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Drug resistance is a serious public health problem that threatens to thwart

our ability to treat many infectious diseases. Repeatedly, the introduction

of new drugs has been followed by the evolution of resistance. In principle,

there are two complementary ways to address this problem: (i) enhancing

drug development and (ii) slowing the evolution of drug resistance through

evolutionary management. Although these two strategies are not mutually

exclusive, it is nevertheless worthwhile considering whether one might be

inherently more effective than the other. We present a simple mathematical

model that explores how interventions aimed at these two approaches affect

the availability of effective drugs. Our results identify an interesting feature

of evolution management that, all else equal, tends to make it more effec-

tive than enhancing drug development. Thus, although enhancing drug

development will necessarily be a central part of addressing the problem

of resistance, our results lend support to the idea that evolution management

is probably a very significant component of the solution as well.
1. Introduction
In our efforts to manage infectious diseases, the usefulness of newly developed

drugs has been undermined by the evolution of drug resistance [1–6]. This

pattern has been repeated so often in the history of some diseases that the

evolution of resistance is now considered inevitable [6–14].

The evolution of resistance to any particular drug is not problematic provided

that an alternative drug is available. What matters is the rate at which drug

resistance evolves relative to the rate at which new drugs are brought into use. Con-

sequently, there are two complementary approaches to ensuring the availability of

effective drugs: (i) increasing the rate of drug arrival through enhanced drug devel-

opment and (ii) increasing the time it takes for drug resistance to evolve through

better evolution management.

Approaches for increasing the rate of drug development are probably familiar,

and include developing screening technology for new compounds, developing

new classes of antimicrobial agents, improving patent protection of new pharma-

ceuticals, speeding up the drug approval process and expanding public–private

partnerships for drug development [15–20]. Approaches for slowing the evolution

of resistance are perhaps less familiar, but include developing new diagnostic

technologies and strategies for reducing the inappropriate use of antimicrobials,

formulating strategies to reduce transmission and spread of infection to avoid

using antimicrobials, determining when and where existing drugs should be

used in combination versus as sequential monotherapies, as well as determining

the optimal dose and timing of deployment for these existing drugs [1,2,5,6,21–26].

These two facets of the problem (i.e. enhancing drug development and

slowing evolution) are not mutually exclusive, and any comprehensive strategy
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Figure 1. Timeline for antimalarials and antibiotics [6 – 14]. The times of drug introduction and the subsequent evolution of resistance are indicated by the ends of
the bars. The faded region is meant to show that the first observation of resistance does not absolutely equate with complete loss of treatment efficacy. (Online
version in colour.)
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for dealing with drug resistance will incorporate both. In

some situations, enhancing the rate of drug development

might be easiest while in others it might be easier to focus

on the evolutionary side of the problem (for example, if it

is too difficult to provide adequate incentivization for drug

development). Even so, however, it is worthwhile asking

whether one approach is somehow inherently more effective

than the other. For example, in the simplest situation, where

it is equally possible to enhance drug development as it is to

slow evolution, does one of these interventions nevertheless

have a greater effect?

To answer this question, we need to determine the benefits,

in terms of ensuring effective drug availability, of increasing

the rate of drug arrival through enhanced drug development

and of slowing the rate of evolution through better resistance

management. At one level, the answer to this question is

obvious. If there is an upper limit to the number of drugs

that can be developed for a particular disease, then at some

point drug development will become effectively impossible.

This would leave slowing evolution as the only option.

But what if we are not yet facing this limitation on drug

development? Here, we explore this question through the

development of simple mathematical models.
2. Material and methods
(a) Model
Historical data for the time of introduction of some antimalarial

and antibiotic drugs, as well as the evolution of resistance to

these, are presented in figure 1. The processes underlying these

data are complex, with both geographical and temporal variation

in the drugs and the diseases that they are used to treat. Conse-

quently, not too much should be read into the precise dates of

any specific drug (see the electronic supplementary material).

That said, the data do provide a qualitative illustration of what
has been called the ‘drug resistance treadmill’ [27]. New drugs

are continually brought into use, followed by the evolution of

resistance after some variable period of time.

Our goal is to use the broad qualitative features of figure 1 as

a guide for constructing some simple mathematical arguments.

We do not attempt to develop a model specific to any particular

drug or disease but instead focus on modelling some broad fea-

tures that are likely to underlie the drug resistance treadmill in

general. For illustrative purposes, however, we will highlight

some of the general results with specific parameter values

taken from data on antimalarial drugs [8–14].

To begin, we define a ‘drug’ as any whole drug therapy, which

might consist of one or multiple active ingredients. The ‘drug port-

folio’ is defined as the collection of existing drugs that are effective

against the specific type of infection of interest. For simplicity, we

assume that a single drug is used at any given time, and its use is

continued until resistance to this drug has appeared and reached

some threshold frequency in the population (e.g. 10% treatment

failure rate for antimalarials [21]). At this point, the drug’s ability

to provide effective treatment is compromised and so its use is

effectively discontinued. In order to continue to provide effective

treatment for the disease, another drug from the drug portfolio,

if available, is then brought into use (similar to the ‘wait-and-

switch’ strategy for malaria [25]). During this process, new drugs

are assumed to be in various stages of development and are

occasionally brought into the drug portfolio.

The above characterization of the drug resistance treadmill

might seem like an oversimplification of reality. After all, in

many cases, multiple drugs are in use simultaneously, and

drugs are not always entirely abandoned when resistance to

them is common. Instead, there can be a complex global geo-

graphical mosaic of levels of resistance and patterns of drug use

over time [28]. Despite this complexity, however, we develop

the above caricature of the resistance treadmill for two reasons.

First, it captures two of the main processes at play in any drug

resistance treadmill: the development of new drugs and the loss

of these drugs through resistance. Second, even this very simple

setting produces some surprising results that are not immediately

obvious. Furthermore, we will argue that the insights provided by

http://rspb.royalsocietypublishing.org/
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Figure 2. Schematic of the model. A timeline defining the time to failure, T, and drug availability, r. ‘Effective treatment available’ means that there is at least one
effective drug in the portfolio. (Online version in colour.)
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this very simple model are likely to hold more generally (also see

the electronic supplementary material for details of results that

relax these assumptions).

Figure 2 provides a schematic of the overall drug resistance

treadmill. Drug arrival into the drug portfolio and the evolution

of resistance both occur stochastically, resulting in periods

of time for which effective treatment is available (i.e. when

there is at least one effective drug in the drug portfolio). We

refer to the length of time during which effective treatment

is available as the ‘time to failure’, T. These periods are separa-

ted by time intervals during which treatment is compromised

by drug resistance (i.e. when all current drugs are affected by

drug resistance; figure 2). For example, the appearance of

pan-resistant Klebsiella pneumoniae and multidrug-resistant

Mycobacterium tuberculosis suggests that we might well have

exceeded the time to failure for these diseases, and may now

be heading into a period in which no completely effective

treatment is available [29–31].

The expected time to failure can be viewed as the product of

the expected number of drugs used before failure occurs and the

expected lifespan of each of these drugs. This decomposition will

be important for understanding the results, and we will return to

it in §4 (see equation (4.1)). We will also be interested in the long-

run fraction of time that effective drugs are available, and we

refer to this as the ‘drug availability’ (figure 2).

The model is completely specified by the time between drug

arrivals and the time to evolve resistance. Analysis of a large data-

set for pharmaceutical production from companies during the

period 1950–2008 has shown that the annual output of new

drugs is approximately Poisson distributed with a constant rate

parameter [32]. This implies that the time between new drug

arrivals is exponentially distributed. We note however that these

data include all ‘new molecular entities’ and so are not restricted

to drugs specific to the treatment of infectious diseases. Likewise,

a ‘new molecular entity’ does not correspond exactly to our

definition of a drug given above. Nevertheless, an exponential dis-

tribution is also consistent with the limited data available in figure

1 (see the electronic supplementary material), and therefore

we start our analysis by making this assumption. We define the

random variable D to be the time between drug arrivals into the

drug portfolio, and assume that D is exponentially distributed

with rate parameter, a. The expected time between drug arrivals

is therefore E[D] ¼ 1/a (e.g. 8.3 years for antimalarials; see the

electronic supplementary material).

We define L as the time to evolve resistance (i.e. the drug life-

span), and it represents the time between when a drug is first

used and when resistance to the drug reaches a threshold

frequency. We assume that this lifespan is determined by the

evolution of resistance, and therefore different evolution man-

agement strategies will result in different drug lifespans. Little

is currently known about the distribution of L, but we can
make some progress by examining the data from figure 1.

Analyses suggest that, for some diseases at least (e.g. malaria),

L is also approximately exponentially distributed (see the

electronic supplementary material). There are many caveats

associated with this conclusion, however, and therefore we con-

sider two scenarios. First, we suppose that L is exponentially

distributed with rate parameter b. The expected drug lifespan

is therefore E[L] ¼ 1/b (e.g. 5 years for antimalarials; see the

electronic supplementary material). Second, we consider a case

where the distribution of L is left arbitrary.
(b) Slowing resistance evolution versus enhancing drug
development

We begin the analysis by assuming that the average time

between drug arrivals is larger than the average drug lifespan

(i.e. E[D] . E[L]). This assumption is relaxed when we consider

a variable rate of drug arrival (see §2c). This implies that, with

probability 1, there will be periods of time when effective

drugs are available as well as periods of time when they are

not (figure 2).

Two interventions are explored: (i) decreasing the expected

time between drug arrivals E[D] through enhanced drug devel-

opment and (ii) increasing the expected drug lifespan E[L]

through better evolution management. For completeness, we

explore both additive and multiplicative changes in each. In

the additive case, we consider decreasing E[D] by an additive

amount or increasing E[L] by the same amount. In the multipli-

cative case, we consider decreasing E[D] by a factor or increasing

E[L] by the same factor. We focus on two main performance

measures: the time to failure, T, which is a random variable,

and the drug availability (i.e. the long-run proportion of time

an effective drug is available), r (figure 2).
(c) Numerical simulations
Although we can make analytical progress using the above

assumptions, it is important to assess the robustness of our con-

clusions to changes in these assumptions. To this end, we

perform numerical simulations that explore two other possibilities.

The first explores the consequences of having a distribution of drug

inter-arrival times, D, that is not exponential. To do so, we instead

use a gamma distribution for D. To perform numerical calcu-

lations, we also then need to specify the distribution of drug

lifespans L, and we use a gamma distribution for this as well.

The second numerical simulation relaxes the assumption that

the rate of drug arrival is constant and instead supposes that this

rate is inversely related to the drug portfolio size. This allows us

to explore the plausible situation in which the rate of drug devel-

opment responds to demand. To accomplish this, we used two

http://rspb.royalsocietypublishing.org/
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Figure 3. Effects on time to failure from enhancing drug development and slowing evolution with estimates from antimalarial data (see the electronic supplemen-
tary material). (a) The effect on the time to failure density fT(t) when the average drug inter-arrival time is reduced by 2 years (DE[D]) and the average drug
lifespan is extended by 2 years (DE[L]) compared with baseline conditions (E[L] ¼ 5 years, E[D] ¼ 8.3 years). (b) The change in expected time to failure (E[T ])
resulting from additive perturbations in E[L] and E[D] plotted for varying current drug availability (r). (Online version in colour.)
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rates of drug arrival: a ‘normal rate’, denoted by a, and a ‘fast

rate’, denoted by u. At any one time only one rate of drug arrival

occurs, but the one that is in effect depends on the number of

drugs remaining in the drug portfolio at the time of the last

drug arrival. The time between drug arrivals is still assumed to

be exponentially distributed, but the rate parameter now changes

between a ‘normal rate’ (u) of drug arrival. In this simulation,

we also used exponentially distributed drug lifespans, L, with

rate parameter b.
3. Results
(a) Analytical results
When the distribution of the time to evolution, L, and the

drug inter-arrival time, D, are both exponential, an explicit

equation can be derived for the probability density of the

time to failure T. We have

fT(t) ¼
ffiffiffi
b

a

r
e�(aþb)tI1(2

ffiffiffiffiffiffi
ab
p

t)
t

, (3:1)

where I1(x) is a modified Bessel function of the first kind

(see the electronic supplementary material). Likewise, drug

availability is given by

r ¼ a

b
: (3:2)

We can see that decreasing the mean time between drug

arrivals (i.e. decreasing E[D] ¼ 1/a) or increasing the mean

time to evolve resistance (i.e. increasing E[L] ¼ 1/b) both

shift probability mass in equation (3.1) from low to high

values of T. However, changes in the mean time to evolve

resistance do so to a greater extent (figure 3a). This is true

regardless of whether the changes are additive or multiplica-

tive (see the electronic supplementary material). Likewise,

drug availability, r, is also increased more through an additive

change in the mean time to evolve resistance, whereas both

interventions have identical effects on r when the changes

are multiplicative (see the electronic supplementary material).

When the distribution of time to evolve resistance is left

arbitrary, we can still obtain an equation for an integral trans-

form of the distribution of time to failure, from which we can

calculate any of its moments (see the electronic supplementary

material). We focus here on the first moment (i.e. expected
time to failure), although we analyse the second moment in

the electronic supplementary material. The first moment is

E[T] ¼ E[L]

1� E[L]=E[D]
: (3:3)

The expression for drug availability in this case is identical

to equation (3.2) (see the electronic supplementary material).

Again we can see that the expected time to failure, E[T ],

increases more with a change in E[L] than it does with a

change in E[D] (figure 3b), and again this is true regardless of

whether the changes are additive or multiplicative. The con-

clusions about drug availability are identical to the case

where the distribution of time to evolution is exponential.

(b) Numerical simulations
In the first numerical exploration of the robustness of

our results, we used a gamma-distributed drug inter-arrival

time, D, and gamma-distributed drug lifespan, L. The gamma

distribution is parametrized by a shape parameter, k, and a

rate parameter, which we denote by a and b for the drug

inter-arrival time and drug lifespan, respectively. The expected

time between drug arrivals is therefore E[D] ¼ ka. Similarly, the

expected time to evolve resistance is E[L] ¼ kb. We numerically

calculated time to failure and drug availability for an additive

change and a multiplicative change that increased E[L] or that

decreased E[D], and compared the results. Figure 4 shows

how the distribution of time to failure changes as a result of

these two manipulations. In both cases, time to failure increases;

however, we observe a greater increase in the average time to

failure when E[L] is increased than when E[D] is decreased.

For an additive change, there was also a greater increase in

drug availability when E[L] increased than when E[D]

decreased, while for a multiplicative change, drug availability

was increased by the same amount. This agrees with the

analytical results (see the electronic supplementary material).

In the second numerical exploration, we relaxed the assump-

tion of a constant rate of drug arrival and examined the situation

in which drug arrival is inversely related to drug portfolio size.

Time to failure and drug availability were numerically calcu-

lated for an additive change that increased E[L] or decreased

E[D] under the ‘normal rate’ of drug arrival. The same ‘fast

rate’ of drug arrival was used throughout the calculations

when there were two or fewer drugs remaining in the drug

http://rspb.royalsocietypublishing.org/
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portfolio. Input parameter values were chosen such that the

average time between drug introductions under a ‘fast rate’ of

drug arrival was less than the average drug lifespan, relaxing

the earlier assumption that E[D] . E[L]. Figure 5 shows how

time to failure increased as a result of changing E[L] or E[D].

There was a substantially larger increase in average time to

failure when E[L] was increased, as was found in the simpler

analytical results. The increase in E[L] also yielded a greater
increase in drug availability than a corresponding decrease in

E[D] (see the electronic supplementary material).
4. Discussion
The chemotherapeutic treatment of infectious diseases invari-

ably leads to the evolution of drug resistance. This problem

http://rspb.royalsocietypublishing.org/
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has been recognized for a long time but, as with many

things, we as a society have tended to confront the issue

only when forced to do so. The situation now appears to be

reaching this point. We are facing the prospect of a lack of

treatment availability for some infections, and there is grow-

ing concern about the slow rate at which new antimicrobials

are entering the drug portfolio [33,34]. The development of

new pharmaceuticals is thus becoming increasingly urgent.

It would, of course, be prudent to attempt to deal with the

problem of resistance even in times when effective treatment is

readily available. Whether or not we eventually end up facing

the failure of all available treatment for a disease depends upon

the balance between the rate of drug arrival and resistance

evolution during these ‘times of plenty’. Thus, optimizing the

drug supply system as a whole over the long term should be

a primary goal. The results presented here are an attempt to

make some modest progress in this direction.

The full scope of the drug resistance problem is complex

and involves scientific, economic, political and sociological

dimensions [1,2,5,28,35]. No single strategy is likely to be suc-

cessful in addressing these issues; nevertheless, it is often

useful to examine different facets of the problem in isolation.

Once these isolated components are more fully understood,

we can begin to piece them together and to develop a

deeper understanding of the entire issue.

In this article, we have examined one part of the problem by

asking how the relative impacts of investing in drug develop-

ment and investing in better evolution management compare

in terms of their effects on maintaining a supply of effective

treatment. Our results suggest that, all else equal, increasing

the lifespan of drugs through better resistance management

has a greater effect than does a corresponding decrease in the

time it takes to develop new drugs.

Our analysis was intentionally based on a greatly simplified

model of the drug resistance treadmill that is meant to capture

only the core qualitative features of drug development and

resistance evolution. The goal of this simplification was to lay

bare any inherent differences in how the introduction of new

drugs through development and their ‘removal’ through resist-

ance evolution affect the long-term availability of effective

treatment. By doing so, we can more easily understand the

mechanisms underlying these differences and thus better

judge whether the differences are likely to be relevant in more

realistic settings.

What drives the inherent advantage of evolution manage-

ment in our model? Both types of interventions (i.e. enhancing

evolution management and enhancing drug development)

increase the chance that new drugs will be developed before

the system as a whole fails and there is no effective treatment

available. Increasing the time to evolve resistance does so because

it extends the window of opportunity for a new drug to be devel-

oped before failure occurs. Decreasing the time between drug

arrivals does so because, on average, more drugs will arrive in

a given period of time. In fact, when the changes for each inter-

vention are multiplicative, it can be shown that, on average, the

same number of drugs will arrive and be used before failure

occurs in both cases. The difference between them lies in how

the interventions affect the lifespan of each drug. Recall that we

can express the mean time to failure, E[T ], as the product of

the expected number of drugs that are used before failure

occurs and the expected lifespan of each drug. Mathematically,

E[T] ¼ E[N]� E[L], (4:1)
where N is the number of drugs used before system failure. As

already described, multiplicative changes in both interventions

have identical effects on E[N]. But changes in the time to

evolve resistance also affect E[L], whereas changes in drug arri-

vals do not. As a result, increasing the expected time to evolve

resistance has a compounding effect that is absent when chan-

ging the drug inter-arrival time. Moreover, this effect is even

greater when we consider additive changes in each intervention

because changing the time to evolve resistance then increases

E[N] more than does changing the time between drug arrivals.

What about drug availability? Drug availability is the

long-run proportion of time for which there is at least one

effective drug available. Hence, even though there is a greater

increase in time to failure when evolution is slowed, it is

important to consider how enhancing the rate of drug arrival

reduces the fraction of time for which there is no effective

drug. If the changes are multiplicative, the increase in drug

availability that arises from slowing the evolution of resist-

ance is equivalent to the increase in drug availability that

comes from speeding up drug arrivals. However, if the

change is additive, then drug availability increases more

when resistance evolution is slowed.

Analysis of the numerical simulations gave the same result

that slowing the rate of evolution has a greater effect on time

to failure and drug availability than increasing the rate of

drug arrival. As one possible generalization of the assumption

of exponentially distributed D and L, the first case used

gamma-distributed times between drug arrivals and drug life-

spans. In the second case, the rate of drug arrival was varied to

study the effect of having drug development respond to

demand, as well as allowing for the possibility for the mean

drug lifespan to exceed the mean time between drug arrivals

(i.e. E[D] , E[L]). These results show that, at least under the

studied conditions, relaxing some of our initial model assump-

tions does not alter the value of increasing drug lifespan on

ensuring the availability of effective treatment.

Our model assumes that, when available, drugs are used

one at a time. In reality, multiple drugs are often used simul-

taneously at the population level, although perhaps in

different geographical regions [36,37]. How would this affect

our conclusions? Modelling the simultaneous use of multiple

drugs is difficult because one needs to specify how the rate of

resistance evolution to each drug is affected by all of the specific

drugs that are in use, and virtually no data are available on this.

Interestingly, however, there are some situations in which

simultaneous multiple drug use results in a model that is for-

mally identical to the model presented here. In such

situations, the results obtained in our simplified model then

apply directly to this more complex setting. This occurs, how-

ever, only when there is a sort of ‘conservation of evolution’

(see the electronic supplementary material), and this type of

conservation is unlikely to occur in all situations. Neverthe-

less, it does serve as a useful baseline for understanding

how the results might change under different assumptions.

We also wish to stress that, although the main model pre-

sented is highly simplified, the phenomenon that it reveals

and that is highlighted in equation (4.1) is likely to operate

under much more general conditions. For example, if multiple

drugs are in use simultaneously then, even though the process

might be much more complicated, each drug will still spawn

the evolution of resistance (possibly in way that interacts

with the evolution of resistance to other drugs). Regardless of

the details, however, both better evolution management and

http://rspb.royalsocietypublishing.org/
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faster drug arrivals will still increase the number of drugs used

before the system ultimately fails (the factor E[N] in equation

(4.1)). But, by definition, evolution management will also

still increase the lifespan of each drug, thereby giving evolu-

tion management the same compounding benefit seen in our

simple model (the factor E[L] in equation (4.1)). Of course,

other factors could also come into play in these more complex

situations, making it less clear whether the overall effect is still

greatest for evolution management. For example, it is possible

that the increase in E[N] that results from enhanced drug devel-

opment is greater than that from better evolution management

in some more realistic settings, and this is an interesting area for

future research. But, even so, evolution management should

still have an inherent advantage all else equal because of the

compounding effect seen in equation (4.1).

How do the ideas presented here relate to specific cases of

the so-called drug resistance treadmill? In the case of HIV, for

example, the success of treatment is due to many factors, one

of which is the expansion of its drug portfolio [3]. However,

the discovery that combination therapy can greatlyslow the evol-

ution of drug resistance within individual patients has been

instrumental in successfully ensuring effective treatment [3,38].

This can be viewed as a premier example of enhanced evolution

management at the individual level. In fact, we might view the

emergence of resistance and subsequent failure of treatment at

the individual patient level as a drug resistance treadmill as

well. As initial chemotherapeutic agents fail, new treatments

are used until the portfolio of available drugs is exhausted.

Although developing new monotherapies faster would certainly

help the situation, our model suggests that the evolution man-

agement strategy of using combination therapy might well

have had an inherent advantage over such an approach.

In a similar way, resistance profiling in HIV-1 treatment is

another example of enhanced evolution management at the

individual level, because it helps to guide appropriate drug

choices that avoid favouring resistance [3,38–40]. Again,

although our abstract model does not explicitly incorporate

the specific details of this strategy, it does suggest that such

an approach might have inherent advantages [3,38–41].

Treatment of M. tuberculosis also uses a combination of anti-

tuberculars with evidence of resistance to individual drugs [3].

Available treatment is effective against susceptible strains;

however, multidrug-resistant and extensively drug-resistant

infection pose serious complications [3,15,41,42]. Current rec-

ommendations include production of combination therapies

in place of monotherapies, improved understanding of anti-

tubercular treatment in association with resistance and HIV-1

infection, and diagnostic testing for drug-resistant strains

[3,41–44]. It is not possible to measure the exact value of

changes in drug lifespan and drug development for treatment

of M. tuberculosis using our simplified model. However, our

model presumably again captures an important process that

emphasizes the significance of evolution management in

ensuring effective treatment [1,3,30,41–43,45].

In the case of malaria, drug resistance is perhaps the great-

est challenge to global control and elimination [3]. The process
we have identified by way of our simplified model suggests

that slowing drug-resistance evolution is advantageous to

ensuring the availability of effective antimalarials. Doing so

might involve using multiple first-line therapies to extend the

lifespan of each drug by slowing the spread of drug-resistant

infection, optimizing drug combinations (as well as drug

dose and duration) to weaken the selective advantage of

drug-resistant parasites, developing diagnostic technologies

to guide appropriate drug use, formulating guidelines and sur-

veillance programmes to use drugs prudently in prophylaxis

and treatment, and preventing transmission through effective

vector control [21,24,46,47]. Indeed, many initiatives of this

nature are currently under way, which may prove useful in

lengthening the lifespan of available therapies as well as new

antimalarials as they are developed.

Importantly, our analysis does not consider how investments

for enhancing drug development and slowing evolution can be

delivered to the system. Additive and multiplicative changes

were used to provide a fair comparison of the importance of

speeding up drug arrivals relative to slowing resistance evol-

ution when all else is equal. However, it might be less costly or

easier to change drug lifespan than to change drug development,

or vice versa, and this is an interesting area for future research

[4,17,18,24]. Drug development has associations with the private

sector, and so increasing the rate at which drugs are brought to

market involves incentivizing pharmaceutical companies. On

the other hand, much of the research on slowing resistance evol-

ution may depend on funding from public grant money that is

held at universities and other research institutions, and therefore

this work is subject to very different market forces. For these

reasons, it is not immediately clear howeasily drug development

can be changed relative to evolution management.

Even though we provide evidence that slowing resistance

evolution can be more beneficial to the effective management

of antimicrobial resistance than speeding up drug develop-

ment, we stress that this in no way negates the importance of

pharmaceutical innovation and drug development. Indeed, as

we mentioned in §1, the two approaches to resistance manage-

ment are not mutually exclusive. In many ways, slowing the

evolution of drug resistance is fundamentally linked to drug

development. For example, investment and advancement in

drug development might lead to smarter drugs with enhanced

efficacy and greater longevity. Thus, our intention is not to

suggest that there is necessarily an antagonism between the

two approaches. The results do demonstrate, however, that a

strong emphasis on evolution management might yield prom-

ising results for this pressing problem. A major challenge is

therefore to provide incentives for new drug development

and research of antimicrobial stewardship strategies for which

resistance evolves less quickly.
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1 – Data 
 
Data were collected from various sources to create a timeline of drug supply for 
antimalarials and antibiotics (Table S1). The data consist of the date of drug introduction, 
and the date of first recorded resistance. When there existed multiple estimates for the 
same drug from a single source, we report the earliest date that the drug was introduced 
and the earliest date that resistance was first observed (this occurred when there was 
region-specific data on drug introduction or resistance). While it is reported that 
resistance has developed to every antimalarial (with the possible exception of artemisinin 
therapies [3]), we excluded data on Lapdap, Amodiaquine, and Primaquine because the 
determination of drug resistance for these antimalarials was inconclusive (e.g., due to a 
lack of evidence or because of confounding factors in treatment failure such as cross 
resistance, side-effects, compliance and drug withdrawal [49-51]).  
 
We also used the available antimalarial data to give an example parameterization of the 
model. We stress, however, that this is intended merely as an illustrative case. All of the 
results reported in the main text are general, and independent of the disease in question as 
well as the specific parameter values used. We nevertheless chose to include an example 
parameterization based on data because it helps to clarify the relevance of the general 
results and to make them more concrete.  
 
Coming up with a suitable parameterization from the data is difficult because our 
simplified model lacks some of the features of the real data. Specifically, in the data 
many drugs have overlapping lifespans (elapsed time from date of drug introduction to 
date of observation of resistance). This is because more than one drug is used at a time 
during these periods. Our simple model assumes that one drug is used at a time (although 
Section 4 generalizes these results) and therefore we need to extract suitable estimates 
from the data under this assumption. For example, we cannot use the observed drug 
lifespans since the sum of individual drug lifespans would be greater than the observed 
time to failure, misrepresenting the current state of drug supply. As a result we employed 
two different approaches (see below) to estimate the time to evolve resistance from the 
data. The distribution of time to evolve resistance is almost identical under both 
approaches, and resembles an exponential distribution with rate parameterβ = 0.2 (see 
Figure S1). The distribution of time between drug arrivals also resembles an exponential 
distribution with rate parameter α = 0.12, supporting an assumption based on results from 
[31] (see Figure S1).   
 
Approach 1: Dividing overlapping periods by the number of drugs 
 
We can estimate the time to resistance of individual drugs by dividing overlapping 
periods by the number of drugs and summing the times that a particular drug was used. 
Section 4 describes how this approach can be used to generalize the one-drug-at-a-time 
model to a multiple drug scenario. In effect, this gives an estimate of the time to evolve 
resistance for each drug in the absence of any other drug.  
 



Approach 2: Time to evolve resistance from earliest drug arrival to first drug failure 
 
Alternatively, we can consider time to evolve resistance as the time from the earliest drug 
arrival to the time that resistance is first observed to any drug in an overlapping period. 
Using this approach, estimates of time to resistance are not necessarily for a specific 
drug, but instead reflect the time to resistance for a group of drugs (and the factors 
experienced by these drugs) that are in use during an overlapping period. 
 
Simulating the current and future state of antimalarial supply 
 
Antimalarial drug supply was simulated using the parameter estimates from the 
antimalarial data as described above. Figure S2 shows how periods of time to failure and 
drug availability observed from 1930-2012 in the antimalarial data agree with a 
characteristic simulation of the current state of drug supply. We can also envision what 
might happen to antimalarial supply in the future if we slowed resistance or enhanced 
drug development. In this case, we chose to compare an increase of 2 years in the mean 
time to evolve resistance with a decrease of 2 years in the mean time between drug 
arrivals. Figure S3 shows that increasing the mean time to evolve resistance results in 
significantly longer periods of time to failure, which also means that drugs will be 
available for a longer fraction of time over the next 200 years. 
 
Again we stress, however, that these simulation results are merely meant to be an 
illustrative example. The findings from the model are independent of the details of this 
simulation, and apply for any distribution of time to resistance, regardless of its shape or 
parameter values. The model also allows for the use of any (consistent) measure of 
resistance or drug failure since time to resistance is treated as a random process. In this 
example, the data report the first observation of resistance but we might wish to measure 
drug lifespan as the time until resistance is observed at some threshold frequency instead.  
 
 
2 – Analysis 
 
All models presented in the text are analogous to models from queueing theory. There are 
abundant results available for analyzing their behavior [52]. In what follows we make use 
of results found in [52].  
 
Exponentially Distributed Time to Evolve Resistance 
 
When the time to evolve resistance is exponentially distributed, the drug supply model is 
analogous to an M/M/1 queue [52]. Using 

€ 

fT (t) to denote the probability density of the 
time to failure, and 

€ 

˜ f T (z)  for its Laplace-Stieltjes transform (LST), standard results [52] 
demonstrate that 
 

€ 

˜ f T (z) =
α + β+ z − (α + β+ z)2 − 4βα

2α
 (Equation 1) 

 



where

€ 

E[D] =1/α  and 

€ 

E[L] =1/β  (Equation 1 is also derived below in the case of an 
arbitrary distribution for the time to evolve resistance).  
Inverting the transform gives the density [52] 
 

€ 

fT (t) =
β
α
e−(α+β )t I1(2 αβt)

t
 (Equation 2) 

 
where 

€ 

I1(x)  is a modified Bessel function of the first kind with order 1. Specifically, 

€ 

I1(x)  can be defined by the integral formula 
 

€ 

I1(x) =
1
π

ex cosθ cosθ
0

π

∫ dθ . (Equation 3) 

 
Drug availability, 

€ 

ρ , is the long run proportion of time an effective drug is available. In 
the context of queueing theory this is referred to as the “load” or “traffic intensity”. 
Standard results [52] show that  

 

€ 

ρ = E[L]/E[D]. (Equation 4) 
 
Equation 4 can be understood by recognizing that drug availability is the long-term time 
spent with at least one effective drug (which is, on average, E[T ] ) divided by the length 
of the cycle (which is, on average, E[T ]+E[D] ). In other words, the ratio 
 

€ 

E[T]
E[T]+ E[D]

.  

 
Using Equation 2 we can calculate 

€ 

E[T] = E[L]/(1− E[L]/E[D]) . Substituting this into 
the above ratio then gives Equation 4.

 
 
We can now determine the effect of each intervention on Equation 2 and Equation 4. The 
density (Equation 2) is a decreasing function of t and changes in 

€ 

E[D] =1/α  or 

€ 

E[L] =1/β  affect the density differently. For example,  
 

€ 

lim
t→ 0

fT (t) =
1

E[L]
, 

 
shows that increasing the expected time to evolve resistance (either additively or 
multiplicatively) decrease the probability density at t = 0  whereas decreasing the 
expected time between drug arrivals has no effect at this point. Consequently, given that 
the density function is continuous, interventions that target evolution will shift more 
probability density from near zero to larger values of T than will interventions that target 
drug development. 
 
For the drug availability, Equation 4, we consider additive and multiplicative changes in 
turn. An additive change of size x will either add x to the mean time to evolve resistance 



or subtract x from the mean time between drug arrivals. A multiplicative change of size 
y>1 will either multiply the mean time to evolve resistance by y or divide the mean time 
between drug arrivals by y.   
 
For additive changes of size x the inequality  
 

€ 

E[L]+ x
E[D]

>
E[L]

E[D] − x
 

 
holds for all x that satisfy the assumption that 

€ 

ρ  is less than 1. Alternatively, 
multiplicative changes result in equal benefits to drug availability as  
 

€ 

E[L] × y
E[D]

=
E[L]
E[D]/ y

. 

 
Therefore, when evolution of drug resistance is slowed, effective treatment will be 
available for a fraction of time greater than or equal to the effect from enhancing drug 
development. 
 
Arbitrary Distribution for the Time to Evolve Resistance 
 
When time to evolve resistance has an arbitrary distribution, the drug supply model is 
analogous to an M/G/1 queue [52]. We can derive an equation for the Laplace-Stieltjes 
transform (LST) of the time to failure distribution as follows. 
 
Any time to failure period begins with the arrival of a new drug into the portfolio. While 
this drug is in use, additional new drugs might be added to the portfolio. Suppose, for 
example, there are K additional drugs added during the time that the first drug is being 
used (K is a random variable). Each of these additional drugs will eventually be used, and 
each will, themselves, spawn a time to failure period that has the same distribution as that 
of the first drug. In this way we can write  
 
  

€ 

T = L +T1 ++TK  
 
where L is the time to evolve resistance for the first drug, and the Ti  are the time to 
failure periods for the additional K drugs that arrive before the first drug is abandoned. 
Using 

€ 

fL (t) and 

€ 

fT (t) to denote the probability densities for the time to evolve resistance 
and time to failure respectively, the LST of fT (t)  is 

€ 

˜ f T (z) = E[e−zT ]. Conditioning on the 
lifespan of the first drug we obtain 
 

€ 

˜ f T (z) = fL (t)E[e−zT | L = t]dt
0

∞

∫ , 
 
and further conditioning on the number of new drug arrivals, K, during this time gives 
 



  

€ 

˜ f T (z) = fL (t) E[e−z(L +T1 ++TK ) | L = t,K = k]P(K = k | L = t)
k =0

∞

∑( )dt
0

∞

∫

= fL (t)e−zt E[e−z(T1 ++Tk )]P(K = k | L = t)
k =0

∞

∑( )dt
0

∞

∫

= fL (t)e−zt E[e−z(T1 ++Tk )] (αt)k e−αt

k!k =0

∞

∑
' 

( 
) 

* 

+ 
, dt

0

∞

∫

 

 
where the final equality makes use of the fact that K is Poisson distributed. Now, using 
the fact that the Ti  are independent and identically distributed, we obtain 
 

€ 

˜ f T (z) = fL (t)e−zt E[e−zT ]k (αt)k e−αt

k!k =0

∞

∑
& 

' 
( 

) 

* 
+ dt

0

∞

∫

= fL (t)e−zt ˜ f T (z)k (αt)k e−αt

k!k =0

∞

∑
& 

' 
( 

) 

* 
+ dt

0

∞

∫ .
 

 

Finally, noting that 

€ 

zk (αt)
k e−αt

k!k=0

∞

∑ = e(z−1)αt , this last expression simplifies to 

 

€ 

˜ f T (z) = fL (t)e−zte
˜ f T (z )−1( )αtdt

0

∞

∫
= fL (t)e− z+α−α˜ f T (z)( )tdt

0

∞

∫
 

 
or 
 

€ 

˜ f T (z) = ˜ f L z +α −α˜ f T (z)( ) (Equation 5) 
 
Equation 5 is Takács functional equation relating the LST of the distribution of time to 
failure, T, to the LST of the distribution of time to evolve resistance, L.  
 
We can now calculate any moment of interest for the distribution of the time to failure, in 
terms of the moments of the distribution of time to evolve resistance. In particular, 

€ 

E[T] = − ˜ f T '(0), and therefore 
 

€ 

E[T] =
E[L]

1− E[L]/E[D]
. (Equation 6) 

 
Notice that this is identical to the expression for E[T] obtained in the case of 
exponentially distributed time to evolve resistance, and therefore Equation 4 for drug 
availability remains valid even when the time to evolve resistance has an arbitrary 
distribution. 
 



Incidentally, we can also derive Equation 1 from Equation 5 by using the fact that, when 
L is exponentially distributed with parameter 

€ 

β, the LST of L is fL (z) = β / (β + z) . 
Substituting this into Equation 5 gives 
 

€ 

˜ f T (z) =
β

β+ z +α −α˜ f T (z)
. 

 
Solving this quadratic equation for 

€ 

˜ f T (z) gives Equation 1. 
 
When the distribution of L is arbitrary, we can consider the effect that additive and 
multiplicative changes have on any moment of the time to failure distribution. For the 
purposes of this analysis, we have chosen to focus on the first moment, the expected time 
to failure, E[T] (Equation 6). The expected time to failure can be broken up into two 
parts: the average number of drugs used before failure, 

€ 

E[N] = 1− E[L]/E[D]( )−1and the 
average lifespan of each drug, E[L], such that 

€ 

E[T] = E[N] × E[L]. The likelihood that 
another drug arrives before failure will increase as a result of slowing the time to evolve 
resistance or decreasing the time between drug arrivals. An additive change of size x 
increases the average number of drugs used before failure and, in particular, the 
inequality 
 

€ 

1− E[L]+ x
E[D]

# 

$ 
% 

& 

' 
( 
−1

> 1− E[L]
E[D] − x

# 

$ 
% 

& 

' 
( 
−1

  

 
holds for all x that satisfy the assumption that 

€ 

ρ  is less than 1. Alternatively, there is an 
equivalent increase in the average number of drugs used before failure when evolution is 
slowed and drug development is enhanced multiplicatively since 
 

€ 

1− E[L] × y
E[D]

$ 

% 
& 

' 

( 
) 
−1

= 1− E[L]
E[D]/ y

$ 

% 
& 

' 

( 
) 

−1

. 

 
This shows that increasing the mean time to evolve resistance will result in at least as 
many drugs used before failure as decreasing the mean time between drug arrivals. In 
addition, since increasing the mean time to evolve resistance also increases average drug 
lifespan, the total effect on average time to failure is that much greater when resistance is 
slowed than when drug development is enhanced. 
 
Second Moment of Time to Failure 
 
Our analysis in the main text has focused on the expected value of time to failure E[T] as 
a measure of system performance. Higher moments may be used to investigate additional 
properties of the distribution of time to failure. For instance, studying the second moment 
of time to failure is useful in describing the variability in the length of periods for which 
treatment is available.  
 



Using Takács functional equation (Equation 5) and E[T 2 ]= fT ''(0)  gives 
 

€ 

˜ f T ' '(0) = ˜ f L ' '(0)(1−α˜ f T '(0))2 −α˜ f L '(0) ˜ f T ' '(0) . 
 
Solving this equation for fT ''(0)  and noting that σ X

2 = E[X 2 ]−E[X]2 we obtain 
 

σ T
2 =

σ L
2 +E[L]2ρ
(1− ρ)3

. 

 
We have shown elsewhere that the increase in

€ 

ρ  is equivalent for multiplicative changes 
in E[D] and E[L] and greater for additive changes in E[L]. Therefore, when all else is 
equal, there is a greater increase in the variance of T when E[L] is increased compared to 
when E[D] is decreased. Thus, slowing evolution of resistance increases both the 
expected time to failure as well as its variability compared to enhancing drug 
development. 
 
 
3 – Numerical Simulations  
 
Gamma Distributed Drug Inter-arrival Time and Drug Lifespan 
 
We consider a scenario when time between drug arrivals and time to evolve resistance are 
not exponentially distributed. We used a gamma distributed drug inter-arrival time, D, 
and gamma distributed drug lifespan, L. The gamma distribution is parameterized by a 
shape parameter, k, and a rate parameter, which we denote by α  and 

€ 

β for the drug inter-
arrival time and drug lifespan respectively. The expected time between drug arrivals is 
therefore E[D]= kα . Similarly, the expected time to evolve resistance is E[L]= kβ . We 
numerically calculated time to failure and drug availability for an additive change and a 
multiplicative change that increased E[L] or that decreased E[D], and compared the 
results to baseline conditions. 
 
Numerical results show the effect on average time to failure and drug availability as a 
result of these two manipulations (Table S2). In both cases, average time to failure 
increases; however, we observe a greater increase when E[L] is extended than when E[D] 
is decreased. For an additive change, there was also a greater increase in drug availability 
when E[L] increased than when E[D] decreased, while for a multiplicative change, drug 
availability was increased by the same amount, which agrees with the analytical results 
(Table S2). 
 
Variable Rate of Drug Arrival 
 
We will also consider a variable rate of drug arrival so that drugs arrive at a normal rate, 
α , when there are lots of drugs in the drug portfolio and a fast rate, θ , when there are 2 
or fewer effective drugs available at the time of the last drug arrival. The normal rate of 
drug arrival was varied to determine the effect of speeding up drug development. As 



before, these results were compared against the effect of slowing evolution of resistance. 
In these simulations, the proportion of time that drugs arrived at their respective rates was 
also considered. 
 
The available empirical evidence suggests that annual drug production of ‘new molecular 
entities’ has been constant for over 55 years, remaining unchanged in spite of increased 
investment [31]. Even so, by including a fast rate, the time between drug arrivals is not 
necessarily longer than the time it takes resistance to evolve, relaxing the E[D]>E[L] 
assumption of the previous model.  
 
Numerical results show that slowing the evolution of resistance benefits average time to 
failure and drug availability more than speeding up the normal rate of drug arrival (Table 
S3).  Slowing evolution of drug resistance also decreased the proportion of time that 
drugs arrived according to a fast rate (Table S3). This suggests that drug arrivals were 
occurring close to a maximum rate, so that any further increase in the normal rate of drug 
arrival has less of an effect on system performance. In contrast, when evolution was 
slowed, a normal rate of drug arrival was used for a greater proportion of time implying 
that the average rate of drug arrival slowed down when E[L] increased. 
 
 
4 – Generalizing to Multiple Drugs 
  
Thus far, we have presented a model of drug supply that assumes one drug or drug 
therapy is used at a time. While this assumption is supported by current treatment 
guidelines and practice for malaria (wherein a single first line therapy is recommended 
for treatment and replaced when resistance emerges [21,25]) in general, it is likely that 
more than one drug will be used to treat a disease when available. Note, by this we mean 
that individuals are still given a single drug, but different individuals might be given 
different drugs simultaneously. 
 
To begin it is helpful to first consider how simultaneous drug use affects the total time 
required to evolve drug resistance for a set of drugs, relative to that required if the drugs 
in this set were used one at a time (i.e., sequentially). There are three possibilities: (i) 
conservation of evolution, (ii) compression of evolution, and (iii) expansion of evolution. 
These are defined as follows.  
 
Suppose there are n drugs currently available. We say that there is conservation of 
evolution if the total time it takes for resistance to evolve to all n drugs when used 
simultaneously is the same as the time required for resistance to evolve to all n drugs 
when used sequentially. Alternatively, we say that there is compression of evolution if the 
time taken under simultaneous drug use is shorter, and expansion of evolution if it is 
longer. We will show that this provides a heuristic framework with which to examine 
multiple drug use. 
 
It can be shown, using results from work-conserving queueing theory [53], that a model 
with simultaneous drug use is formally equivalent to a one-drug-at-a-time model when 



there is conservation of evolution. We propose a mechanistic basis by which this occurs. 
Suppose that the rate of evolution for individual drugs depends on the number of drugs in 
use, n, such that the rate of evolution for each drug is slowed by a factor 1/n relative to 
the rate of resistance evolution if it were the only drug in use. Then it can be shown that 
the distribution of time to failure is unchanged from a one drug at a time model, as this is 
analogous to a work-conserving queue [53]. In a similar way, we can account for drugs 
used at different frequencies by assuming that the rate of evolution of resistance to each is 
slowed by a factor equal to its frequency of use.  
 
These ideas reveal that, under certain conditions (namely, conservation of evolution) the 
results of the simple model of the text are identical to those for a model that allows 
simultaneous multiple drug use. Therefore, increasing the mean time to evolve resistance 
is more effective than decreasing the mean time between drug arrivals in an evolution-
conserving scenario of multiple drug use. This also provides a natural point of departure 
for exploring cases in which evolution is not conservative.  
  
When multiple drug use results in compression of evolution, this means that there are 
interactions among drugs that result in a reduction of the time required to evolve 
resistance. This effect might arise from cross-resistance, wherein the mechanism of 
resistance to one drug also confers resistance to another drug, effectively reducing its 
lifespan. This means that it is more important to slow resistance than to enhance drug 
development, as simply using more drugs will reduce the lifespan of each drug.  
 
Alternatively, when multiple drug use results in the expansion of evolution, this means 
that there are interactions among drugs that bring about an increase in the time required 
for resistance evolution. At the population level, drug mixing has been suggested as a 
way of spatially varying the drug environment so that it is more difficult for microbes to 
evolve resistance to any one drug [54].  



5 – Supplementary Tables 
 
Table S1. Data for antimalarials and antibiotics. The values indicate the time of drug 
introduction and first observation of drug resistance. The reference for each drug is 
provided; all data is from published sources. 

Drug Drug Type Introduced Resistance Source 
Chloroquine Antimalarial 1933.5 1957 (a) 
Sulfadoxine-pyrimethamine Antimalarial 1940 1953 (a) 
Proguanil Antimalarial 1948 1949 (b) 
Pyrimethamine Antimalarial 1951.5 1952.5 (c) 
Mefloquine Antimalarial 1977 1982 (d) 
Halofantrine Antimalarial 1988 1992 (b) 
Atovaquone Antimalarial 1996 1996 (d) 
Atovaquone-proguanil Antimalarial 1996.5 2001.5 (c) 
Artemisinin Antimalarial 2000 2009 (a) 
Sulfonamides Antibiotic 1930 1940.5 (e) 
Penicillin Antibiotic 1943 1946 (f) 
Streptomycin Antibiotic 1943 1959 (f) 
Chloramphenicol Antibiotic 1947 1959 (f) 
Tetracycline Antibiotic 1948 1953 (f) 
Erythromycin Antibiotic 1953 1968 (g) 
Methicillin Antibiotic 1960 1961 (f) 
Cephalosporins Antibiotic 1960.5 1969.5 (e) 
Ampicillin Antibiotic 1961 1973 (f) 
Gentamicin Antibiotic 1967 1970 (h) 
Vancomycin Antibiotic 1972 1988 (g) 
Oxyimino-beta-lactams Antibiotic 1981 1983 (h) 
Ceftazidime Antibiotic 1985 1987 (g) 
Imipenem Antibiotic 1985 1998 (g) 
Levofloxacin Antibiotic 1996 1996 (g) 
Linezolid Antibiotic 1999.5 2003.5 (e) 
Daptomycin Antibiotic 2003.5 2005 (e) 
Ceftaroline Antibiotic 2010 2011 (g) 

(a) Shetty, P. 2012 Malaria – the numbers game. Nature 484, S14–S15. 
(b) Thayer, A. M. 2005 Fighting malaria. Chemical and Engineering News 83, 69–82. 
(c) Hyde, J.E. 2005 Drug-resistant malaria. Trends Parasit. 21, 494–498. 
(d) Wongsrichanalai, C., Pickard, A. L., Wernsdorfer, W. H. & Meshnick, S. R. 2002 

Epidemiology of drug-resistant malaria. Lancet Infect. Dis. 2, 209–218. 
(e) Clatworthy, A. E., Pierson, E. & Hung, D. T. 2007 Targeting virulence: a new 

paradigm for antimicrobial therapy. Nat. Chem. Biol. 3, 541–548. 
(f) Palumbi, S. R. 2001 Humans as the world’s greatest evolutionary force. Science 293, 

1786–1790. 
(g) CDC 2013 Antibiotic resistant threats in the United States, 2013. Georgia: U.S. 

Department of Health and Human Services Centers for Disease Control and 
Prevention. 

(h) Jacoby, G. A. 2009 History of drug-resistant microbes. In Antimicrobial drug 
resistance (ed. D. L. Mayers), pp. 3–7. New York: Humana Press.  

 



Table S2. Results from replicate simulations (n = 100) with gamma distributed drug 
inter-arrival time and drug lifespan over a time interval of 20000 years. Performance 
measures are given as averages over all replicates. Baseline conditions are given as k = 2, 
α = 1

5 , β = 1
2 . An additive change affects the mean time to evolve resistance or mean 

time between drug arrivals by 2 years, while a multiplicative change doubles the mean 
time to resistance or halves the mean time between drug arrivals. 

 
Baseline 

conditions 
Additive 
change 

Multiplicative 
change 

(Mean time between drug arrivals, 
Mean time to evolve resistance) 10, 4 10, 6 8, 4 10, 8 5, 4 
Average drug availability 
 0.40 0.60 0.50 0.80 0.80 
Average time to failure (years) 
 5.35 11.40 6.30 28.88 14.58 
Average down time (years) 
 8.05 7.57 6.24 7.28 3.64 

 



Table S3. Results from replicate simulations (n = 100) with a variable rate of drug 
arrivals over a time interval of 20000 years. Performance measures are given as averages 
over all replicates. The mean time between drug arrivals was 3 years (θ = 1

3 ) when there 
were 2 or fewer drugs in the portfolio at the time of the last drug arrival. Baseline 
conditions are given as α = 1

10 , β = 1
4 . An additive change increases the mean time to 

evolve resistance by 2 years or decreases the mean time between drug arrivals under a 
normal rate by 2 years, while a multiplicative change doubles the mean time to resistance 
or halves the mean time between drug arrivals under a normal rate.  

 
Baseline 

conditions 
Additive 
change 

Multiplicative 
change 

(Mean time between drug arrivals, 
Mean time to evolve resistance) 10, 4 10, 6 8, 4 10, 8 5, 4 
Average drug availability 
 0.69 0.84 0.75 0.93 0.90 
Average time to failure (years) 
 12.96 33.69 14.97 100.09 31.64 
Average down time (years) 
 5.77 6.66 5.94 7.35 3.71 
Average proportion of time fast 
rate used 0.31 0.17 0.30 0.07 0.18 



6 – Supplementary Figures 
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Figure S1. Histograms of drug supply parameters from antimalarial data. (a) The 
distribution of time between drug arrivals (α  = 0.12, D = 8.3 years, σD = 7.7 years). The 
distribution of time to evolve resistance was estimated via two approaches: (b) by 
dividing overlapping regions by the number of drugs (β  = 0.2, L = 5 years, σ L = 5.2 
years) or (c) using the time from earliest drug arrival to first drug failure (β  = 0.2, L  = 5 
years, σ L = 4.6 years). Using the estimate of the rate parameter in each panel, the solid 
line is the exponential density plot and the open circles give the probability (%) within 
the interval defined by the width of each bar. The dashed line is the average value of the 
variable of interest. 
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Figure S2. The current state of antimalarial supply. This shows the time to failure (T; green bars) and drug availability (ρ)  
observed from data and from simulation using parameter estimates (E[L] = 5, E[D] = 8.3).  
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Figure S3. Characteristic realizations of future antimalarial supply. A simulation over the next 200 years when the mean time 
between drug arrivals is reduced by 2 years or the mean time to evolve resistance is increased by 2 years (compared to initial 
conditions: E[L] = 5, E[D] = 8.3).
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