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2E-mail: david.mcleod@env.ethz.ch

3Department of Mathematics and Statistics, Department of Biology Queen’s University, Kingston, Ontario, Canada

Received July 10, 2018

Accepted February 6, 2019

Sterility virulence, or the reduction in host fecundity due to infection, occurs in many host–pathogen systems. Notably, sterility

virulence is more common for sexually transmitted infections (STIs) than for directly transmitted pathogens, while other forms of

virulence tend to be limited in STIs. This has led to the suggestion that sterility virulence may have an adaptive explanation. By

focusing upon finite population models, we show that the observed patterns of sterility virulence can be explained by consideration

of the epidemiological differences between STIs and directly transmitted pathogens. In particular, when pathogen transmission is

predominantly density invariant (as for STIs), and mortality is density dependent, sterility virulence can be favored by demographic

stochasticity, whereas if pathogen transmission is predominantly density dependent, as is common for most directly transmitted

pathogens, sterility virulence is disfavored. We show these conclusions can hold even if there is a weak selective advantage

to sterilizing.
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Sterility virulence, defined to be any reduction in host fecundity

due to pathogen infection (including complete sterility), occurs in

many host–pathogen systems (Lockhart et al. 1996; Apari et al.

2014; Abbate et al. 2015) but is more commonly associated with

sexually transmitted infections (STIs; Lockhart et al. 1996). Inter-

estingly, sterilizing STIs tend to cause limited virulence other than

sterility (Lockhart et al. 1996; Antonovics et al. 2011), whereas

sterilizing non-STIs tend to be associated with high overall levels

of virulence (Apari et al. 2014). In combination, this evidence has

led to the suggestion that sterility virulence may be a “targeted”

pathogen strategy with an adaptive explanation (Apari et al. 2014),

rather than simply a physiological by-product of STIs being local-

ized to the reproductive organs (Antonovics et al. 2011). In par-

ticular, it has been hypothesized that by causing host reproductive

failure, sterility virulence may promote host sexual activity and

thus increase STI transmission (Apari et al. 2014). However, this

explanation requires individuals to have both the ability to detect

reproductive failure (e.g., a species with long-term pair bonds)

and the capacity to act upon this information (e.g., divorce and

find new mate), and so the hypothesis is primarily targeted to-

ward humans (Apari et al. 2014). Yet as Apari et al. (2014) noted,

sterilizing STIs are neither restricted to humans nor species with

long-term pair bonds (Smith and Dobson 1992; Lockhart et al.

1996; Knell and Webberley 2004), limiting the generality of this

explanation. For example, the two-spot ladybird and koala are

both highly promiscuous with no long-term pair bonds, yet expe-

rience high rates of infection by sterilizing STIs (Weigler et al.

1988; Hurst et al. 1995).

One key difference between STIs and other directly trans-

mitted pathogens is the epidemiology of transmission. For

pathogens transmitted by direct (nonsexual) contact, transmis-

sion is generally density dependent as contacts between indi-

viduals tend to increase with density (Anderson and May 1979;

Begon et al. 2002; McCallum et al. 2017). For STIs, however,

transmission tends to be mainly frequency dependent as sex

acts and reproduction are largely determined by mating sys-

tem, and only weakly depend upon population density in the

absence of Allee effects (May and Anderson 1987; Anderson
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and May 1991; Lockhart et al. 1996; Lloyd-Smith et al. 2004;

Antonovics et al. 2011). Although the form of transmission has

clear epidemiological consequences (Getz and Pickering 1983;

de Castro and Bolker 2005), in deterministic models with large

(ideally infinite) population sizes, if sterility virulence causes

any increase in transmissibility, sterilizing pathogens are fa-

vored, irrespective of the form of transmission (Jaenike 1996;

O’Keefe and Antonovics 2002; O’Keefe 2005). Indeed, evolu-

tionary theory on sterility virulence has focused almost exclu-

sively upon such models (Jaenike 1996; O’Keefe and Antonovics

2002; Best et al. 2010; Ashby and Boots 2015; Lion and

Gandon 2015; McLeod and Day 2015), ignoring the evolution-

ary consequences of epidemiology in finite populations. Instead

these previous studies have focused upon how spatial structure

(O’Keefe and Antonovics 2002; Lion and Gandon 2015) or host

coevolution (Best et al. 2010; Ashby and Boots 2015; McLeod

and Day 2015) can limit the evolution of sterility virulence, with-

out considering why sterility virulence is more common for STIs

than directly transmitted pathogens.

Here, we consider how the interaction between epidemi-

ology and demographic stochasticity can explain the observed

patterns of sterility virulence in finite populations. Our analy-

sis shows that when transmission is mainly density invariant and

infected individuals experience some density-dependent mortal-

ity, pathogen strains causing some degree of sterility tend to be

favored. If instead transmission is mainly density dependent or

infected individuals do not experience density-dependent mor-

tality, then pathogen strains causing no sterility virulence are

favored. Hence, the interaction between epidemiology and de-

mographic stochasticity can help explain why sterility virulence

is more commonly associated with STIs than directly transmitted

pathogens. To explore the robustness of our results to the inclusion

of the possibility of other selective effects of sterility virulence,

we also consider the possibility of a (weak) selective advantage

to sterility virulence (i.e., transmissibility increases with steril-

ity virulence). When this occurs, both demographic stochasticity

and selection favor sterility virulence in STIs. However, for di-

rectly transmitted pathogens sterility virulence is disfavored by

demographic stochasticity but favored by selection. We provide

the conditions under which demographic stochasticity neverthe-

less overcomes selection to disfavor sterility virulence in directly

transmitted pathogens. Taken as a whole, our results provide a

novel explanation for why sterility virulence is more commonly

seen in STIs, and why directly transmitted pathogens should not

cause sterility, even when favored to by selection.

Model
Consider a susceptible-infected host population with horizontal

transmission, no multiple infection, and no recovery. Let the den-

sity of susceptible hosts and hosts infected with strain i = 1, 2 at

time t be x(t) and yi (t), respectively, and take x = (x, y1, y2). Sus-

ceptible and infected hosts die at a per capita rate of d(x) and μ(x),

respectively, and mortality is a nondecreasing function of popu-

lation density (∂d/∂xi ≥ 0, ∂μ/∂xi ≥ 0). Susceptible hosts are

born at rate b(x), which may be regulated by density-dependent

processes (e.g., logistic growth), while the fecundity of a host

infected with strain i is reduced by a factor of 1 − δi due to steril-

ity virulence: if δi = 1, sterility virulence is maximal and strain

i fully sterilizes the host, whereas if δi = 0, strain i causes no

sterility virulence. Thus, if strain i is present in the population,

∂b/∂δi < 0. The per capita transmission rate of strain i is βi (x) and

due to pathogen mutation (and strain replacement at the within-

host level), strain i infected hosts transition to strain j infected

hosts at a per capita rate ν; as this is assumed to be rare, ν � 1.

For brevity, we will refer to ν as mutation rate. We will assume

strain 1 causes less host sterility than strain 2, δ1 < δ2, but may

have reduced transmissibility, β1(x) = β(x)(1 − ε), β2(x) = β(x),

and that selection on sterility virulence through transmission is

weak, 0 ≤ ε � 1. Note that the assumption of weak selection

places no restrictions upon the between-strain difference in steril-

ity virulence, so in the most extreme case, it is possible one strain

fully sterilizes while the other causes no sterility virulence, that

is, δ1 = 0, δ2 = 1.

Under these assumptions, the population dynamics can be

described using the following system of stochastic differential

equations (SDEs):

dx = [b(x) − d(x)x − β1(x)y1 − β2(x)y2]dt + �−1/2 Mx ,

dy1 = [(β1(x) − μ(x))y1 + ν(y2 − y1)]dt + �−1/2 My1 , (1)

dy2 = [(β2(x) − μ(x))y2 + ν(y1 − y2)]dt + �−1/2 My2 ,

where � is habitat size, and so controls the likelihood of

interactions between hosts, regardless of infection status, while

Mx and Myi are unbiased stochastic noise terms. Critically, these

noise terms arise naturally from the individual birth, death, and

transmission events from the full stochastic process underlying

the approximation given by (1), and so are dependent upon

the population demographics in a well-defined fashion (see

Supporting Information 1 for the full derivation). As habitat

size becomes large (� → ∞), we will be left with a system

of ordinary differential equations (ODEs). In the absence of

mutations (ν = 0), the ODE system predicts the strain with higher

transmissibility (strain 2) will fix in the population, irrespective of

the form of the transmission function, β(x), or the between-strain

difference in sterility virulence. This can be seen by considering

the conditions under which strain i can invade a monomorphic

strain j population at equilibrium: from (1), strain i will have a
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Figure 1. Illustration of the fast- and slow-timescales associated with system (1). Subplots (A) and (B) show sample trajectories of the

deterministic dynamics (smooth curves) and stochastic dynamics (rough curves) of the full stochastic process approximated by (1); time

has been rescaled so that both the fast- and slow-timescales are visible. Initially, the expected change in (1) is the dominant force and so

there is a close match between the deterministic and stochastic dynamics (fast-timescale). However, once the system has moved into the

vicinity of the slow manifold, demographic stochasticity comes into play and the stochastic trajectories diverge from the deterministic

trajectories. Subplots (G) and (H) show these dynamics in (x, y1, y2)-space, while subplots (C–F) show the view from the (y1, y2)-plane.

In subplots (C–H), the red curve is the slow manifold, the black curves are deterministic trajectories, and the rough curves are stochastic

trajectories. Subplots (A), (C), (D), and (G) assume there is no selection, while subplots (B), (E), (F), and (G) assume weak selection

favoring strain 2 (ε = 0.005). For these examples, β1(x) = 8x(1 − ε), β2(x) = 8x, b(x) = 5(x + y1 + 0.25y2), d(x) = 0.25 + 0.5(x + y1 + y2),

and μ(x) = 0.25 + d(x), with � = 103 and no mutation (ν = 0).

positive per capita growth when rare if βi (x) > μ(x). Since at the

monomorphic strain j equilibrium we have β j (x) = μ(x), at equi-

librium the condition βi (x) > μ(x) becomes βi (x) > β j (x), and

so whichever strain has the higher transmissibility is favored. If

instead the two strains have the same transmissibility, but different

sterility virulence, then in the ODE model with no mutation

dy1/dt

dy2/dt
= (β(x) − μ(x))y1

(β(x) − μ(x))y2
= y1

y2
, (2)

and so it follows that y1 = C0 y2, that is, the density of

strain 1 is a linear function of the density of strain 2, with the

slope determined by the initial state of the population at t = 0,

that is, C0 = y1(0)/y2(0). It follows that the fraction of infected

hosts that are infected by strain 1 will remain constant over time

and is set by the initial state of the population at t = 0, that

is, y1(t)
y1(t)+y2(t) = y1(0)

y1(0)+y2(0) , and so the between-strain difference in

sterility virulence is selectively neutral with respect to the deter-

ministic evolutionary dynamics.

Because system (1) is a set of coupled SDEs, as currently

written, it does not provide much insight into the evolutionary

process. Therefore, we wish to reduce it to a more tractable form.

To do so, we observe that since selection is weak and mutations are

rare, system (1) admits what is commonly referred to as a “slow

manifold” (Berglund and Gentz 2006; Parsons and Rogers 2017),

which in this case is a curve in (x, y1, y2)-space satisfying β(x) =
μ(x). The reason that this curve is referred to as a slow manifold

is that in the vicinity of this curve, the per capita growth rate of

the different pathogen strains is very small (since mutations are

rare and selection is weak), and so changes in the composition of

the pathogen population occur slowly. As a result, system (1) has

a fast timescale and a slow timescale (Fig. 1). The fast timescale

corresponds to demographic processes (e.g., transmission, birth,

and death events) driven mainly by the terms in (1) multiplied
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by dt ; the effect of these processes is to push the system into

the vicinity of the slow manifold. In this fast timescale regime,

stochasticity has a weak effect, and the dynamics of (1) are very

similar to the dynamics of the set of ordinary differential equations

(obtained in the limit of � → ∞; see Fig. 1). Once in the vicinity

of the slow manifold, however, the system slowly moves along

the slow manifold as the composition of the pathogen population

changes due to mutation, selection, and stochasticity (this is the

slow timescale; see Fig. 1).

As our interest is the evolution of the pathogen, we are pri-

marily interested in the dynamics on the slow timescale, and so we

wish to transform system (1) to a simpler form in which the fast

timescale dynamics are eliminated. Let p ≡ y1/(y1 + y2) be the

proportion of infected hosts that are infected with strain 1. Then

using methods outlined in recent work (Constable et al. 2016;

Parsons and Rogers 2017), which built off of standard techniques

(Katzenberg 1991; Berglund and Gentz 2006), the slow timescale

dynamics of p are governed by the stochastic differential equation

(SDE)

dp = (ν(1 − 2p) − εβ(xp)p(1 − p))︸ ︷︷ ︸
a(p)

dt

+
( p(1 − p)

�
R(xp)︸ ︷︷ ︸

σ2(p)

)1/2
dWt , (3)

where dWt is a Gaussian random variable with mean zero

and variance dt (see Supporting Information 2 for details). In

(3), xp = [x p, pI(p), (1 − p)I(p)] is the vector of population

densities evaluated on the slow timescale, so x p and I(p) are the

density of susceptible hosts and total density of infected hosts,

respectively, on the slow timescale for a given p, and

R(xp) = β(xp) + μ(xp)

I(p)
. (4)

Associated with (3) is a diffusion process with infinitesi-

mal mean a(p) and infinitesimal variance σ2(p) (Ewens 2004;

Gardiner 2009; Etheridge 2012). In this context, a(p) represents

directional biases favoring a particular strain (through either mu-

tation or selection), whereas σ2(p) represents nondirectional (or

unbiased) evolutionary noise due to demographic stochasticity.

As we will see, when selection is sufficiently weak, demo-

graphic stochasticity plays a key role in the evolutionary pro-

cess, even in large populations. This may seem surprising: typi-

cally, demographic stochasticity is viewed as a small effect unless

population size is also very small (Lande et al. 2003). In our

model, this is true when we are dealing with processes operat-

ing on the fast timescale of (1): in that case, the dynamics are

largely driven by the expected change (the terms multiplied by

dt) since the stochastic noise terms are scaled by �−1/2 (which

is small for large population sizes). However, when the system

is in the vicinity of the slow manifold, the expected change in

population density becomes smaller and smaller (since on the

slow manifold β(x) = μ(x)), whereas this is not true for the

stochasticity. Thus, if selection is weak and mutations are rare,

on the slow timescale the effects of selection and mutation are of

comparable magnitude to the effect of demographic stochastic-

ity, and so demographic stochasticity can play a significant role

(Fig. 1)

Results
We wish to use (3) to understand how selection, stochasticity, and

epidemiology interact to shape the evolution of sterility virulence.

To do so, we adopt the approach we used elsewhere (McLeod

and Day 2019), and ask what is the likelihood of observing the

stochastic process in a particular state? If we are more likely to

observe the process in a state in which strain i is most frequent,

then we will say strain i is favored. In what follows, we provide

a brief summary of our analysis, with an emphasis on providing

intuition for our results; the full analysis can be found in the Sup-

porting Information 3. Our first objective will be to understand

the evolution of sterility virulence when there is no link between

sterility virulence and transmission (i.e., ε = 0), to see how epi-

demiology alone can impact which strain is favored. We will then

briefly consider the possibility of a link between transmission and

sterility virulence to understand how robust our predictions are in

the presence of selection.

When there is no link between transmission and sterility

virulence (ε = 0), then there are only two factors in (3): (i) un-

biased mutations, pushing the population toward p = 1/2, and

(ii) the role played by the infinitesimal variance, σ2(p), which

need not be symmetric and instead will vary in magnitude depen-

dent upon the pathogen population composition. But when the

infinitesimal variance is large (resp. small), evolutionary noise

will be large (resp. small), causing the system to exhibit more

variation. As a consequence, the stochastic process will spend

less time in states with large evolutionary noise (large σ2(p)) and

so will be less likely to be observed in these states. Hence, in

the absence of selection, the pathogen strain minimizing σ2(p) is

stochastically favored (Supporting Information 3). Since the fac-

tor p(1 − p)/� in σ2(p) is symmetric in p, the strain minimizing

σ2(p) will be the strain that minimizes R(xp) (see also Supporting

Information 3).

The biological importance of R(xp) can be easily understood.

The numerator of R(xp), β(xp) + μ(xp), represents the variance in

per capita pathogen growth rate at selective neutrality. As the vari-

ance in per capita growth increases, pathogen population turnover

also increases, causing the population composition to change more
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rapidly. Counteracting this force is the effect of total pathogen

population density, I(p) (the denominator of R(xp)): the larger

the pathogen population (as measured by I(p)), the more robust

the population is to demographic fluctuations since the net change

in population composition due to a strain i infected host being re-

placed by a strain j infected host will be smaller. These two effects

can be understood by analogy to a random walk where the walker’s

position is p: if we increase the variance in per capita growth rate,

we decrease time between steps taken by the walker, whereas if

we decrease population size, we increase the size of each step. A

walker taking larger, more frequent steps will exit a region more

rapidly, despite having no directional bias in its movement, and so

will be less likely to be observed in such a region. Thus, the ratio of

the variance in per capita growth rate to total population size can

be roughly thought of as a measure for how rapidly the stochastic

process moves on the evolutionary timescale. The strain whose

sterility virulence “slows” this process the most will be favored.

This is because if the stochastic process gets “bogged down” for

a particular strain composition and so population composition

changes slowly, then we will be more likely to observe this strain

composition in the evolving population at any given point in time.

With this in mind, we now consider how epidemiology alters the

level of sterility virulence that minimizes R(xp).

ROLE OF EPIDEMIOLOGY

We are interested in how epidemiology affects the level of sterility

virulence minimizing R(xp). To determine this, assume the two

pathogen strains are selectively neutral (ε = 0) and are nearly

identical in sterility virulence, δ1 = δ and δ2 = δ + �δ with

�δ ≈ 0. Then, to determine which strain minimizes R(xp), a

first-order Taylor expansion of R(xp) in �δ reveals that it is suffi-

cient to consider the sign of dR/dδ, evaluated when δ1 = δ2 = δ.

In particular, if dR/dδ > 0, pathogen strains causing less host

sterility will be favored, whereas if dR/dδ < 0, pathogen strains

causing greater host sterility will be favored. Thus, we wish to

determine the sign of dR/dδ. For this analysis, since neither I(p)

nor x p will depend upon the composition of the pathogen popu-

lation, p, to distinguish this case from the more general case, we

let I(p) = Ī and x p = x̄ .

To determine the sign of dR/dδ, we will focus upon the

transmission function β(x) = Bx/(x + y + c), where y = ∑
i yi

and B and c are constants. The motivation for choosing this trans-

mission function is that by varying the parameters B and c, we

can investigate everything from exclusively frequency-dependent

transmission (c = 0) to exclusively density-dependent transmis-

sion (c → ∞). Note that when we take the limit as c → ∞, we

assume that B increases in proportion to c so that the ratio B/c

is a nonzero, finite constant. Using this transmission function, by

implicit differentiation (see Supporting Information 4), we can

compute

dR

dδ
∝

[
− x + y

x + y + c
x
∂μ

∂x

+ y + c

x + y + c

(
μ(x, y) − x

∂μ

∂x
− y

∂μ

∂y

)]
−x=x̄ y=Ī

, (5)

where proportionality is up to a positive factor. From equa-

tion (5), we see that there are two primary factors determining

whether sterility virulence is stochastically favored or disfavored:

(i) the influence of density-dependent mortality (controlled by

the derivatives ∂μ

∂x , ∂μ

∂y ), and (ii) the degree to which transmis-

sion is either frequency or density dependent (controlled by c).

Clearly, if mortality is unaffected by population density (i.e.,

∂μ/∂x = ∂μ/∂y = 0), then dR/dδ > 0 and so sterility viru-

lence is never stochastically favored. However, as the strength

of density-dependent mortality increases, so too do the potential

benefits of sterility virulence. If mortality is positively density

dependent (i.e., ∂μ/∂x > 0, ∂μ/∂y > 0), then as transmission

becomes increasingly frequency dependent (c → 0), the likeli-

hood that dR/dδ < 0 increases. This can be shown by computing

the derivative of (5) with respect to c (while holding all else

constant): doing so, we see that if μ(x, y) + ∂μ

∂x y >
∂μ

∂y y, then

(5) is a monotonically increasing function of c. The condition

μ(x, y) + ∂μ

∂x y >
∂μ

∂y y will hold for most, if not all, biologically

plausible mortality functions; for example, susceptible hosts be-

ing equal or superior competitors to infected hosts is sufficient

(e.g., μ(x) = a0 + a1x + a2(y1 + y2) with a1 ≥ a2).

To understand these results, observe that to minimize R(xp),

the pathogen strain needs to reduce its variance in per capita

growth (the numerator of R(xp)), while simultaneously increas-

ing its equilibrium density (the denominator of R(xp)). It can be

shown that the variance in per capita growth is a non-increasing

function of sterility virulence (Supporting Information 4). The in-

tuitive reason for this is that increasing sterility virulence reduces

the density of susceptibles, lowering the rate at which transmis-

sion and death events occur, thereby decreasing the variance in

per capita growth of the pathogen. Because increasing sterility

virulence reduces the variance in per capita growth (decreasing

the numerator of R(xp)) and so favoring sterility virulence, the

necessary (but not sufficient) condition for sterility to be stochas-

tically disfavored is that an increase in sterility virulence must also

decrease pathogen density (decrease the denominator of R(xp)).

As sterility virulence only indirectly affects pathogen density

through its negative effect on susceptible density, pathogen

density is reduced by sterility virulence only if a decrease in

susceptible density has a greater impact upon transmission, β(x),

than on infected host mortality, μ(x). The likelihood of this will

increase as the degree to which transmission is density dependent

increases, and the weaker the dependence of host mortality
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Figure 2. The favored level of sterility virulence depends upon the epidemiology of transmission. As pathogen transmission transitions

from mainly frequency dependent (subplot A,E) to mainly density dependent (subplot (D) and (H)), the favored sterility virulence

phenotype transitions from one causing complete sterility to one causing no sterility in agreement with analytic predictions (the level of

sterility virulence that minimizes R(xp) is the dashed vertical line in subplots (A–D)). The blue circles in subplots (A–D) are the stationary

distribution obtained from 2.5 × 104 runs of the multistrain model with N = 7 (see system (8)) simulated using Euler–Maruyama method

(see Supporting Information 5). Subplots (E–H) show the expected number of susceptible and infected hosts for the sterility virulence

indicated by the x-axis. Each column corresponds to a different value of q: from subplot (A) to (D), q was taken to be 3.9216, 3.125,

1.9048, and 0.5, respectively. The choice of q was made to show the range of potential optimal sterility virulence phenotypes. Parameter

values used were {B, α, m, κ, b̃, ν, �} = {16.8, 0.05, 0.75, 0.3, 4, 10−6, 104}.

upon susceptible density, in agreement with our analysis of (5)

(Fig. 2E–H).

The other thing to note is that (5) only indirectly depends

upon the birth and death rates of the susceptible population. As

a result, the birth and death rates of susceptibles can assume

any form satisfying the assumptions leading to model (1) and

the results from consideration of (5) will not be altered. How-

ever, in order for sterility virulence to be favored by frequency-

dependent transmission, the “strength” of density-dependent mor-

tality cannot be too weak. In some populations, population size

will be primarily regulated by density-dependent fecundity and

only weakly impacted by density-dependent mortality. In this cir-

cumstance, it can be shown that if the basic reproductive ratio of

the pathogen approaches unity, sterility virulence is favored for

frequency-dependent transmission (Supporting Information 4).

To provide a concrete example of when sterility virulence is

favored or disfavored, consider the model

b(x) = b̃(x + ∑
i [1 − δi ]yi ),

d(x) = m + κ(x + ∑
i yi ), (6)

μ(x) = α + d(x),

where b̃ is the per capita rate of reproduction, m is natural

mortality, α is virulence-related mortality, and κ controls the mag-

nitude of density-dependent mortality. Set y = ∑
i yi and suppose

that δi = δ for all i , so that all strains have equal sterility virulence.

Then from (5), if transmission is exclusively density-dependent,

β(x) = Bx (so c → ∞ in (5)), this leaves (5) equal in the limit

of c → ∞ to α + m. Hence, for density-dependent transmission,

pathogens causing no sterility are favored. Conversely, if trans-

mission is exclusively frequency dependent, β(x) = Bx/(x + y),

the level of sterility minimizing R(xp) can be computed directly

by solving [dR/dδ]δ=δ∗ = 0 for δ∗: as the quantities are evaluated

for δ1 = δ2 = δ, on the slow timescale this will not depend upon

p (nor will R(xp)). Doing so yields

δ∗ = 1 − (B − α − b̃)(m + α + √
B(m + α))

b̃(B − m − α)
, (7)

and so pathogens causing some level of sterility are stochas-

tically favored, and the optimal level of sterility is δ∗.

Although our analytic predictions have focused upon the

two-strain case, we can extend (1) to include N strains, each with
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a different sterility virulence, such that

dx = [
b(x) − d(x)x − ∑

i β(x)yi
]
dt + �−1/2 Mx

dyi = [
(β(x) − μ(x))yi + ν(

∑
j y j − N yi )

]
dt + �−1/2 Myi ,

i = 1, 2, . . . , N (8)

where yi is the density of the i-th strain, x = (x, y1, y2, . . . , yN ),

and Mx and Myi are stochastic unbiased noise terms (see Support-

ing Information 5 for full details). Note that in equation (8), we

have assumed that strain i mutates to strain j at a per capita rate

ν, and so the total per capita rate at which strain i will mutate to

a different strain is ν(N − 1), however, if we were to instead use

a single-step mutational scheme it will not qualitatively change

our results (see Supporting Information 5). In Figure 2, we sim-

ulate system (8) with N = 7 using the Euler–Maruyama method

(Allen 2011; see also Supporting Information 5), where we have

used the model specified by equation (6) with β(x) = Bx
1+q(x+∑

i yi )
.

Hence, as we decrease q from subplot a to subplot d, transmission

becomes increasingly density dependent. The simulation results

show that the predictions of our two-strain model scale as ex-

pected when there are more strains present in the population. In

particular, when transmission is predominantly frequency depen-

dent (Fig. 2A), fully sterilizing pathogens are favored, whereas

when transmission is increasingly density dependent (Fig. 2D),

sterility virulence becomes disfavored, in agreement with our gen-

eral predictions obtained from consideration of (5). Additionally,

the stochastically favored level of sterility virulence, δ∗, for the N

strain model matches well with the level of virulence minimizing

R(xp) obtained in the two-strain case.

Now, when the population becomes infinitely large, � → ∞,

demographic stochasticity is negligible, and so each pathogen

phenotype is equally likely to be observed in the population, ir-

respective of its sterility virulence. Thus we may ask how small

populations have to be for demographic stochasticity to have an

appreciable effect. In Figure 3, we simulate the multistrain model

(8) as presented in Figure 2, for a range of population sizes (by

varying �), revealing that even in large populations, demographic

stochasticity can play the role predicted by our analysis of the

two-strain model. Note as well that the impact of demographic

stochasticity inversely scales with the magnitude of directional

biases (the strength of selection and the frequency of mutations).

If there is a strong link between sterility virulence and transmis-

sion (so selection is strong), or mutations are too frequent, de-

mographic stochasticity will play a limited role. This can be seen

more explicitly by considering (3): since dWt is a Gaussian ran-

dom variable with mean zero and variance dt , dWt = O(
√

dt).

Therefore, if selection or mutation is strong (i.e., ε  1/� or

ν  1/�), the influence of the directional biases in (3) (as mea-

Figure 3. The relationship between population size (controlled

by habitat size, �) and the strength of demographic stochastic-

ity. In subplot (A), transmission is mainly frequency dependent,

whereas in subplot (B), transmission is mainly density dependent.

The circles are the stationary distribution for three different val-

ues of �, obtained from 2.5 × 104 runs of model (8) with N =
7 using Euler–Maruyama method. Parameter values used were

{B, α, m, κ, b̃, ν, �} = {16.8, 0.05, 0.75, 0.3, 4, 10−6, 104}, with q =
3.9216 for subplot (a) and q = 0.5 for subplot (b).

sured by a(p)) will greatly exceed the influence of stochasticity

(as measured by σ2(p)).

WHAT HAPPENS WHEN TRANSMISSIBILITY AND

STERILITY VIRULENCE ARE LINKED?

Thus far we have assumed there is no link between sterility viru-

lence and transmissibility, that is, sterility virulence is selectively

neutral. This was purposeful: (i) the evidence for a transmission–

sterility virulence tradeoff is limited (Abbate et al. 2015), and

(ii) we wanted to understand the effect of demographic stochas-

ticity upon the likelihood of observing different pathogen phe-

notypes in the population. The results of the previous section

showed that demographic stochasticity tends to favor sterility

virulence as transmission becomes increasingly frequency de-

pendent, provided mortality is also density dependent. How-

ever, we may ask how robust this conclusion is if, as previous

studies have considered (Jaenike 1996; O’Keefe and Antonovics

2002; O’Keefe 2005), there is a positive link between sterility–

virulence and transmission. Because in well-mixed populations

susceptible hosts represent a public good freely available to all

competing pathogen strains, the deterministic model (� → ∞)

predicts pathogens should sterilize (Jaenike 1996; O’Keefe and

Antonovics 2002; O’Keefe 2005). This result holds irrespective of

whether transmission is predominantly frequency or density de-

pendent.

If the strain at the selective disadvantage also minimizes

R(xp), however, then demographic stochasticity will act in

opposition to selection. This occurs if transmission is pre-

dominantly density dependent, or mortality is independent of
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population density. In this circumstance, we may ask how weak

does selection have to be relative to the effect of demographic

stochasticity. This can be thought of as asking how small the

between-strain difference in transmissibility has to be relative to

the between-strain difference in sterility virulence. Our purpose

here is not to consider different possible tradeoff functions, or to

construct a stochastic analogue of adaptive dynamics. Rather, our

objective is to consider how robust the effects of demographic

stochasticity are relative to selection, when they act in opposition.

To do so, we suppose strain 2 has the transmission advantage,

β1(x) = β(x)(1 − ε), β2(x) = β(x), and causes increased sterility

virulence, such that δ2 = δ and δ1 = δ − ωε with ωε ∈ [0, δ].

Here, ω is a positive scaling factor (so δ1 < δ2) linking between-

strain differences in transmissibility to between-strain differences

in sterility (i.e., if ω = 1, then a one unit change in between-strain

transmissibility corresponds to a one unit change in between-

strain sterility). We provide a more comprehensive analysis in the

Supporting Information 3, but here we focus only upon the case

in which mutations are very rare as the qualitative patterns are

similar for larger mutation rates. In this regime, assuming selec-

tion is weak, the strain with lower transmission and lower sterility

virulence (strain 1) is favored if

ω

2�

∂R

∂δ

∣∣∣∣
ε=0

> β(x0), (9)

where x0 is the density of susceptibles when ε = 0. If the

value of ω/� required to satisfy (9) decreases, either by reducing

population size (by decreasing habitat size, �) or through increas-

ing the between-strain difference in sterility virulence relative to

the between-strain difference in transmissibility (by increasing

ω), then there is a corresponding decline in the likelihood of the

evolution of more transmissible pathogens (with higher sterility

virulence). Note that the critical value of ω/� required to sat-

isfy (9) can be related to the strength of selection by observing

that by definition of ω, we must have ω ≤ δ/ε. This in turn im-

plies that ω/� ≤ δ/[ε�], and so if, for example, ε = 1/�, then

a stochastic reversal would require both (9) to be satisfied, and

ω/� < δ. Thus the between-strain difference in transmissibility

(the selective advantage of sterility virulence) must be small in

order for the effects of selection to be overturned by demographic

stochasticity.

The biological interpretation of (9) is clear: the right-hand

side is the (selective) transmission costs paid by the less steril-

izing strain (the between-strain difference in transmissibility is

εβ(x0), but as everything in (9) is first-order in ε, ε cancels from

both sides; Supporting Information 3), while the left-hand side

are any nonselective benefits of reduced sterility. To satisfy (9),

at minimum the strain with reduced sterility virulence must mini-

mize the ratio R(xp), that is ∂R
∂δ

> 0. Hence, we can conceptually

view inequality (9) as asking when a strain paying a directional

bias cost (right-hand side of (9)) can be stochastically favored

by “slowing” the stochastic process through minimizing R(xp)

(left-hand side of (9)).

To gain some more insight into (9) and what favors or disfa-

vors a reversal of selection, focus again upon the model spec-

ified by (6) with density-dependent transmission, β(x) = Bx .

Our previous analysis showed that for this model, nonsterilizing

pathogens minimize R(xp). Treating inequality (9) as an equal-

ity and solving for the critical ratio ω/�, it can be shown that

as the basic reproductive ratio, R0 = B(b̃ − m)/(κ[α + b̃]), of

the (neutral) pathogen strain becomes small (R0 → 1), sterilizing

pathogens are increasingly likely to be disfavored (Fig. 4D–F).

This could occur by increasing mortality (increasing α, m, or κ;

Fig. 4B and C) or by decreasing transmissibility (decreasing B;

Fig. 4A). On the other hand, if R0 becomes large, then a variety

of outcomes are possible, depending upon which demographic

quantity is manipulated to increase R0. If we increase transmis-

sibility, then for large (and small) R0, sterilizing pathogens are

increasingly likely to be disfavored (Fig. 4D). Conversely, if we

decrease natural- and virulence-related mortality, then whether

reductions in mortality (and so increases in R0) cause steriliz-

ing pathogens to be increasingly favored or disfavored depends

upon a complex interaction with the other parameters (Fig. 4E

and F). That these predictions depend upon what assumptions are

made about the underlying population demographics emphasizes

that not all forms of density dependence are equivalent, and that

how density dependence is modeled can lead to very different

conclusions (Mylius and Diekmann 1995; Metz et al. 2008).

Finally, we note that although we assumed a positive link

between sterility virulence and transmission in keeping with

previous work (Jaenike 1996; O’Keefe and Antonovics 2002;

O’Keefe 2005), if instead there was a negative link between

sterility virulence and transmission, then whenever ∂R/∂δ > 0,

selection and demographic stochasticity work together to disfavor

sterility virulence. Conversely, if ∂R/∂δ < 0, then selection and

demographic stochasticity work in opposition. In this situation,

whenever −β(x0) < ω
2�

∂R
∂δ

|ε=0 the influence of demographic

stochasticity can reverse selection, leading to sterility virulence

being stochastically favored. This can be shown by slightly

modifying the arguments used to derive (9).

Discussion
The fact that sterility virulence is common for STIs but rare for

other directly transmitted pathogens, while other forms of viru-

lence tend to be limited for STIs (Lockhart et al. 1996; Antonovics

et al. 2011), has led to the suggestion that sterility virulence may

have an adaptive explanation and be “targeted” (Apari et al. 2014).

In particular, it has been hypothesized that by sterilizing, STIs may
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Figure 4. Example behavior of critical ratio ω/� (subplots (D–F)) and basic reproductive number, R0 (subplots A-C), as demographic

parameters, B , α, and m are varied. In subplots (D–F), for values of ω/� above (resp. below) the various curves, the strain with decreased

transmission and decreased sterility virulence is favored (resp. disfavored). Thus when the critical ratio ω/� is small, strains causing no

sterility virulence are increasingly stochastically favored, despite being selected against. No matter what demographic quantity is varied

(B , α, m), as R0 → 1 (dashed vertical lines correspond to R0 = 1, subplots (A–C)), the value of ω/� required to favor reduced sterility

virulence also decreases. For this model, the density of susceptibles is an increasing function of α and m and a decreasing function of B ,

and so as R0 → 1, the density of susceptibles becomes maximal.

promote host sexual activity (Apari et al. 2014), and so adaptively

increase STI transmission. However, this hypothesis requires a

number of assumptions (e.g., pair bonds, ability to divorce and

remate) that are not commonly associated with host–STI systems,

limiting its explanatory power.

One epidemiological difference between STIs and directly

transmitted pathogens is the form of transmission: STIs tend to

exhibit frequency-dependent transmission, whereas directly trans-

mitted pathogens tend to exhibit mainly density-dependent trans-

mission (e.g., Antonovics et al. 2011). This is because the number

of sexual partners an individual has usually depends upon mat-

ing system and is only weakly affected by population density

(McCallum et al. 2001), and in many sexually reproducing

species, mating rate is limited by breeding season, pair forma-

tion, and gestation period, and not population density (Lockhart

et al. 1996). Indeed, the relationship between frequency-

dependent transmission and STIs can be derived from first prin-

ciples (Lloyd-Smith et al. 2004), but is also supported by models

fit to data (May and Anderson 1987; Anderson and May 1991;

Augustine 1998; Webberley et al. 2006; Ryder et al. 2014). Here,

we have shown that sterility virulence may indeed be “targeted”

to STIs as argued elsewhere (Apari et al. 2014), but that such a

relationship can be explained by consideration of the transmis-

sion differences between STIs and directly transmitted pathogens

alone. In particular, provided there is some density-dependent

mortality, frequency-dependent transmission tends to favor steril-

ity virulence whereas density-dependent transmission disfavors

sterility virulence. Our results can be applied to more com-

plex combinations of frequency- and density-dependent trans-

mission that sometimes better fit empirical data (e.g., Ryder

et al. 2005; Smith et al. 2009; McCallum et al. 2017) such that

“mainly” frequency-dependent transmission favors sterility viru-

lence whereas “mainly” density-dependent transmission disfavors

sterility (Fig. 2). Moreover, we have shown that even if there is

a (weak) selective advantage to sterilizing in terms of increased

transmissibility, stochasticity can be sufficient to overcome selec-

tion (Fig. 4), and that this is most likely to occur for pathogens

with either low R0 or high transmissibility.

Although our prediction that stochasticity favors sterilizing

STIs requires some form of density-dependent mortality of in-

fected individuals, we suggest that this is likely not an overly

stringent assumption. Not only are STIs commonly associated

with low levels of virulence (other than sterility; Lockhart et al.

1996; Antonovics et al. 2011; Apari et al. 2014), they are often

chronic (Antonovics et al. 2011) and so we should not expect

being infected to shield or remove individuals from intraspecific

competition that would otherwise occur. As such, it seems rea-

sonable to expect that infected hosts will be subject to the same

demographic forces as susceptible hosts, and many populations

are known to be subject to density-dependent adult mortality,

through, for example, predation (e.g., lemmings; Gilg et al. 2003),

or intraspecific competition and aggression over territories (e.g.,
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wolves; Cubaynes et al. 2014) and resources (e.g., red deer and

birds; Clutton-Brock et al. 2002; Saether et al. 2016).

Examining the role played by different demographic assump-

tions has a long history in life history modeling, with the focus

typically upon when evolution admits an optimization principle

(Mylius and Diekmann 1995; Metz et al. 2008). Applications to

host–pathogen systems have considered deterministic models,

and so the primary interest is when demographic feedbacks can

create the potential for adaptive diversification and evolutionary

branching (e.g., Pugliese 2002; Best et al. 2009; Boldin and Kisdi

2012; Cortez 2013), rather than the interplay between population

demography and stochasticity, as we have considered here. Our

work thus suggests an additional implication of demographic

assumptions for host–pathogen evolution when finite population

sizes are considered; moreover, the framework we have employed

here may be used to investigate other forms of less commonly

considered pathogen virulence (such as morbidity) that often

have limited evolutionary implications in standard, deterministic

host–pathogen models.

Existing theory has tended to focus upon determining what

factors select against sterility virulence without explicitly address-

ing why sterility virulence is more commonly associated with

STIs than directly transmitted pathogens. However, a central as-

sumption of existing models is that population size is large (ideally

infinite) and so stochasticity is ignored. As a result, epidemio-

logical differences between STIs and other directly transmitted

pathogens, such as the form of transmission function, tend to play

a limited evolutionary role. By focusing upon finite population

sizes, here we have shown the importance of epidemiology upon

the evolution of sterility virulence.
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Figure 1. Behaviour of model b(x) = b(x + y1 + 0.25y2), d(x) = 0.25 + 0.5(x + y1 + y2), μ(x) = d(x) + 0.25, β(x) = 8x/(x + y1 + y2 + c), with
� = 103 and ε = 0.
Figure 2. Change in �(a0, a1) as we manipulate a0 and a1.
Figure 3. Comparison of the stationary distributions between the model where phenotypes mutate to any other phenotype with equal probability (random
mutation; blue circles) and the model where phenotypes mutate to neighbouring phenotypes with equal probability (single-step mutation; red circles).
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