SR lnSðtf Þ�Sðtf Þ¼ð1�kÞðSmin lnSðtÞ�SðtÞÞþC;

ð3:3Þ

where C¼ k(SI lnS(t0) 2 S(t0) 2 I(t0)) þ R(tf). Now since,

by definition, the outbreak ends as soon as the total number

of infecteds is less than or equal to 1, there are two

possibilities with respect to the optimal delay.

http://rspb.royalsocietypublishing.org/


Table 1. Table of symbols.

symbol brief definition

S(t) number of susceptibles at time t
I(t) number of individuals infected with the treatment-sensitive strain at time t
T(t) number of treated individuals at time t
R(t) number of individuals infected with the treatment-resistant strain at time t
bI contact parameter for the sensitive strain
bT contact parameter for the treated strain (bT ¼ 0 for the simple model)
bR contact parameter for the resistant strain

mI per capita rate of death or recovery with immunity for the sensitive-infected class
mT per capita rate of death or recovery with immunity for the treated class
mR per capita rate of death or recovery with immunity for the resistant-infected class
u(t) per capita rate of treatment for the sensitive-infected class at time t
v per capita rate of developing resistance for the treated class (applies to model in figure 1a)
k probability that treated individual develops resistance (applies to simple model, see equation (2.1))
t0 the outbreak start time
tf the outbreak end time
umax upper bound for per capita treatment rate u
RI the basic reproduction number for the sensitive strain
RR the basic reproduction number for the resistant strain
RIR the expected number of secondary infections (both sensitive and resistant) caused by an individual initially infected

with the sensitive strain, in a wholly susceptible population that is receiving maximum treatment (i.e. u ; umax)
SI the number of susceptibles above which a sensitive outbreak can occur

SR the number of susceptibles above which a resistant outbreak can occur
x the probability that an infected individual receives treatment (assuming u ; umax)
t an arbitrary treatment start time
t* the optimal treatment start time
fT the fraction of infected individuals that receives treatment (applies to detailed model, see figure 1b)

Smin the number of susceptibles at the optimal treatment start time assuming that an outbreak occurs and umax is
unbounded (applies to simple model)

Smin,c the number of susceptibles at the optimal treatment start time assuming that an outbreak occurs and fT ¼ 1 (applies
to detailed model)

A the total attack ratio

4 E. Hansen & T. Day Optimal treatment strategy and resistance
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(A) Treating immediately can prevent the outbreak: if

kI(t0) , 1, then starting treatment at t0 prevents the out-

break (i.e. R(t) ¼ kI(t) , 1). Clearly, this is the best

possible scenario, and therefore t* ¼ t0. Notice that this

situation is closely related to the idea of ‘containment’

discussed in Lipsitch et al. [9].

(B) Treating immediately cannot prevent the outbreak: if

the outbreak cannot be prevented through treatment,

then any treatment strategy will result in S(tf) � SR (i.e.

the outbreak will not end until the pool of susceptibles

is diminished below that necessary to sustain an resistant

outbreak). Therefore, the treatment start time that maxi-

mizes the left-hand side of equation (3.3) will also

maximize S(tf) (and hence minimize the total attack

ratio). In other words, it is optimal to delay treatment

until the number of susceptible hosts has declined to

Sðt*Þ ¼ Smin:

If the initial number of susceptible hosts is smaller than

this threshold, then treatment should begin immediately.

Situation 2. If the maximum treatment level is

bounded, then there will be some temporal overlap in

the sensitive and resistant epidemics once treatment has

been initiated. In this situation, Pontryagin’s maximum

principle can be used to determine the optimal (time-

varying) treatment strategy (see electronic supplementary

material, §4, for details). There are, again, two

possibilities with respect to the optimal delay.
Proc. R. Soc. B
(A0) Treating immediately can prevent the outbreak: if

starting treatment at t0 prevents the outbreak from occur-

ring, then this is clearly the best possible scenario, and so

t* ¼ t0. As with situation 1, this situation is closely related

to the idea of ‘containment’ discussed in Lipsitch et al. [9]

and is contingent on how tf is defined (i.e. for model (2.1)

we have that tf ¼minftjI(t) þ R(t) � 1g).
(B0) Treating immediately cannot prevent the outbreak: if

scenario (A0) does not hold, then it may be optimal to

delay the onset of treatment. In particular, the threshold

number of susceptibles Smin now provides an upper

bound on the optimal delay. Thus, if the initial number

of susceptible hosts is smaller than this threshold, then

treatment should begin immediately. On the other hand,

if S(t0) is initially larger than Smin, then the optimal

delay is no larger than the time it takes for the number

of susceptible hosts to decline to Smin. There is one

other possibility, however, that overrides these conditions:

if RIR . RR, then it is optimal to start treatment

immediately.

Note that there are two major differences between the

results for situation 1 and situation 2. First, when maxi-

mum treatment levels are bounded (situation 2), the

critical threshold, Smin, provides only an upper bound

for the optimal delay. Second, in situation 2, there is an

additional condition under which immediate treatment

is optimal; namely, when RIR . RR. Intuitively, if de

novo resistance has a negligible effect on the outbreak,

then it seems reasonable that treatment should proceed

http://rspb.royalsocietypublishing.org/
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as though there is no de novo resistance. The condition

that treatment should begin immediately if RIR . RR

actually highlights this intuition and emphasizes that the

quantity that measures the effect of de novo resistance is

the rate of de novo resistance (kuI) and not the prob-

ability of de novo resistance (k). This can be seen by

rearranging RIR . RR and multiplying both sides by kI

to produce a relationship involving the rate of de novo

resistance:

kumaxI ,
k

1� k

mR

bR

� mI

bI

� �
bII : ð3:4Þ

Hence, if the rate of de novo resistance is small, then

treatment should proceed as though there is only a

treatment-sensitive strain (i.e. if equation (3.4) holds

then treatment should start immediately).
(c) Interpretation

We have shown that, for a simple model which includes

the evolution of resistance, the optimal treatment strategy

is to delay treatment for a specific amount of time (poss-

ibly no time) and then to treat with maximum effort for

the remainder of the epidemic. If an outbreak is unavoid-

able, the optimal amount of delay is determined by

balancing the benefits and costs of delay, and this trade-

off can be best understood by again considering the

case when the maximum treatment level is very large.

When the maximum treatment level is very large (i.e.

situation 1), the marginal change in the attack ratio that

comes from increasing the amount of delay before treat-

ment is (see electronic supplementary material, §3, for

details):

dA

dt
¼ dAI

dt
þ dAR

dt
; ð3:5Þ

¼ d

dt

Sðt0Þ � SðtÞ
Sðt0Þ

� �
þ d

dt

SðtÞ � Sðtf Þ
Sðt0Þ

� �
; ð3:6Þ

¼ a½SR � SðtÞ� � ak½SI � SðtÞ�; ð3:7Þ

where A, AI, AR denote the total, sensitive and resistant

attack ratios, respectively, t is the treatment start time

and a ¼ S(tf)bII(t)/[S(t0)(SR 2 S(tf))] . 0.

Equation (3.5) emphasizes that the total attack ratio

can be decomposed into a sensitive attack ratio and a

resistant attack ratio. Furthermore, since for situation 1

the sensitive and resistant outbreaks are temporally separ-

ated (because the resistant strain emerges only after

treatment begins), the sensitive attack ratio includes all

new infections that occur before the treatment start

time t, and the resistant attack ratio includes all new

infections that occur after the treatment start time t

(see equation (3.6)). The two terms in equation (3.7) rep-

resent the benefit and cost of delay, respectively. The first

term represents the benefit of a delay that comes from a

reduction in the size of the susceptible pool at the start

of the resistant-strain epidemic. From the perspective of

this benefit term only, it is best to delay treatment until

S(t) ¼ SR, at which point there are no longer enough sus-

ceptible individuals to sustain a resistant outbreak. The

second term represents the cost of delay that comes

from an increase in the number of de novo resistant infec-

tions once treatment begins. From the perspective of this

cost term only, it is best to treat immediately because
Proc. R. Soc. B
waiting longer results in a larger pool of infected individ-

uals, which then have the potential to develop de novo

resistance once treatment begins. The optimal amount

of delay precisely balances these two effects, and this

can be readily interpreted graphically. Figure 2a shows

the final number of susceptibles as a function of treatment

start time for different values of k. As k increases, the

importance of the second term in equation (3.7) increases

and correspondingly the number of infecteds at the opti-

mal treatment start time decreases (figure 2b), while the

number of susceptibles at the optimal treatment start

time increases (figure 2c).
(d) Numerical results for more detailed models

Although the analytic expressions presented above are

derived using a simple model, numerical simulations

suggest that these results hold more generally. To illus-

trate this, we use numerical simulations to compare the

relationship between treatment start time and attack

ratio for our simple model and for the more detailed

model in Lipsitch et al. [9]. Figure 1b depicts the treat-

ment model used in Lipsitch et al. [9] and the

corresponding system equations are provided in electronic

supplementary material, §5.

To begin, numerical results show that both models

exhibit two key features: (i) if the treatment level is

constrained to be constant throughout the entire epi-

demic (as has been the case in most previously

published analyses), then there is an intermediate optimal

level of treatment, and (ii) if treatment is delayed by the

appropriate amount, then maximum treatment is always

optimal (electronic supplementary material, figures 1

and 2). The fact that delaying treatment can be better

than constant treatment in both models explains why

Lipsitch et al. [9], Moghadas et al. [13], Handel et al.

[8] and Qiu & Feng [14] observed an intermediate

optimal constant treatment level.

A comparison of the panels of figure 3 shows that

the general relationship between the treatment level, the

attack ratio and the number of susceptible hosts at the

start of treatment is qualitatively similar for both

models. Furthermore, figure 3a shows that for the

simple model, if an outbreak occurs, then S(t*)

approaches Smin as the treatment level increases (i.e. the

solid curve approaches the horizontal dashed line). In

other words, the optimal solution for the case when

umax is very large provides a bound for the case when

umax is finite. A similar statement is true for the more

detailed model. In the more detailed model, fT denotes

the fraction of infections that are treated, and so fT ¼ 1

is the analogous case to umax being unbounded (i.e. all

infected individuals are treated). Using Smin,c to denote

the number of susceptibles at the optimal treatment

start time when fT ¼ 1, figure 3c shows that, for the

detailed model, S(t*) decreases as the treatment level

increases, with Smin,c providing a bound for all other

values of fT.

Both models also demonstrate that it is possible to

avoid an outbreak by starting treatment immediately at

sufficiently high treatment levels (electronic supplemen-

tary material, figure 3). Furthermore, if the initial pool

of susceptibles is small enough, then it is always best to

start treatment immediately (electronic supplementary

http://rspb.royalsocietypublishing.org/
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Figure 2. Effect of treatment start time on total attack rate (situation 1B). The vertical lines indicate the optimal treatment start
time t* for a large k (solid line), an intermediate k (dashed line) and a small k (dotted-dashed line). (a) The final number of
susceptibles as a function of treatment start time for a large k (k ¼ 0.58; solid curve), an intermediate k (k ¼ 0.4; dashed curve)

and a small k (k ¼ 0.001; dotted-dashed curve). (b) The number of sensitive infections as a function of treatment start time, t.
The total attack rate is decreased by decreasing the number of sensitive infections at the treatment start time (I(t)) and by
decreasing the number of susceptibles at the treatment start time (S(t)) (equation (3.7)). As k increases, the effect of decreasing
I(t) becomes more important than decreasing S(t); therefore, t* decreases as k increases (from left to right, the order of the

vertical lines is solid, dashed and dot-dashed). (c) The number of susceptibles as a function of treatment start time. As k

increases, S(t*) increases. Also, the points S ¼ Smin are indicated by ‘star’ markers and coincide with S(t*). Parameters are
RI ¼ 1.6, RR ¼ 0.8RI and mI ¼ mR ¼ 1/3.3.
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Figure 3. Total attack ratio versus treatment level and number of susceptibles at treatment start time (normalized by S(t0)). The
white solid curves show the number of susceptibles at the optimal treatment start time provided a resistant epidemic occurs.

The white dashed horizontal lines indicate the number of susceptibles at the optimal treatment start time when the maximum
possible treatment level is very large (i.e. when umax is unbounded for the simple model and when fT ¼ 1 for the detailed
model). The white dashed horizontal lines in (a) and (b) were computed analytically; all other curves were computed numeri-
cally. It is important to emphasize that this figure was generated by assuming that an outbreak occurs. Indeed, for this specific
choice of parameters, electronic supplementary material, figure 3, illustrates that for umax . 0.25 and fT . 0.8 treating

immediately will prevent an outbreak and so treating immediately is optimal. (a) Figure produced using simple model. (b) Mag-
nified version of (a). (c) Figure produced using detailed model. Parameters are RR ¼ 0.9RI, m1 ¼ m2 ¼ m3 ¼ 1/3.3, k ¼ 0.0066,
fr ¼ 0.002.
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material, figure 4). For the simple model, ‘small enough’

is measured relative to the number of susceptibles at the

optimal treatment start time when umax is unbounded.

Namely, if S(t0) , Smin, then t* ¼ t0. Similarly, for the

more detailed model, electronic supplementary material,

figure 4b, suggests that if S(t0) , Smin,c then again it is

optimal to start treatment immediately.

Finally, recall that for the simple model if RIR . RR,

then it is optimal to start treatment immediately. Using

the biological interpretation of RIR, namely that RIR is
Proc. R. Soc. B
the expected total number of infections caused by an indi-

vidual initially infected with the treatment-sensitive strain,

we can define an analogous quantity for the detailed

model (see electronic supplementary material, text S1,

for details). Electronic supplementary material, figures 5

and 6 show that the relationship between RR, RIR and

the optimal treatment start time is similar for both the

simple and detailed models. This result is particularly

interesting because it emphasizes that (i) using a simple

model can highlight relationships in more detailed

http://rspb.royalsocietypublishing.org/
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models that may otherwise be undetected, and (ii) the

quantity RIR is of general importance and not just an

artefact of our simple model.
4. DISCUSSION
Perhaps the most salient feature of previous analyses is

that the best treatment somehow balances the effects of

the sensitive and resistant epidemics. This trade-off,

which is very clearly explained in the discussion found

in Lipsitch et al. [9], is also highlighted in our model.

The difference is in the way this trade-off is resolved. In

Lipsitch et al. [9], this trade-off is used to explain why

an intermediate level of constant treatment is better

than a high level of constant treatment. Conversely, we

have shown that the optimal treatment balances this

trade-off by delaying the onset of treatment instead

of capping the maximum level of treatment. By allowing

the treatment strategy to vary in time, we have

shown that higher levels of treatment are always better,

provided they are started at the appropriate time. Fur-

thermore, when the maximum possible treatment level

is very large, our analysis shows that the optimal treat-

ment strategy is the one that switches from a sensitive

outbreak to a resistant outbreak precisely when the

number of susceptible hosts has decreased to the value

given by Smin.

We have examined two types of model, a simple model

that does not explicitly include the dynamics of the treat-

ment class and a more detailed model that does include

treatment dynamics. For the simple model, we showed,

using analytic calculations, that the optimal treatment

strategy is ‘off–on’ (i.e. delay treatment for a certain

amount of time—possibly no time—and then treat maxi-

mally for the remainder of the outbreak). It is important

to emphasize that for model (2.1) this off–on strategy is

indeed optimal in the sense that any other, more compli-

cated, strategy that involves intermediate levels of

treatment will not result in a lower attack ratio. Conver-

sely, for the more detailed model, we have only shown

(via numerical simulations) that an off–on strategy can

outperform a ‘constant’ strategy. Thus, although it

seems likely that the off–on strategy is optimal for the

more detailed model as well it remains an open problem

to explicitly prove that this is indeed the case. Further-

more, although an off–on strategy can be better than a

constant strategy, policy makers still face the ethical

dilemma of choosing between the rights of individuals

to receive treatment and the benefit to the population of

delaying treatment.

Given the ethical problems associated with implement-

ing the optimal treatment strategy when it involves a delay,

it is useful to clearly delineate the conditions under which

implementing treatment immediately is actually optimal. It

is always optimal to start treatment immediately if one of

three conditions holds: (i) immediate treatment can pre-

vent an outbreak, (ii) the initial pool of susceptibles is

small (i.e. S(t0) , Smin for the simple model and S(t0) ,

Smin,c for the detailed model), or (iii) the rate of de novo

resistance is small (i.e. RIR . RR). Each of these three

situations have relevance to public health policy.

Condition (i) underscores that our focus has been to

minimize the total outbreak size, and so in this context

preventing an outbreak is the best possible outcome.
Proc. R. Soc. B
This outcome, however, may not be desirable if there is

a high probability of a second epidemic occurring at a

later time. For example, although treating immediately

at a very high level may minimize the total attack ratio,

this will result in S(tf) . SR . SI. As a result, the popu-

lation will be susceptible to future sensitive and resistant

outbreaks. Alternatively, if a treatment strategy is chosen

to ensure that a resistant epidemic occurs, then the final

number of susceptibles will be small enough to prevent

future resistant outbreaks (and the severity of a possible

future sensitive outbreak will be significantly decreased).

Antia et al. [26] discusses these issues in the context of

a single-strain epidemic. Interestingly, if delay is optimal,

then, up to a point, increasing umax will increase the opti-

mal amount of delay. However, if umax can be increased

sufficiently, then treating immediately will effectively pre-

vent the outbreak, and this then becomes the optimal

strategy. If this can occur, then policy makers will have

to balance the benefits of treating immediately (and there-

fore preventing the current outbreak) with the benefits of

delaying treatment (and perhaps minimizing the effects of

a second outbreak).

Condition (ii) highlights that the optimal treatment

strategy depends on the size of the target community.

Essentially, if a community is small enough, then treat-

ment should start immediately. This observation leads

to an interesting hypothesis for combined vaccination–

treatment policies. Namely, since vaccination decreases

the susceptible population, low vaccination levels make

it more likely that treatment should be delayed. This pro-

posed relationship is surprising since, naively, it seems

reasonable to expect that if fewer individuals are vac-

cinated, then it would be better to start treatment early

in order to reduce spread. Nevertheless, our results

suggest that this intuition is, in fact, incorrect.

Condition (iii) emphasizes that if the probability of

receiving treatment is low, then it is more likely that treat-

ment should start immediately. More concretely, by

expressing RIR as a linear combination of the two repro-

duction numbers RI and RR, we can rewrite RIR . RR as

RI

RR

.
1� kx

1� x
:

Therefore, if RI/RR . (1 2 kx)/(1 2 x), it is optimal to

start treatment immediately and if RI/RR � (1 2 kx)/

(1 2 x), then it may be best to delay treatment. For any

specific values of RI, RR and k, we see that as the pro-

bability of treating an infected individual, x, decreases,

it becomes more likely that starting treatment immedi-

ately is best. Intuitively, this guideline makes sense since

if treatment is unlikely to reach many infected individuals,

then it makes sense to start administering treatment as

soon as possible in order to reach more individuals.

Since multiple intervention measures are often used to

control a disease, an important next step is to consider a

model that includes other intervention measures, in

addition to treatment [4,5,7,10]. Some models similar

to our model that have included multi-intervention strat-

egies are the treatment–vaccination models in Ferguson

et al. [6] and Qiu & Feng [14], and the treatment-prophy-

laxis model in Lipsitch et al. [9]. Interestingly, a number

of studies that consider multi-intervention strategies also

exhibit optimal constant intervention levels. This suggests

http://rspb.royalsocietypublishing.org/
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that considering multi-intervention strategies that vary in

time may be very informative as well.
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