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The theory of life-history evolution provides a powerful framework to
understand the evolutionary dynamics of pathogens. It assumes, however,
that host populations are large and that one can neglect the effects of demo-
graphic stochasticity. Here, we expand the theory to account for the effects of
finite population size on the evolution of pathogen virulence. We show that
demographic stochasticity introduces additional evolutionary forces that can
qualitatively affect the dynamics and the evolutionary outcome. We discuss
the importance of the shape of the pathogen fitness landscape on the balance
between mutation, selection and genetic drift. This analysis reconciles
Adaptive Dynamics with population genetics in finite populations and
provides a new theoretical toolbox to study life-history evolution in realistic
ecological scenarios.

1. Introduction
Why are some pathogens virulent and harm their hosts while others have
minimal effect on host fitness? Our ability to understand and predict the evol-
utionary dynamics of pathogen virulence has considerable implications for
public-health management [1–3]. A classical explanation for pathogen viru-
lence involves trade-offs with other pathogen life-history traits. If certain
components of pathogen fitness, such as a high transmission rate or a low clear-
ance rate, necessarily require that the pathogen incidentally increase host
mortality, then virulence is expected to evolve [4]. A now classical way to
develop specific predictions from this hypothesis is invasion analysis and evol-
utionary game theory, under assumptions that have been since formalized as
Adaptive Dynamics [1,4–6]. This approach relies on the assumption that the
mutation rate is small so that the epidemiological dynamics occur on a faster
timescale than the evolutionary dynamics [4,7–9]. Under simple epidemiological
assumptions (e.g. well-mixed population, no co-infection or superinfection with
different genotypes, a single infection pathway, etc.) the evolutionarily stable
level of virulence maximizes the basic reproduction ratio R0 of the pathogen
[7,10,11], but see e.g. [12–17] for more complex epidemiological scenarios.

The above-mentioned theory allows one to determine the level of virulence
expected to evolve under a broad range of epidemiological scenarios but it still
suffers from the fundamental shortcoming of being a deterministic theory. The
number of infected individuals, however, can be very small (e.g. at the onset of
an epidemic or after a vaccination campaign) and demographic stochasticity—
i.e. randomness in individual mortality and reproduction [18]—is likely to
affect both the epidemiological and evolutionary dynamics of the disease. If
all that such stochasticity did was to introduce random noise, then the predic-
tions of deterministic theory would likely suffice. However, several recent
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studies have demonstrated that this is not the case. For
example, [19,20] each used different theoretical approaches
to demonstrate that finite population size tends to select for
lower virulence and transmission, using perturbation series,
and assuming fixed numbers of infecteds, respectively, to
estimate fixation probabilities. Likewise, [21] analysed the
effect of finite population size in a complex epidemiological
model with unstable epidemiological dynamics and showed
that finite population size could induce an evolutionary
instability that may either lead to selection for very high or
very low transmission.

Taken together, the existing literature presents a complex
picture of the factors that drive virulence evolution and it
remains unclear how all of these factors are related to one
another and how they might interact. In this paper, we
develop a very general theory of pathogen evolution that
can be used to examine virulence evolution when the above-
mentioned factors are at play. First, we use an individual-
based description of the epidemiological process to derive a
stochastic characterization of the evolutionary epidemiology
dynamics of the pathogen. This theoretical framework is
used to pinpoint the effect of finite population size on the
interplay between epidemiology and evolution. Second, we
analyse this model under the realistic assumption that the
rate of mutation is small, so that pathogen evolution can be
approximated by a sequence of fixations. We derive the prob-
ability of fixation of a mutant pathogen under both weak and
strong selection regimes, and for different epidemiological
scenarios. Third, we use this theoretical framework to derive
the stationary distribution of pathogen virulence resulting
from the balance between mutation, selection and genetic
drift. This yields new predictions regarding the effect of the
shape of pathogen fitness landscape and the size of the popu-
lation on the long-term evolution of the pathogen. As the
question of virulence evolution can be viewed as a specific
example of the more general notion of life-history evolution
[22,23], our results should be directly applicable to other life-
history traits and other organisms as well, providing a new
theoretical approach for studying life-history evolution in realis-
tic ecological scenarios based on the principles advocated in
[24]: Stochastic Adaptive Dynamics (SAD).

2. Model
We use a classical SIR epidemiological model with demogra-
phy, where hosts can either be susceptible, infected or
recovered. The number of each of these types of hosts is
denoted by NS, NI and NR, respectively. Because we are inter-
ested in the effect of demographic stochasticity the model is
derived from a microscopic description of all the events
that may occur in a finite—but not fixed—host population
of total size NT ¼ NS þ NI þ NR living in an area of
size n (the details of the model are given in the electronic
supplementary material).

We use l to denote the rate at which new susceptible
hosts enter the population per unit area, and therefore the
total rate is given by ln. We focus on the case of frequency-
dependent transmission; i.e. new infections occur at rate
(b/NT)NSNI, where b is a constant quantifying the combined
effects of contact rate among individuals and the probability
of pathogen transmission, given an appropriate contact
occurs. Note, however, that other forms of transmission

(e.g. density-dependent transmission [25]) yield qualitatively
similar results [26]. We also assume that already infected
hosts cannot be reinfected by another pathogen strain (i.e.
no co-infections). All hosts are assumed to suffer a constant
per capita death rate of d, whereas infected hosts die due to dis-
ease at per capita rate a and they recover at per capita rate g.
Finally, to study pathogen evolution, we need to introduce
genetic variation in the pathogen population. Therefore, we
consider d pathogen strains which differ in their transmission
rate bi, and virulence ai, with i [ f1, . . ., dg. Likewise, we use
the subscripted variable NIi

to denote the number of hosts
infected with strain i.

The above assumptions give a continuous-time Markov
process tracking the number of individuals of each type of
host. To progress in the analysis, we use a diffusion approxi-
mation and work with host densities defined as S ¼ NS/n,
Ii ¼ NIi

/n and N ¼ NT/n and we define the total density of
infected hosts as I ¼

Pd
i¼1 Ii. When n is sufficiently large

(but finite) these variables can be approximated using a con-
tinuous state space and so this model can be described by a
system of stochastic differential equations (see electronic
supplementary material, §3).

2.1. Deterministic evolution
In the limit where the habitat size (and thus the host popu-
lation size) becomes infinite, demographic stochasticity
becomes unimportant and the epidemiological dynamics
are given by the following system of ordinary differential
equations:

_S ¼ l# !b
N SI # dS,

_I ¼ !b
N SI # (dþ !aþ g)I

and _N ¼ l# dN # !aI:

9
>=

>;
ð2:1Þ

The bars above a and b refer to the mean of the transmission
rate and the virulence distributions of the infected host popu-
lation (i.e. !a ¼

Pd
i¼1 aiIi=I). In the absence of the pathogen,

the density of hosts equilibrates at S0 ¼ l/d. A monomorphic
pathogen (d ¼ 1, !b ¼ b and !a ¼ a) is able to invade this equi-
librium if its basic reproduction ratio, R0 ¼ b/(d þ a þ g) is
greater than one. If this condition is fulfilled, then the
system reaches an endemic equilibrium, where Seq/Neq ¼
1/R0, Ieq/Neq ¼ (d/(d þ g))(1 2 1/R0) and Neq ¼ (l(d þ g)/
d(b 2 a))R0.

When several strains are present in the population, the
evolutionary dynamics of the pathogen can be tracked with
[27,28]:

_pi ¼ pi(ri # !r), ð2:2Þ

where pi ¼ Ii/I is the frequency of hosts infected with strain i.
The quantity ri ¼ bi(S/N ) 2 (d þ ai þ g) is the instantaneous
per capita growth rate of strain i and !r ¼

Pd
i¼1 piri is the aver-

age per capita growth rate of the infected host population.
When d ¼ 2 only two strains are competing (a wild-type,
strain 1, and a mutant, strain 2) and the change in the
frequency p2 of the mutant strain is given by:

_p2 ¼ p1p2
S
N
Db# Da

! "
, ð2:3Þ

where Db ¼ b2 2 b1 and Da ¼ a2 2 a1 are the effects of the
mutation on transmission and virulence, respectively.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180135
2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

10
 A

ug
us

t 2
02

1 



The above formalization can be used to understand the
evolution of pathogen life history under different scenarios.
First, under the classical Adaptive Dynamics assumption
that the mutation rate is very small, one may use a separation
of timescales where the epidemiological dynamics reach an
endemic equilibrium (set by the resident pathogen, strain 1)
before the introduction of a new variant (strain 2) by
mutation. In this case, evolution favours the strain with the
highest basic reproduction ratio, R0,i ¼ bi/(d þ ai þ g). In
other words, evolution favours strains with higher
transmission rates and lower virulence. According to the
trade-off hypothesis, however, transmission and virulence
cannot evolve independently. For example, the within-host
growth rate of pathogens is likely to affect both traits and
result in a functional trade-off between transmission and
virulence [4,7–9]. Under this assumption, equation (2.3) can
be used to predict the evolutionary stable virulence strategy
(figure 1).1 The above model can also be used to predict viru-
lence evolution when the evolutionary and epidemiological
dynamics occur on a similar timescale [27–29]. For instance,
these models can be used to understand virulence evolution
during an epidemic [4,30–32]. In this case, a pathogen strain
i with a lower R0 may outcompete other strains if its
instantaneous growth rate, ri, is higher.

2.2. Stochastic evolution
Finite population size introduces demographic stochasticity
and the epidemiological dynamics can be described by the
following system of (Itô) stochastic differential equations:

where B1, . . ., B5 are independent Brownian motions. As
expected, when n! 1 this set of stochastic differential
equations reduces to the deterministic equations in (2.1)
(n.b., both (2.4) and (2.1) require that one knows the strain fre-
quencies, as given by (2.2) or (2.5) below, respectively, for a
complete description of the dynamics).

In finite populations, the pathogen, and indeed the host
population itself, are destined to extinction with probability
1. The time it takes for this to occur, however, depends criti-
cally on the parameter values. For example, in a host
population infected with a monomorphic pathogen (i.e. d ¼
1), if R0 is larger than 1 the size of the infected host popu-
lation reaches a quasi-stationary distribution which is
approximately normal. The mean of this distribution is of
order n and its standard deviation is of order

ffiffiffi
n
p

[33,34].
The extinction time from the quasi-stationary distribution
increases exponentially with n [33,34], and so, in the remain-
der of the paper, we will assume that n is large enough
so that we can focus on the dynamics conditional on
non-extinction.

As in the deterministic case, one can study evolutionary
dynamics by focusing on the change in strain frequencies.

We obtain a stochastic differential equation analogous to
(2.2) (see electronic supplementary material, §4):

dpi ¼ pi(ri # !r)# 1
nI

pi(vi # !v)
! "

dt

þ 1ffiffiffiffiffi
nI
p

Xd

j¼1
(dij # pi)

ffiffiffiffiffiffiffiffiffi
v jp j

p
dB j,

ð2:5Þ

where vi ¼ bi(S/N ) þ (d þ ai þ g) is the variance in the
growth rate of strain i (while ri ¼ bi(S/N ) 2 (d þ ai þ g) is
the mean) and !v ¼

Pd
i¼1 pivi is the average variance in

growth rate of the infected host population. The first (advec-
tive, dt) component in equation (2.5) is analogous to (2.2).
The second (diffusive, dB) component shows that finite popu-
lation size (i.e. when the pathogen-infected population size,
as measured by the total number of infected hosts, nI is not
too large) can affect the direction of evolution. In contrast
with the deterministic model, the evolutionary dynamics
are not driven exclusively by the expected growth rate ri,
but also by a minimization of the variance. This effect is
akin to bet-hedging theory stating that a mutant strategy
with lower variance in reproduction may outcompete a

R0

0

b

–d –g

a

aa0
amode

Figure 1. Schematic of the effect of finite population size on the evolution
of pathogen virulence. The grey line in the top figure represents the effect
of pathogen virulence, a, on R0 ( for an asymmetric fitness function). The
grey line in the bottom figure represents the effect of pathogen virulence,
a, on pathogen transmission, b. In the deterministic version of our model,
the marginal value theorem can be used to find the optimal pathogen
virulence, a0 (dashed black arrow). In this model, optimal virulence maxi-
mizes R0 in the absence of demographic stochasticity. Finite population
size modifies selection and favours pathogen strategies with lower
virulence (see equation (3.4)). The mode of the stationary distribution
of pathogen virulence is indicated by a dashed red arrow, amode

(see equation (3.7)). This geometrical construction indicates that finite
population size is expected to favour slower strains even if they have
a lower R0.

dS ¼ l#
!b

N
SI # dS

! "
dtþ

ffiffiffi
l

n

r
dB1 #

ffiffiffiffiffiffi
dS
n

r
dB2 #

ffiffiffiffiffiffiffiffi
!bSI
nN

r
dB3,

dI ¼
!b

N
SI # (dþ !aþ g)I

! "
dtþ

ffiffiffiffiffiffiffiffi
!bSI
nN

r
dB3 #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(dþ !a)I

n

r
dB4 #

ffiffiffiffiffi
gI
n

r
dB5

and dN ¼ (l# dN # !aI) dtþ
ffiffiffi
l

n

r
dB1 #

ffiffiffiffiffiffi
dS
n

r
dB2 #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(dþ !a)I

n

r
dB4,

9
>>>>>>>>=

>>>>>>>>;

ð2:4Þ
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resident strategy with a higher average instantaneous growth
rate [35,36]. To better understand this effect, it is particularly
insightful to examine the case d ¼ 2 when only two strains
are competing and the change in frequency p2 of the
mutant strain is given by:

dp2 ¼ p1p2
S
N
Db 1# 1

nI

! "
# Da 1þ 1

nI

! "! "
dt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2

nI
(p1v2 þ p2v1)

r
dB: ð2:6Þ

The first component (the advective component) in equation
(2.6) is similar to (2.3) except for the 1/nI terms. Those
terms are due to the fact that a transmission (or a death)
event of the mutant is associated with a change in the
number of mutants as well as an increase (decrease) of the
total infected host population size by one individual. This
concomitant variation of infected host population size affects
the effective change of the mutant frequency (relative to the
change expected under the deterministic model where the
population size is assumed to be infinite). This effect
decreases the benefit associated with higher transmission
and increases the cost of virulence. In the long-term, this
effect (the first term in (2.5)) is thus expected to select for
lower virulence. But this long-term evolutionary outcome
cannot be described by an evolutionary stable state because
demographic stochasticity is also expected to generate noise
(the diffusion term in (2.5)). Indeed, this stochasticity (i.e.
genetic drift) may lead to the invasion and fixation of strains
with lower per capita growth rates. In the following, we fully
characterize this complex evolutionary outcome with the
stationary distribution of pathogen virulence under different
epidemiological scenarios.

3. Results
The above theoretical framework embodied by the stochastic
differential equations (2.4) and (2.5) subsume the determinis-
tic model and can be used to study the interplay of all the
relevant factors affecting virulence evolution. In the follow-
ing, we will assume that pathogen mutation is rare, so that
evolution can be described, as in classical Adaptive
Dynamics, as a chain of fixations of new pathogen mutations.
In contrast with Adaptive Dynamics, however, demographic
stochasticity in the resident population may allow neutral, or
even mildly deleterious, mutations to go to fixation. The
analysis of the effect of finite population size requires specific
ways to quantify the stochastic fate of a genotype [37]. To
determine the fate of a new mutation we need to compute
the probability of fixation of a mutant pathogen in a resident
population. In the absence of selection, the fixation probability
of a mutant allele depends only on the demography of the popu-
lation. When the size of the population is fixed and equal to N the
fixation probability of a neutral allele is 1/N. When the fixation
probability of a mutant is higher than neutral it indicates that the
mutant is selectively favoured. This is particularly useful in
many complex situations where the interplay between selection
and genetic drift are difficult to disentangle like time-varying
demography [38,39] or spatial structure [40]. In our model, the
difficulty arises from (i) the stochastic demography of the
infected host population and (ii) the fact that pathogen life-
history traits feedback on the epidemiological dynamics and
thus on the intensity of genetic drift.

3.1. Stationary distribution of pathogen virulence at
equilibrium

Here we assume, as in the Adaptive Dynamics framework,
that the pathogen mutation rate m is so low that the mutant
pathogen (strain 2) arises when the resident population
(strain 1) has reached a quasi-stationary distribution tightly
peaked about nIeq (i.e. close to the endemic equilibrium
derived in the deterministic model). The R0 of the two strains
may be written in the following way: R0,2 ¼ R0,1(1 þ s) where
s measures the magnitude of selection.

When selection is strong (i.e. s&1/n) the probability of
fixation of the mutant when NI2

(0) mutants with R0,2 . 1
are introduced into a resident population at equilibrium is
(see electronic supplementary material, §5.2):

Ustrong ' 1# R0,1

R0,2

! "NI2 (0)

' NI2 (0)s, ð3:1Þ

which may be obtained by approximating the invading strain
by a branching process (see electronic supplementary
material, §8.2 for a rigorous justification).

When the mutant and the resident have similar values of
R0 . 1 (i.e. s is of order 1/n) selection is weak, and the deri-
vation of the probability of fixation is a much more difficult
problem. The classical population genetics approach under
the assumption that population size is fixed (or is character-
ized by a deterministic trajectory independent of mutant
frequency) is to use the diffusion equation of mutant fre-
quency to derive the probability of fixation [38,39]. But in
our model, equation (2.3) is not autonomous and is coupled
with the epidemiological dynamics. To derive the probability
of fixation we use a separation of timescale argument to
reduce the dimension of the system (see [41] for a discussion
of the approach). Indeed, if selection is weak, as n! 1, the
deterministic component of the model sends the system
rapidly to the endemic equilibrium, which is now a manifold
of fixed points, on which coexistence is possible at all mutant
frequencies. After this, it is possible to approximate the
change in frequency of the mutant by tracking the dynamics
of the projection of the mutant frequency on this manifold
(see electronic supplementary material, §5.3). This one-
dimensional system can then be used to derive the
probability of fixation under weak selection. A first-order
approximation in s and s is:

Uweak ' pþ p(1# p)
2

(nIeqsþ s)

' nI2(0)
1

nIeq
þ 1

2
sþ s

nIeq

! "! "
, ð3:2Þ

where p ¼ I2(0)/Ieq and s ¼ (b1 2 b2)/b2. The first term in
(3.2) is the probability of fixation of a single neutral mutation
introduced in an infected host population at the endemic
equilibrium, nIeq. The second term takes into account the
effect due to selection. First, selection may be driven by
differences in R0. Second, even if strains have identical R0

(i.e. s ¼ 0) selection may be driven by s which measures
the difference in transmission rate; this effect selects for
lower transmission rates, and, since under weak selection
the R0 values are approximately equal, for lower virulence.
Note, however, that the effect of s rapidly overwhelms the
effect of s as the infected host population size nIeq becomes
large (unless s is of order 1/n). The probability of fixation
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given in (3.2) confirms that evolution tends to push towards
higher basic reproductive ratio but when the population
size is small other forces may affect the evolutionary out-
come. In particular, when nIeq is small, strains with lower
R0 can reach fixation. Figure 2 shows the result of stochastic
simulations that confirm the approximations (3.1) and (3.2)
under different epidemiological scenarios, and show that
our approximations already perform extremely well for
populations as small as the order of 100 hosts (see electronic
supplementary material, §7 for details of the simulations).

Even though the probability of fixation helps understand
the interplay between selection and genetic drift it does not
account for any differences in the time to fixation and it is
often difficult to measure this probability experimentally as
well (but see [42]). What may be more accessible is a charac-
terization of the phenotypic state of the population across

different points in time (or in space among replicate popu-
lations)—that is, the stationary distribution of the virulence
of the pathogen under the action of mutation, selection and
genetic drift [43–45] (figure 3).

To derive the stationary distribution of pathogen viru-
lence, we first need to impose a trade-off between virulence
and transmission rate, setting b ¼ b(a), and introduce the
mutation kernel K(am, a), the probability that a mutant with
strategy am appears in a monomorphic population with strat-
egy a. Here, we assume that this distribution has mean equal
to the current resident trait value and variance n. Under the
assumption that the mutation rate m remains small, pathogen
polymorphism is limited to the transient period between the
introduction of a mutant and a fixation, and we may consider
the (monomorphic) resident virulence as a random process
evolving in time.
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Figure 2. Probability of fixation for (a) different values of s (strong selection effect) and (b) different values of s for fixed R0 (weak selection effect). Simulation
results for the model described in §2 are indicated with a dot, weak selection approximation is indicated with a grey line and its linear approximation (equation
(3.2)) is indicated with a green line, the strong selection approximation is indicated with a red line (equation (3.1)). Parameter values of the resident population:
n ¼ 100, R0 ¼ 4, d ¼ 1, a ¼ 3, g ¼ 1, l ¼ 2, b1 ¼ 20. For the simulation, a single mutant (an individual host infected with a mutant pathogen) is intro-
duced at the endemic equilibrium set by the resident pathogen: Seq ¼ 24 and Ieq ¼ 35. 106 simulations are realized for each parameter values and we plot the
proportion of the simulations where the mutant goes to fixation. We implement strong selection by setting b1 ¼ b2(1 þ s) so that R0,1 ¼ R0,2(1 þ s), and weak
selection by setting b1 ¼ b2(1 þ s), while holding R0,1 ¼ R0,2 by setting a2 ¼ (d þ a1 þ g)/(1 þ s) 2 d 2 g.
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The probability of fixation (3.2) accurately describes the
direction of evolution, and the evolution of pathogen
virulence can then be described by the following Fokker–
Planck diffusion equation (see electronic supplementary
material, §6):

@c(a, t)
@t

¼ #mn

2
@

@a
nIeq(a)

R00(a)
R0(a)

# 1
nIeq(a)

b0(a)
b(a)

! "
c(a, t)

$ %

þ mn

2
@2c(a, t)
@a2 , ð3:3Þ

where c(a, t) is the probability of observing pathogen viru-
lence a at time t and 0 indicates the derivative with respect
to a, and we write R0(a) and Ieq(a) to emphasize that these
quantities depend on the resident virulence. The first term
of the above equation indicates a strong deterministic trend,
with R00(a) indicating a trend towards a higher basic repro-
duction ratio, offset by a finite population effect

proportional to 2b0(a) that tends to select for lower trans-
mission. Under the classical assumption that pathogen
transmission and pathogen virulence are linked by a genetic
trade-off one can ask what the level of pathogen virulence is
where the advective term is zero. This trait value corresponds
to the mode of the stationary distribution of pathogen viru-
lence and is given by the following condition (see electronic
supplementary material, equation S.39):

b0(a) ¼ R0(a) 1þ 1
nIeq(a)# 1

! "
: ð3:4Þ

When the infected host population is very large (i.e. n! 1)
we recover the marginal value theorem, while finite popu-
lation size increases the slope b0(a) and reduces the mode
of the stationary distribution (figure 1). Thus, provided the
transmission–virulence trade-off function is concave, finite
population size is expected to decrease virulence and
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Figure 3. Dynamics of pathogen virulence across time (one time unit on the graph is 107 time steps in the simulation) and stationary distribution of pathogen
virulence for two different fitness landscapes: (a) symmetric fitness landscape with b(a) ¼ (d þ g þ a)R0,max(1 2 w(a0 2 a)2), R0,max ¼ 4.5 and a0 ¼ 3,

(b) asymmetric fitness landscape with b(a) ¼ 5(1# 0:005a)=(1þ exp (7(1# a))). We take K (am, a) ¼
1
2

if am # a ¼+Da ¼ 6
100

, and

0 otherwise:

(

The dashed vertical line indicates the position of a0. Other parameter values: n ¼ 200, d ¼ 1, a ¼ 3, g ¼ 1, l ¼ 2, m ¼ 0.001.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180135
6

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

10
 A

ug
us

t 2
02

1 



transmission rates. In other words, pathogen avirulence may
be viewed as a bet-hedging strategy because even if it reduces
the instantaneous growth rate ri, the reduced variance in
growth rate vi is adaptive in finite populations.

Let us now consider the limiting case when all the patho-
gen strains have the same R0. This corresponds to a very
special case where the fitness landscape is flat. The determi-
nistic model predicts that pathogen life-history variation is
neutral near the endemic equilibrium (see (2.2)). The prob-
ability of fixation (3.2) shows, however, that selection is
quasi-neutral and favours pathogens with lower transmission
and virulence rates [19,20,26,46]. The stationary distribution
results from the balance between selection (pushing towards
lower values of pathogen traits) and mutation (reintroducing
variation). If we focus on virulence and allow variation
between the minimal viable value amin and the maximal
viable value amax, the stationary distribution is (see electronic
supplementary material, equation S.33):

cflat(a) ¼ 1
ln ((dþ amax þ g)=(dþ amin þ g))

1
(dþ aþ g)

:

ð3:5Þ

It is worth noting that this distribution is independent of the
pathogen-infected population size. Indeed, near the endemic
equilibrium, when pathogens have the same R0, the prob-
ability of fixation (3.2) is independent of infected
population size. So this prediction holds even in very large
populations. The time to fixation may, however, be consider-
ably longer in large populations and the assumption that
polymorphism is always reduced to the resident and a
single mutant may not always hold as the population size
increases. Yet, stochastic simulations confirm that (3.5) cor-
rectly predicts the stationary distribution, which is relatively
insensitive to the infected population size, but varies with
d þ g (figure 4a).

Second, we consider a general fitness landscape with a
single maximum. It is possible to derive a good approxi-
mation for the stationary distribution (see electronic
supplementary material, S.38):

capprox(a) ¼ b(a0)
b(a)

N (a0,62), ð3:6Þ

where a0 is the virulence that maximizes R0, N (a0,62) is
the Gaussian distribution with mean a0 and variance
62 ¼ 1/(nIeq(a0)jR0

00(a0)j/R0(a0)), and nIeq(a0) is the

expected number of infected individuals at the endemic
equilibrium when the virulence is a0. We thus see the
effect of demographic stochasticity is to bias the Gaus-
sian, putting more weight on values of the virulence
below a0: if R0(a0) ( R0(a), then, b(a0)/b(a) ( (d þ a0 þ
g)/(d þ a þ g) . 1 for a , a0. This becomes more clear
when we consider the mode and mean of the (true)
stationary distribution (see electronic supplementary
material, §6.3):

amode ¼ a0 #
62

dþ a0 þ g
ð3:7Þ

and

amean ¼ a0 # 62 1
dþ a0 þ g

þ
jI0eq(a0)j
Ieq(a0)

þ R0000 (a0)
jR000(a0)j

 !
, ð3:8Þ

respectively. Equations (3.7) and (3.8) indicate that, as
expected from the simple optimization approach used
above in (3.4) and illustrated in figures 3 and 4, a lower
infected population size tends to decrease pathogen viru-
lence. However, the above derivation of the stationary
distribution goes far beyond this optimization criterion.
First, it accurately predicts the mode of the stationary dis-
tribution; in particular, it shows that the peakedness of the
fitness landscape may affect the mode of the stationary dis-
tribution. The skew of the fitness landscape can also have
huge effects on the stationary distribution (figure 3): a posi-
tive skew leads to a higher mean virulence and may thus
counteract the effect of a small pathogen-infected popu-
lation. In other words, whether demographic stochasticity
favours lower or higher virulence also depends on the
shape of the fitness landscape. Second, our analysis predicts
the amount of variation one may expect to see around this
mode. Unlike the criteria used to derive a single optimal
strategy, our approach predicts accurately the expected vari-
ation around this mode (figures 3 and 4). Note that the
population remains monomorphic most of the time
(because mutation is assumed to be small) but the variance
of the stationary distribution refers to the distribution of
phenotypes explored through time (or through space if sto-
chastic evolution is taking place in multiple isolated
populations).
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Figure 4. Stationary distribution for symmetric fitness landscapes with increasing strength of selection around the optimum with b(a) ¼ (d þ g þ
a)R0,max(1 2 w(a0 2 a)2), K(am, a) as in figure 3, and a0 ¼ 3 for three different values of w: (a) w ¼ 0, (b) 0.01 and (c) 0.1. Note that when w ¼ 0,
the fitness landscape is flat, whereas with increasing w, the landscape becomes more tightly peaked at the optimum. The light red histogram indicates results
of a stochastic simulation. The red line indicates the stationary distribution of the diffusion approximation (the dashed line indicates the approximation of this
distribution, see (3.6)). The dashed vertical line indicates the position of a0. Parameter values: n ¼ 200, R0,max ¼ 4, d ¼ 1, a ¼ 3, g ¼ 1, l ¼ 2, m ¼ 0.001.
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4. Discussion
Evolutionary theory has led to the development of different
mathematical tools for studying phenotypic evolution in a
broad diversity of ecological scenarios [47–49]. For instance,
Adaptive Dynamics is a powerful theoretical framework to
study life-history evolution when mutation is assumed to
be rare so that demographic and evolutionary processes can
be decoupled [5,6]. This analysis yields evolutionarily stable
life-history strategies and captures the ultimate outcome of
evolution. This approach, however, relies on the assumption
that population size is infinite and that the epidemiological
trajectory is deterministic. Finite population size, however,
can also affect evolutionary trajectories. In particular, even
the fittest genotype can be invaded by a deleterious mutant
when population size is reduced. This leads to the collapse
of the concept of evolutionarily stable strategy. On the
other hand, population genetics allows us to consider the
effect of finite population size and drift, but at the cost of
assuming fixed population sizes and ignoring ecological
processes (however, see, e.g. [38,50,51]). Here we build
upon Stochastic Adaptive Dynamics (SAD) [43,45,49], a
new theoretical framework where the evolutionary outcome
of life-history evolution is studied by systematically scaling
from ecologically complex individual-based stochastic
models to the stationary distribution of the phenotype
under mutation–selection–drift equilibrium. Under the
assumption that the mutation rate is small, the long-term
stochastic dynamics and equilibrium distribution can be
derived from a diffusion approximation. In contrast with pre-
vious population genetics models, the present framework
also allows life-history evolution to affect population size
and, consequently, the amount of demographic stochasticity.
In other words, this framework retains key strengths of
Adaptive Dynamics but relaxes a major assumption by allow-
ing genetic drift to affect the evolutionary outcome (see also
[52], p. 1149). As such, our SAD framework is an important
step towards a better integration between Adaptive Dynamics
and classical population genetics.

We show that finite population size induces a selective
pressure towards strains with lower variance in growth rate
(but see also [35,39,46]). A simple way to understand this
effect is to compare the fate of two strains with the same R0

but with different life-history strategies. The fast strain is
very transmissible but has a short duration of infection (e.g.
because of high virulence or high clearance rate). The slow
strain has a long duration of infection but a small trans-
mission rate. As the two strains have the same R0,
deterministic models predict that these two strains should
coexist once common, but that neither can invade from
small numbers. With finite population size, however, inva-
sion is possible. When population size is assumed to be
fixed, say N, the two strains are forced to share the same
speed because when e.g. one strain infects a new host, the
artificial constraint on the pathogen population size requires
the death of a host infected by the other strain. By contrast,
when population size is allowed to vary stochastically, the
competing strains can have different speeds. The fast strain
has a higher extinction rate simply because more events
happen per unit of time: rare events, such as large fluctu-
ations, will happen more regularly for the faster strain. As
in Aesop’s fable, ‘slow and steady wins the race’: when popu-
lation size is allowed to vary stochastically, however, the race

has no finish line (unlike a fixed population model, you
cannot hit N and ‘win’) and a strain can succeed only by out-
lasting its competitors. The advantage thus falls to the slower
strain which persists by using longer infectious periods to
‘wait out’ periods of paucity of susceptibles, outliving the
more volatile fast strain.

Previous studies [19,20] pointed out the influence of finite
population size on the direction of virulence evolution, but
they focused mainly on the quasi-neutral case where all the
strains have the same R0. Humplik et al. [20] did look at scen-
arios where strains have different R0, but assumed a fixed
population, strong selection, and values of R0 so large that
all hosts are infected. None of these studies considered vary-
ing strengths of selection, and none provided a derivation of
the stationary distribution at mutation–selection–drift equili-
brium, which describes the long-term behaviour of pathogen
virulence, that we believe is key to explore the interaction
between finite population size and phenotypic evolution.
This distribution yields testable predictions on the mean as
well as other moments of the phenotypic distribution.

The approximation (3.6) shows that this distribution is
moulded by two main parameters: (i) the pathogen fitness
landscape, and (ii) the effective size of the infected host popu-
lation. First, the pathogen fitness at the endemic equilibrium
can be derived from (2.5) and depends mainly on the way R0

varies with pathogen life-history traits. Under the classical
transmission–virulence assumption, R0 is maximized for
some intermediate virulence. But the shape of the trade-off
also affects the shape of the fitness landscape and in particu-
lar its symmetry. When the fitness landscape of the pathogen
is symmetric, reducing the infected population size increases
the variance of the stationary distribution but also decreases
the mean (and the mode) of this distribution. This effect
results from the selection for a reduction of the variance
identified in (2.5). This is the effect that emerges in the
quasi-neutral case. When the fitness landscape is flat, this
may lead to an important bias towards lower virulence
(figure 4). When the fitness landscape of the pathogen is
asymmetric the skewness of the fitness landscape can affect
the mean of the stationary distribution when the equilibrium
host population size, nIeq, is reduced. More specifically, nega-
tive (positive) skewness reduces (increases) the mean of the
stationary distribution. It is interesting to note that classical
functions used to model the trade-off between virulence
and transmission tend to generate positive skewness in the
fitness landscape [4,8,14]. The asymmetry of these fitness
functions may thus counteract the effects of stochasticity
per se identified in symmetric fitness landscapes. In other
words, predictions on the stochastic evolutionary outcome
are sensitive to the shape of genetic constraints acting on
different pathogen life-history traits. This result is very simi-
lar to the deterministic effects discussed in [53,54] on the
influence of asymmetric fitness landscapes on phenotypic
evolution. Note, however, that the effect analysed by [54] is
driven by environmental effects on phenotypes. In our
model, we did not assume any environmental effects, and a
given genotype is assumed to produce a single phenotype.

While we considered the standard SIR model, our
approach can be generalized to consider a number of var-
iants, including the SIRS model, the SEIR model, models
with multiple exposed and infected compartments, etc. Our
strong selection results for the fixation probability will
apply whenever invasion implies fixation [55] (this
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assumption is also necessary in general to derive (3.3); in par-
ticular, the diffusion approximation can fail if e.g. there is an
evolutionary branching, such as in a model with co-infection
[17]). Multi-type branching processes [56] would allow the
addition of e.g. exposed classes, whereas general (non-
Markovian) branching processes would allow the consider-
ation of arbitrary distributions for the infectious period
[57–59]. Weak selection results may be obtained when the
exchange of stability between resident and invader results
in a manifold of equilibria connecting the steady states. The
structure of the SIR model considered here lends itself to
computing the reduced diffusion (2.5); a general, albeit com-
putation-heavy, method to derive the reduced equation is
presented in [41]. If, on the other hand, multiple strains
could coexist at a stable node or focus or a saddle point for
the infinite population limit, then one would have to use
large deviations theory or adapt the results of [60], respect-
ively. An important extension would be to consider models
with less variance in the infectious period than the exponen-
tial distribution considered here, as they could diminish the
effects of demographic stochasticity.

We analysed the effects of demographic stochasticity
induced by finite population size but environmental stochas-
ticity may also affect evolution [36,61,62]. Environmental
factors are known to have dramatic impacts on pathogen
transmission and it would thus be particularly relevant to
expand the current framework to account for the effects of
random perturbations of the environment on pathogen evol-
ution [63]. Indeed, although we focused our analysis on the
stationary distribution at the endemic equilibrium of the clas-
sical SIR model, we can also explore the effect of
demographic stochasticity on the transient evolutionary
dynamics away from the endemic equilibrium, e.g. in
epidemic scenarios, under bottlenecks, etc. [64].

Further, to focus on the effects of finite populations, we
have considered a well-mixed population, whereas it is well
known that spatial spreading can facilitate coexistence of
competing strains and trade-offs between pathogen virulence
and host mobility [65–67]. Moreover, spatial structure can
result in smaller local effective population sizes, thus ampli-
fying the effects of demographic stochasticity. Other factors
may reduce the effective infected host population size as
well. For instance, variance in transmission among infected
hosts is likely to reduce the effective infected population
size below nIeq. One source of heterogeneity in transmissibil-
ity may be induced by public-health interventions (e.g.
vaccination, drug treatments), but intrinsic behavioural or
immunological heterogeneities among hosts may induce
superspreading transmission routes as well [68,69]. As such,

a structured stochastic model would be an important
extension.

Another possible extension of this model would be to
analyse the effect of demographic stochasticity on the
multi-locus dynamics of pathogens. Indeed, the interaction
between genetic drift and selection is known to yield complex
evolutionary dynamics resulting in the build-up of negative
linkage disequilibrium between loci. But the analysis of this
so-called Hill–Robertson effect is often restricted to popu-
lation genetics models with fixed population size. The
build-up of linkage disequilibrium in some epidemiological
models has been discussed in some simulation models
[70,71]. Our model provides a theoretical framework to
explore the effect of finite population size on multi-locus
dynamics of pathogens and to generate more accurate
predictions on e.g. the evolution of drug resistance [72].

Finally, although we have presented our results in the
context of pathogen evolution, it is hopefully clear that a
very similar theoretical framework could be used to study
other examples of life-history evolution in the context of demo-
graphic stochasticity. Current general life-history theory
largely neglects the evolutionary consequences of stochasticity
arising from small population sizes. Our results suggest that it
would be profitable to determine what sorts of insights might
be gained for life-history evolution more generally by using
the type of theoretical framework developed here.
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Endnote
1Equation (2.3) shows us that a rare mutant can invade if and only if
Db/Da . N/S ¼ R0 i.e. if the line through (2d 2g, 0) with slope Db/
Da lies above the curve (a, b(a)) at the resident virulence. If b(a) is
concave, then for all a, Db/Da ) b0(a); in particular, if the line
through (2d 2g, 0) is tangent to the curve at a0, then no mutant
can invade, and a0 is an evolutionary stable strategy; see [73].
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(n)
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(n)(t) number of recovered individuals at time t
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(n)
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(n)(t) (I(n)1 (t), . . . , I(n)d (t), N (n)(t))

E
(n)(t) (S(n)(t), I(n)1 (t), . . . , I(n)d (t))

S̄
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Ē
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1 Introduction

In this SI, we derive the results in the main text. Where suitable references exist in the literature, we
keep the discussion informal, sketching how the results are obtained and referring to the appropriate
references for rigorous proofs. Where they do not, we first give a heuristic derivation for a broader
audience, whilst deferring the proofs to the end.

2 A Stochastic Epidemiological Model with Multiple Pathogen

Strains

We consider a family of random processes
⇣
S
(n)(t), I(n)1 (t), . . . , I(n)d (t), R(n)(t)

⌘
, indexed by a pa-

rameter n, the “system size” [31], which plays a role similar to the census population size in
population genetics (see e.g., [15, 11, 13]): it can be thought of as the area in which the population
lives, determining the population density per unit area and the rate of immigration. Similarly
to fixed-size population genetic models, we will consider the asymptotic behaviour of our model

when n is large. S(n)(t), I(n)1 (t), . . . , I(n)d (t), and R
(n)(t) are the number of susceptible individuals,

individuals infected with strain i = 1, . . . , d, and recovered individuals, respectively. We will write
N

(n)(t) for the total population size at time t, so that

N
(n)(t) = S

(n)(t) + I
(n)
1 (t) + · · ·+ I

(n)
d (t) +R

(n)(t).

Using this notation, our compartmental model for the epidemic is represented graphically in Figure
S.1.

I
(n)
1 �

(n)
1

��

�(n)+↵
(n)
1

✏✏

�(n)n
//

S
(n)

�
(n)
1 I

(n)
1

N

44

�
(n)
2 I

(n)
2

N(n)

**

�(n)

✏✏

R
(n)

�(n)

✏✏

I
(n)
2

�
(n)
2

HH

�(n)+↵
(n)
2

✏✏

Figure S.1: Compartmental model of a two-strain SIR epidemic. Arrows indicate transitions be-
tween states and are labelled with the corresponding transition rate. Arrows into empty space
indicate deaths.

Equivalently, we may describe our model as a continuous-time Markov chain E taking values in
Nd+2 with transition rates given in Table 1. When a transition occurs at time t, we will distinguish

3



Transition Rate
S ! S + 1 �

(n)
n

S ! S � 1 �
(n)

S

S ! S � 1, Ik ! Ik + 1
�
(n)
k SIk
N

Ik ! Ik � 1 (�(n) + ↵
(n)
k )Ik

Ik ! Ik � 1, R ! R+ 1 �
(n)
k Ik

R ! R� 1 �
(n)

R

Table 1: Transition rates from the state S
(n)(t) = S, I(n)k (t) = Ik and R

(n)(t) = R

between the value E(t�) of the Markov chain before the transition and its value E(t) after the
transition.

All parameters given in Table 1 may depend on n, but are assumed to have a constant value to
first approximation in n

↵
(n)
i = ↵i +O

�
1
n

�
, �

(n)
i = �i +O

�
1
n

�
, �

(n)
i = �i +O

�
1
n

�
, �

(n) = � +O
�
1
n

�
, �

(n) = �+O
�
1
n

�

(S.1)

Simple calculations using the master equation tell us that in the absence of infected individuals,
the expected value of N (n)(t) is

E
h
N

(n)(t)
i
= e

��(n)t
N

(n)(0) +
�
(n)

�(n)

⇣
1� e

��(n)t
⌘
n,

which approaches an equilibrium value of �(n)

�(n) n as t ! 1. Thus, to first approximation, the total
population size is proportional to n.

If one knows the values of S(n)(t) and I
(n)(t) := (I(n)1 (t), . . . , I(n)d (t)), then given one of R(n)(t) or

N
(n)(t) one can determine the other. For our purposes, it is more convenient to track the total

population size, and consider the epidemic

E
(n)(t) :=

⇣
S
(n)(t), I(n)(t), N (n)(t)

⌘
.

In what follows, rather than working with E
(n)(t) we will focus on the rescaled process

S̄
(n)(t) :=

1

n
S
(n)(t), Ī

(n)
i (t) :=

1

n
I
(n)
i (t), N̄

(n)(t) :=
1

n
N

(n)(t),

and
Ē

(n)(t) :=
⇣
S̄
(n)(t), Ī(n)(t), N̄ (n)(t)

⌘
.

Ē
(n)(t) has the advantage of being a density dependent population process [21, 22, 23, 24] as gen-

eralized in [28]: the transition rates in (1) depend only on the densities S̄
(n)(t), Ī(n)(t), N̄ (n)(t)

and not on the absolute numbers of individuals. As we discuss below, density dependent popula-
tion processes have a number of nice features, including a law of large numbers and central limit
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theorems.
Remark 1. To simplify our subsequent use of subscripts, we will consider Ē(n)(t) as a process taking
values in Rd+2, the space of points

x = (x0, x1, . . . , xd, xd+1),

and use S̄
(n)(t) and Ē

(n)
0 (t), etc. interchangeably.

3 Stochastic Di↵erential Equation Formulation

Here, we introduce a very convenient way of writing our Markov chain as the solution to a stochastic
integral equation with the help of simple Poisson processes.

A Poisson process P is a Markov process making jumps of +1 exclusively, and such that P (0) = 0.
A Poisson process P is a called a simple Poisson process if it jumps at constant rate 1. In this case,
(P (at)) is a Poisson process with rate a. This can be generalized by noting that (P (

R t
0 a(s) ds))

is a time-inhomogeneous Poisson process which jumps at rate a(t) at time t. Similarly, there is a
unique continuous-time Markov chain X satisfying

X(t) = x0 + P

✓Z t

0
f(X(s�)) ds

◆

and when X(t�) = x, X jumps to x+ 1 at rate f(x).

Then it is not di�cult to extend this (see Chapter 6, §4 in [14] for details) to our Markov process
as follows:

S
(n)(t) = S

(n)(0) + Pe0+ed+1(n�
(n)

t)

� P�e0�ed+1

✓Z t

0
�
(n)

S
(n)(s) ds

◆
�

dX

i=1

P�e0+ei

 Z t

0

�
(n)
i S

(n)(s)I(n)i (s)

N (n)(s)
ds

!

I
(n)
i (t) = I

(n)
i (0) + P�e0+ei

 Z t

0

�
(n)
i S

(n)(s)I(n)i (s)

N (n)(s)
ds

!

� P�ei�ed+1

✓Z t

0
(�(n) + ↵

(n)
i )I(n)i (s) ds

◆
� P�ei

✓Z t

0
�
(n)
i I

(n)
i (s) ds

◆

N
(n)(t) = N

(n)(0) + Pe0+ed+1(n�
(n)

t)� P�e0�ed+1

✓Z t

0
�
(n)

S
(n)(s) ds

◆

� P�ed+1

 Z t

0
�
(n)

 
N

(n)(s)�
dX

i=1

I
(n)
i (s)� S

(n)(s)

!
ds

!

�

dX

i=1

P�ei�ed+1

✓Z t

0
(�(n) + ↵

(n)
i )I(n)i (s) ds

◆
.

where all the processes Pl(t) are independent, simple Poisson processes, indexed by the correspond-
ing jumps, l, of the Markov process (E(n)(t)) and ei is the i

th standard basis vector, the element
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of Rd+2 with zeros everywhere except for a 1 at row i i.e., an immigration event is indexed by
e0 + ed+1, as it increases the number of susceptibles and the total population size by 1.

Changing variables, we get

S̄
(n)(t) = S̄

(n)(0) +
1

n
Pe0+ed+1(n�

(n)
t)

�
1

n
P�e0�ed+1

✓
n

Z t

0
�
(n)

S̄
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1

n
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n
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(n)
i S̄
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ds

!

Ī
(n)
i (t) = Ī

(n)
i (0) +

1

n
P�e0+ei

 
n

Z t

0

�
(n)
i S̄

(n)(s)Ī(n)i (s)

N̄ (n)(s)
ds

!

�
1

n
P�ei�ed+1

✓
n

Z t

0
(�(n) + ↵

(n)
i )Ī(n)i (s) ds

◆
�

1

n
P�ei

✓
n

Z t

0
�
(n)
i Ī

(n)
i (s) ds

◆

N̄
(n)(t) = N̄

(n)(0) +
1

n
Pe0+ed+1(n�

(n)
t)�

1

n
P�e0�ed+1

✓
n

Z t

0
�
(n)

S̄
(n)(s) ds

◆

�
1

n
P�ed+1

 
n

Z t

0
�
(n)

 
N̄

(n)(s)�
dX

i=1

Ī
(n)
i (s)� S̄

(n)(s)

!
ds

!

�

dX

i=1

1

n
P�ei�ed+1

✓
n

Z t

0
(�(n) + ↵

(n)
i )Ī(n)i (s) ds

◆
.

This formalism is useful because it will allow us to write each r.h.s. as the sum of a deterministic
trend and of a stochastic term with zero expectation.

Recall that the marginal value P (t) of a simple Poisson process at time t is a Poisson random
variable with parameter t. In particular, P (t)� t has mean 0 and variance t. So if we write

P̃ (t) := P (t)� t,

we are writing P (t) as the sum of a deterministic trend t and of a stochastic term P̃ (t) with mean 0.
If we come back to the example of the Markov process X jumping at rate f(X), we can write

X(t) = x0 +

Z t

0
f(X(s�)) ds+M(t),

where we have set

M(t) := P̃

✓Z t

0
f(X(s�)) ds

◆
.

In addition, since the increments P̃ (t+ s)� P̃ (t) are independent of the past before t, have mean
0 and variance s, we can write the last equation in di↵erential form

dX(t) = f(X(t�)) dt+ dM(t),

with dM(t) = U(t)� f(X(t�)) dt, where U(t) equals 1 i↵ P jumps at
R t
0 f(X(s�)) ds and equals 0

otherwise. In particular, conditional on X(t�) = x, dM(t) has mean 0 and variance f(x) dt. Thus,
we also recover the infinitesimal variation of X as the sum of an infinitesimal trend in the dynamics
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and of a stochastic fluctuation term with zero expectation.

Now let us return to our initial process. We adopt the same notation as previously, for example
P̃�e0�ed+1(t) = P�e0�ed+1(t)� t and

M
(n)
�e0�ed+1

(t) := P̃�e0�ed+1

✓
n

Z t

0
�
(n)

S̄
(n)(s) ds

◆
.

Proposition 1. The infinitesimal variation of Ē(n)(t) can be written as the sum of an infinitesimal
deterministic trend and of a stochastic fluctuation term with zero expectation:

dS̄
(n)(t) = F

(n)
0

⇣
Ē

(n)(t)
⌘
dt+

1

n
dM
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e0+ed+1

(t)�
1

n
dM
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(t)�
1

n

dX
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dM
(n)
�e0+ei(t)

dĪ
(n)
i (t) = F

(n)
i

⇣
Ē

(n)(t)
⌘
dt+

1

n
dM

(n)
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1

n
dM

(n)
�ei�ed+1

(t)�
1

n
dM

(n)
�ei(t)

dN̄
(n)(t) = F

(n)
d+1

⇣
Ē

(n)(t)
⌘
dt+

1

n
dM
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(t)�
1

n
dM
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(t)�
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n
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(t)�
1

n
dM

(n)
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(t),

where

F
(n)
0 (x) = �

(n)
�

 
dX

i=1

�
(n)
i

xi

xd+1
+ �

(n)

!
x0

F
(n)
i (x) =

✓
�
(n)
i

x0

xd+1
� (�(n) + ↵

(n)
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i )

◆
xi
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(n)
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i=1

↵
(n)
i xi,

and dM
(n)
e0+ed+1

(t), dM
(n)
�e0�ed+1

(t), dM
(n)
�e0+ei(t), dM

(n)
�ei�ed+1

(t), dM
(n)
�ei(t) and dM

(n)
�ed+1

(t), are
independent infinitesimal noise terms with mean zero and respective infinitesimal variances

n⇢
(n)
e0+ed+1

�
Ē

(n)(t)
�
dt, n⇢(n)�e0�ed+1

�
Ē

(n)(t)
�
dt, n⇢(n)�e0+ei

�
Ē

(n)(t)
�
dt, n⇢(n)�ei�ed+1

�
Ē

(n)(t)
�
dt,

n⇢
(n)
�ei

�
Ē

(n)(t)
�
dt and n⇢

(n)
�ed+1

�
Ē

(n)(t)
�
dt, where

⇢
(n)
e0+ed+1

(x) = �
(n)

⇢
(n)
�e0�ed+1

(x) = �
(n)

x0

⇢
(n)
�e0+ei(x) = �

(n)
i

x0 xi

xd+1

⇢
(n)
�ei�ed+1

(x) = (�(n) + ↵
(n)
i )xi

⇢
(n)
�ei(x) = �

(n)
i xi

⇢
(n)
�ed+1

(x) = �
(n)

 
xd+1 �

dX

i=0

xi

!
.
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Remark 2. Note that n⇢(n)l

�
Ē

(n)(t)
�
, is rate at which the Markov process (E(n)(t)) makes a jump

l.

Setting

M
(n)(t) := (e0 + ed+1)M

(n)
e0+ed+1

(t)� (e0 + ed+1)M
(n)
�e0�ed+1

(t) +
dX

i=1

(ei � e0)M
(n)
�e0+ei(t)

�

dX

i=1

(ei + ed+1)M
(n)
�ei�ed+1

(t)�
dX

i=1

eiM
(n)
�ei(t)� ed+1M

(n)
�ed+1

(t), (S.2)

the result in the proposition can be written more compactly as

dĒ
(n)(t) = F

(n)
⇣
Ē

(n)(t)
⌘
dt+

1

n
dM

(n)(t), (S.3)

where
F

(n)(x) = (F (n)
0 (x), F (n)

1 (x), . . . F (n)
d (x), F (n)

d+1(x)).

Thus, the function F
(n)(x) describes the infinitesimal trend in the dynamics, whereas the terms

M
(n)
l (t) capture the de-trended fluctuations corresponding to each type of possible event. This

equation is analogous to an Itô SDE, only now the driving noise is the discontinuous M
(n)(t),

rather than the more familiar Brownian motion.

We note that for i = 1, . . . , d,

M
(n)
i (t) = M

(n)
�e0+ei(t)�M

(n)
�ei�ed+1

(t)�M
(n)
�ei(t),

so that M (n)
i (t) is independent of M (n)

j (t) for all 1  i 6= j  d, whereas

E
h
dM

(n)
i (t)2

i
=

 
�
(n)
i

S
(n)(t)

N (n)(t)
+ (�(n) + ↵

(n)
i + �

(n)
i )

!
I
(n)
i (t), (S.4)

two facts that will prove useful in what follows.

In particular, it makes sense to define a(n) as the infinitesimal variance-covariance matrix of Ē(n)(t)
by

a
(n)
ij

⇣
Ē

(n)(t)
⌘
dt := Cov

h
dĒ

(n)
i (t), dĒ(n)

j (t)
i
=

1

n2
Cov

h
dM

(n)
i (t), dM (n)

j (t)
i
. (S.5)

Let us compute a(n). Because all distinct terms in the definition (S.2) of M (n) are independent, all
cross terms vanish. For example, for any 1  i  d

Cov
h
dĒ

(n)
0 (t), dĒ(n)

i (t)
i

=

1

n2
Cov

2

4dM (n)
e0+ed+1

(t)� dM
(n)
�e0�ed+1

(t)�
dX

j=1

dM
(n)
�e0+ej (t),

dM
(n)
�e0+ei(t)� dM

(n)
�ei�ed+1

(t)� dM
(n)
�ei(t)

i
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=
1

n2
Cov

h
�dM

(n)
�e0+ei(t), dM

(n)
�e0+ei(t)

i

= �
1

n2
Var

h
dM

(n)
�e0+ei(t)

i
= �

1

n
⇢
(n)
�e0+ei(Ē

(n)(t)) dt,

which shows that a
(n)
0i (x) = �

1
n⇢

(n)
�e0+ei(x). We should not be surprised by the fact that this

infinitesimal covariance is negative. Each event where a susceptible is infected by strain i has
the e↵ect of simultaneously decreasing the number of susceptibles and increasing the number of
individuals infected by strain i.

By similar calculations, it is easy to see that

a
(n)
0,d+1(x) =

1

n
⇢
(n)
e0+ed+1

(x) +
1

n
⇢
(n)
�e0�ed+1

(x) ,

a
(n)
d+1,d+1(x) =

1

n
⇢
(n)
e0+ed+1

(x) +
1

n
⇢
(n)
�e0�ed+1

(x) +
1

n

dX

i=1

⇢
(n)
�ei�ed+1

(x) +
1

n
⇢
(n)
�ed+1

(x) ,

and for any 1  i  d,

a
(n)
i,d+1(x) =

1

n
⇢
(n)
�ei�ed+1

(x) .

Also for any 1  i 6= j  d, a(n)ij (x) = 0 and

a
(n)
jj (x) =

1

n
⇢
(n)
�e0+ej (x) +

1

n
⇢
(n)
�ej�ed+1

(x) +
1

n
⇢
(n)
�ej (x) .

In other words, for any 0  i, j  d+ 1,

a
(n)
ij (x) =

8
<

:

1
n

✓
�
(n)
i x0xj

xd+1
+ (�(n) + ↵

(n)
j + �

(n)
j )xj

◆
if i = j,

0 otherwise.
(S.6)

Equivalently,

a
(n)(x) =

1

n

X

l

l
>
l⇢l(x), (S.7)

where the sum is over all possible jumps l of the Markov process (E(n)(t)).

3.1 Obtaining Equation (4)

Note that similarly to Brownian motion, the infinitesimal mean of 1p
n
M

(n)
l (t) during the time

interval dt is zero and its infinitesimal variance is ⇢
(n)
l

⇣
Ẽ

(n)(t)
⌘
dt., whereas the jump size 1p

n

tends to 0 as n ! 1 (and thus, 1p
n
M

(n)
l (t) is approximately continuous for large n), we see

that for large values of n, this noise is approximately equal to a Brownian motion with the same
variance:

1
p
n
M

(n)
l (t) ⇡

r
⇢
(n)
l

⇣
Ẽ(n)(t)

⌘
dBl(t),
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where all Brownian motions Be0+ed+1 , B�e0�ed+1 , B�e0+ei , B�ei�ed+1 , B�ei and B�ed+1 are inde-
pendent.

This allows us to rewrite the results in Proposition 1 in the form of the following di↵usion approx-
imation for n large,

dS̄
(n)(t) ⇡ F

(n)
0

⇣
Ē

(n)(t)
⌘
dt+

1
p
n

q
⇢
(n)
e0+ed+1

�
Ē(n)(t)

�
dBe0+ed+1(t)

�
1
p
n

q
⇢
(n)
�e0�ed+1

�
Ē(n)(t)

�
dB�e0�ed+1(t)�

1
p
n

dX

i=1

q
⇢
(n)
�e0+ei

�
Ē(n)(t)

�
dB�e0+ei(t)

dĪ
(n)
i (t) ⇡ F

(n)
i

⇣
Ē

(n)(t)
⌘
dt+

1
p
n

q
⇢
(n)
�e0+ei

�
Ē(n)(t)

�
dB�e0+ei(t)

�
1
p
n

q
⇢
(n)
�ei�ed+1

�
Ē(n)(t)

�
dB�ei�ed+1(t)�

1
p
n

q
⇢
(n)
�ei

�
Ē(n)(t)

�
dB�ei(t)

dN̄
(n)(t) ⇡ F

(n)
d+1

⇣
Ē

(n)(t)
⌘
dt+

1
p
n

q
⇢
(n)
e0+ed+1

�
Ē(n)(t)

�
dBe0+ed+1(t)

�
1
p
n

q
⇢
(n)
�e0�ed+1

�
Ē(n)(t)

�
dB�e0�ed+1(t)�

1
p
n

dX

i=1

q
⇢
(n)
�ei�ed+1

�
Ē(n)(t)

�
dB�ei�ed+1(t)

�
1
p
n

q
⇢
(n)
�ed+1

�
Ē(n)(t)

�
dB�ed+1(t)

(see [23] for a rigorous statement).

Setting

Ī
(n)(t) :=

dX

l=1

Ī
(n)
l (t),

so that

dĪ
(n)(t) =

dX

l=1

dĪ
(n)
l (t),

and combining independent Brownian motions, we obtain equation (3) in the main text (n.b., to
simplify notation in the main text, we use S, I and R in lieu of S̄(n)(t), Ī(n)(t) and N̄

(n)(t)).

We shall not use this di↵usion approximation in the sequel, where we continue to consider the
process with discrete jumps, (S.3).

4 Itô’s Formula and Derivation of Equation (5)

As a first application of the SDE representation, we apply Itô’s formula with jumps to our process
to obtain an SDE for the proportion of each strain.

10



To motivate this, suppose we had a deterministic di↵erential equation

Ẏ (t) = f(Y (t))

and we let X(t) be a deterministic real function of Y (t), say

X(t) := g(Y (t))

where g : Rd+2
! R is assumed to be continuously di↵erentiable.

Then, applying the chain rule, we derive a di↵erential equation satisfied by X(t):

Ẋ(t) =
d+1X

j=0

@g

@xj
(Y (t))fj(Y (t))

or equivalently

X(t) = X(0) +

Z t

0

d+1X

j=0

@g

@xj
(Y (s))fj(Y (s)) ds

The analogue of the chain rule in the fully stochastic case is the Meyer-Itô’s formula (see e.g., [29]).

X
(n)(t) = X

(n)(0) +

Z t

0

d+1X

j=0

@g

@xj
(E(n)(s))F (n)

j (Ē(n)(s))

+
1

2

d+1X

j,k=0

a
(n)
jk (Ē(n)(s))

@
2
g

@xj@xk
(Ē(n)(s)) ds+

1

n

Z t

0

d+1X

j=0

@g

@xj
(E(n)(s)) dM (n)

j (s) + "
(n)(t), (S.8)

where a
(n)(x) is the infinitesimal variance-covariance matrix of Ē(n)(t) defined in (S.6) and

"
(n)(t) =

X

s<t

g(Ē(n)(s))� g(Ē(n)(s�))�
d+1X

j=0

@g

@xj
(Ē(n)(s�))�Ē

(n)
j (s)

�
1

2

d+1X

j,k=0

@
2
g

@xj@xk
(Ē(n)(s�))�Ē

(n)
j (s)�Ē

(n)
k (s), (S.9)

where the sum is over the times s of discontinuity of Ē(n). At a time t of discontinuity,

�Ē
(n)
j (t) := Ē

(n)
j (t)� Ē

(n)
j (t�)

denotes the magnitude of the jump in Ē
(n)
j at time t. The term "

(n)(t) correcting for discontinuities
distinguishes the more general Meyer-Itô formula from the familiar Itô’s formula for di↵usions. In
Section 8.1, we show that "(n)(t) = O

�
1/n2

�
.
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Using this, we can derive Equation (5) from the main text. Let

⇧i(x) =
xiPd
l=1 xl

so that
P

(n)
i (t) = ⇧i(Ī

(n)(t)) = ⇧i(Ē
(n)(t)).

is the proportion of the population infected with strain i. Since P
(n)
i (t) is a deterministic function

of Ē
(n)(t), we can use Itô’s formula (S.8) for jump processes. The following statement will be

proved rigorously in Section 8.1.
Proposition 2. The fraction of the population infected by strain i satisfies

P
(n)
i (t) = P

(n)
i (0) +

Z t

0
P

(n)
i (s)

0

@r
(n)
i (S̄(n)(s), N̄ (n)(s))�

dX

j=1

r
(n)
j (S̄(n)(s), N̄ (n)(s))P (n)

j (s)

1

A

+
1

n

1
Pd

l=1 Ī
(n)
l (s)

P
(n)
i (s)

0

@v
(n)
i (S̄(n)(s), N̄ (n)(s))�

dX

j=1

v
(n)
j (S̄(n)(s), N̄ (n)(s))P (n)

j (s)

1

A ds

+
1

n

Z t

0

1
Pd

l=1 Ī
(n)
l (s)

dX

j=1

⇣
{i=j} � P

(n)
i (s)

⌘
dM

(n)
j (s) + "

(n)
i (t),

(S.10)
where

r
(n)
i (x0, xd+1) := �

(n)
i

x0

xd+1
� (�(n) + ↵

(n)
i + �

(n)
i )

gives the Malthusian growth rate of strain i, whereas

v
(n)
i (x0, xd+1) := �

(n)
i

x0

xd+1
+ (�(n) + ↵

(n)
i + �

(n)
i )

is the infinitesimal variance associated with the growth of strain i. In addition, for any T > 0,

there is a constant C such that for all t 2 [0, T ], P{|n2
"
(n)
i (t)| � C} vanishes as n ! 1.

To obtain Equation (5) in the main text, we omit the lower order error term "
(n)
i (t) = O

�
1/n2

�
,

recall that

I
(n)(t) =

dX

l=1

I
(n)
l (t) = n

dX

l=1

Ī
(n)
l (t)

gives the total number of infectives, and observe that, similarly to the previous section,

1

n
dM

(n)
i ⇡

1
p
n

q
v
(n)
i (S̄(n)(s), N̄ (n)(s))Ī(n)i (t) dBi(t)

for independent Brownian motions B1, . . . , Bd, so that

1

n

1
Pd

l=1 Ī
(n)
l (s)

dM
(n)
j ⇡

1p
I(n)(t)

q
v
(n)
i (S̄(n)(s), N̄ (n)(s))P (n)

i (t) dBi(t).
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5 Probability of Fixation of a Mutant Pathogen

In this section, we will be interested in the long time behaviour of our multi-strain stochastic
epidemics. In particular, we tackle the problem of predicting which strains will be outcompeted
and which strains will fix.

5.1 A Deterministic Limit and its Asymptotic Analysis

We begin this section with a result stating the convergence to a deterministic dynamical system as
n ! 1.
Proposition 3 (Theorem 2.2, [23]). If

S̄
(n)(0) ! S(0), Ī

(n)
i (0) ! Ii(0), and N̄

(n)(0) ! N(0)

as n ! 1, then for any fixed T > 0, with probability 1,

sup
tT

kĒ
(n)(t)�E(t)k ! 0, (S.11)

where E(t) := (S(t), I1(t), . . . , Id(t), N(t)) is the solution to the following system of ordinary dif-
ferential equations:

Ṡ(t) = ��

 
dX

i=1

�i
Ii(t)

N(t)
+ �

!
S(t), (S.12a)

İi(t) =

✓
�i

S(t)

N(t)
� (� + ↵i + �i)

◆
Ii(t), (S.12b)

Ṅ(t) = �� �N(t)�
dX

i=1

↵iIi(t), (S.12c)

with initial conditions S(0), I(0), and N(0).

Note that the result in the previous proposition can be written more compactly as

Ė = F (E),

where
F (x) = lim

n!1
F

(n)(x).

While we continue to work with the finite n fully stochastic process, the bifurcation structure
of the deterministic system (S.12) will guide our analysis of the stochastic model. In particular,
the steady states of this model, together with the degenerate case that arises when stability is
exchanged between fixed points, give rise to two regimes that correspond to strong and weak
selection in classical population genetics. To be explicit, let

R0,i :=
�i

� + ↵i + �i
.
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be the basic reproduction number of strain i. R0,i is the expected total number of new infections
caused by a single infected individual, assuming an unlimited supply of susceptibles.

If R0,i 6= R0,j for all 1  i 6= j  d, the equations (S.12) have d+ 1 fixed points, one at 0 and one
at the d equilibria where the population is infected by a single strain

E
?,i := (S?,i

, I
?,i
i , . . . , I

?,i
d , N

?,i),

where

S
?,i :=

�

�R0,i

✓
1�

↵1(R0,i � 1)

�1 � ↵1

◆
, I

?,i
j :=

(
�(R0,i�1)
�i�↵i

if i = j, and

0 otherwise,
and N

?,i := R0,iS
?
.

(S.13)

When d = 1, it is shown in [32] when � > ↵1 that: if R0,1 > 1 then unique endemic equilibrium of
the strain, Ē?,1 is globally asymptotically stable, whereas if R0,i  1, the disease-free equilibrium
0 is globally asymptotically stable. The stability of fixed points is slightly more subtle when there
is more than one strain.
Definition 1. We distinguish between two regimes of selection.

(i) The strong selection case, when R0,1 > R0,i for all i > 1, � > ↵1 and R0,1 > 1;

(ii) The weak selection case, R0,1 = R0,i = R
?
0 for i  m, whilst R?

0 > R0,j for m < d.
Proposition 4. The long term behavior of the deterministic system (S.12) di↵ers according to the
selection regime.

(i) In the strong selection case, the equilibrium state Ē
?,1 with strain 1 endemic and all other

strains extinct is globally asymptotically stable from any initial condition for which I1(0) > 0.

(ii) In the weak selection case, we arrive at a degenerate situation in which deterministic coex-
istence of strains 1, . . . , d is possible. Strains m+ 1, . . . , d will eventually disappear, whereas
all points x 2 Rd+2

+ such that

mX

i=1

(�i � ↵i)xi = �(R?
0 � 1),

xm+1 = · · · = xd = 0,

xd+1 =
1

�

 
��

mX

i=1

↵ixi

!
,

xd+1 = R
?
0x0

(S.14)

are fixed points for the system (S.12). The set ⌦ of such points is globally attracting, but no
point in ⌦ is an attracting fixed point.

Proof. Point (i) follows by a direct adaptation of the result in [6]: rearranging (S.12b), we see that

1

�i

İi(t)

Ii(t)
+

1

R0,i
=

S(t)

N(t)
=

1

�1

İ1(t)

I1(t)
+

1

R0,1
,
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so that ✓
Ii(t)

Ii(0)

◆ 1
�i
e

1
R0,i

t
=

✓
I1(t)

I1(0)

◆ 1
�1

e

1
R0,1

t
,

and, recalling that I1(t) is bounded for all t > 0, we see that for all i > 1

Ii(t) = Ii(0)

✓
I1(t)

I1(0)

◆ �i
�1

e
��i

R0,1�R0,i
R0,1R0,i

t
! 0

as t ! 1.

The same argument shows that in the weak selection case, strains m + 1, . . . , d will eventually
disappear, whereas all points in ⌦ are fixed points. Moreover, all vectors u tangent to ⌦, i.e., such
that

mX

i=1

(�i � ↵i)ui = 0, um+1 = · · · = ud = 0, and ud+1 = R
?
0u0,

are all eigenvectors to the Jacobian of F – evaluated at any x 2 ⌦ – corresponding to the eigenvalue
0. Thus, while ⌦ is a globally attracting set, no point in ⌦ is an attracting fixed point.

We now turn to the computation of the fixation probability of a novel strain in the fully stochastic
system. Informed by the previous statement, we will consider two cases, strong and weak selection,
where the dynamics of the process – and thus our approach to the fixation probabilities – are
qualitatively di↵erent. We will then show, despite the di↵erence in the approaches, and in the
expressions for the fixation probability thereby obtained, that our two results for the fixation
probability agree on all intermediate scalings, and may thus be combined (heuristically) via the
method of matched asymptotic expansions, to obtain a single expression valid across all scales.

5.2 The Strong Selection Case

We begin by recalling that for the deterministic approximation (S.12) to apply, we required that

S̄
(n)(0) ! S(0), Ī(n)i (0) ! Ii(0) and N̄

(n)(0) ! N(0) as n ! 1. Unpacking this assumption, we
see that

I
(n)
i (0) = nIi(0) + o(n),

i.e., that a non-trivial portion of the population is already infected with strain i.

For any strain with I
(n)
i (0) ⌧ n, Ī(n)i (0) ! 0, and thus Ii(t) ⌘ 0 for all t  T , for any fixed T > 0:

until O(n) individuals are infected, strain i is e↵ectively invisible to the deterministic approximation
on any finite time interval. This is not to say that the strain is absent, but rather, if we sample
individuals from the population uniformly at random, the probability of sampling an individual
infected with strain i is zero.

We will consider the case when a fixed number k of strain 2 individuals invade an established
resident population. For our purposes, a strain i is established if it is initially present in macroscopic
numbers, i.e.,

Ī
(n)
i (0) ! Ii(0) > 0.
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In light of the results in 5.1, we will assume that there is only a single resident strain, strain 1. We
will first consider the case when the resident strain is in endemic equilibrium, and then generalise
to the case when the resident strain, whilst still present in macroscopic numbers, is initially away
from equilibrium.

Should the invading strain, strain 2, exceed "n individuals, for any " > 0, we arrive again in the

domain of applicability of the deterministic approximation (Ī(n)2 (0) ! I2(0) > " > 0). If the
reproductive number of the invader is greater than that of the resident, R0,2 > R0,1, then for n

su�ciently large, the dynamics are essentially deterministic, and with high probability (i.e., tending
to 1 as n ! 1) the process will in finite time T" enter an "-neighbourhood of the fixed point E?,2

for arbitrarily small " > 0. Once the process reaches this new equilibrium, we will see the resident
strain is no longer viable, and subsequently disappears.

If we start at the endemic equilibrium of the resident strain 1, E?,1, then until I(n)2 exceeds "n, the
epidemic process E(n)(t) will remain close to that point. We thus have

S
(n)(t)

N (n)(t)
=

S̄
(n)(t)

N̄ (n)(t)
⇡

1

R0,1
,

and to first approximation, strain 2 has per-host transmission and clearance/mortality rates of

�2

R0,1
and � + ↵2 + �2.

This latter is a birth and death process (see e.g., [3]) which will go extinct with probability

q =
� + ↵2 + �2

�2
R0,1

=
R0,1

R0,2

if R0,2 > R0,1, and with probability q = 1 otherwise. This probability of extinction q is for a single
initial individual infected with strain 2, and becomes q

k for k initial individuals. Now, a birth
and death process either goes extinct or grows arbitrarily large, so with probability 1� R0,2

R0,1
it will

eventually exceed "n.

Similarly, when we have reached a neighbourhood of E?,2 the transmission and clearance/mortality
rates of strain 1 are approximately

�1

R0,2
and � + ↵1 + �1.

Since R0,2 > R0,1, this is a subcritical birth-death process which goes extinct with probability 1.
Thus, invasion implies replacement, where for our purposes, the process invades if it exceeds "n

individuals for some fixed " > 0.

16



To summarize, we have heuristically derived
Proposition 5 (Strong Selection). Consider a population infected with 2 strains such that R0,2 >

R0,1.

(i) [Macroscopic initial frequencies] If Ī(n)2 (0) ! I2(0) > 0, then strain 1 will go extinct with high
probability.

(ii) [Novel strain in small number of copies, resident at endemic equilibrium] Suppose that Ī(n)1 (0) !

Ī
?,1, and that I(n)2 (0) = k for some fixed positive integer k. Then, provided R0,2 > 1, for any

" > 0

lim
n!1

P
n
I
(n)
1 (t) = 0 and kĒ

(n)(t)� Ē
?,2

k < " for some t < 1

o
= 1�

✓
R0,1

R0,2

◆k

. (S.15)

In other words, the event that strain 1 becomes extinct asymptotically coincides with the event
that strain 2 invades, which happens with a probability asymptotically equal to the probability

of survival 1 �
⇣
R0,1

R0,2

⌘k
of a time-homogeneous birth-death process; on this event, the system

reaches in finite time the deterministic equilibrium (S.13) with only strain 2 endemic.

We give a rigorous proof of this result in Section 8.2, and compare (S.15) to fixation probabilities
estimated from simulated epidemics in Figure S.4b.

5.3 The Weak Selection Case

Recall that weak selection corresponds to the case when R0,i = R0,j = R
?
0 for 1  i, j  m, whereas

R
?
0 > R0,j for m < j  d (to simplify the discussion, we consider only the case where m = d). We

hasten to clarify, however, that

R
(n)
0,i =

�
(n)
i

�(n) + ↵
(n)
i + �

(n)
i

,

so our assumptions (S.1) only impose that

R
(n)
0,i = R

?
0

⇣
1 +

ri

n

⌘
+ o

�
1
n

�

i.e.,R(n)
0,i and R

(n)
0,j are allowed to di↵er by O

�
1
n

�
terms; as we shall see below, this is analogous to

the weak selection limit of classical population genetics, and the values ri will appear as selection
coe�cients in a di↵usion approximation.

In this case, we have a separation of timescales: there is a fast time-scale, in which (S.11) tells us
that the stochastic process approximately follows the trajectories of (S.12) arbitrarily closely to
an arbitrarily small neighbourhood of ⌦. Then, as we discuss below, there is a slow-time scale, in
which, having arrived at ⌦, the stochastic process remains near this critical manifold.
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Let

Ŝ
(n)(t) := S̄

(n)(nt) =
1

n
S
(n)(nt),

Î
(n)
i (t) := Ī

(n)
i (nt) =

1

n
I
(n)
i (nt),

N̂
(n)(t) := N̄

(n)(nt) =
1

n
N

(n)(nt),

and let
Ê

(n)(t) := (Ŝ(n)(t), Î(n)
i (t), N̂ (n)(t)),

where, as before, we let Î(n)(t) =
⇣
Î
(n)
1 (t), . . . , Î(n)d (t)

⌘
, and note that

(Ŝ(n)(0), Î(n)(0), N̂ (n)(0)) = (S̄(n)(0), Ī(n)(0), N̄ (n)(0)).

Here, rescaling time by n is analogous to the passage to so-called “coalescent time” or “generation
time”, which is used to derive the di↵usion limit of the Wright-Fisher model in classical population
genetics.

Recalling (S.3), the SDE for Ê(n)(t) is then

Ê
(n)(t) = Ê

(n)(0) +

Z nt

0
F

(n)
⇣
Ē

(n)(s)
⌘
ds+

1

n
M

(n)(nt)

= Ê
(n)(0) +

Z t

0
nF

(n)
⇣
Ê

(n)(s)
⌘
ds+

1

n
M

(n)(nt).

Thus, in the slow time scale, the advective component is accelerated by a factor of n, causing
the process to move rapidly to the critical manifold ⌦; as n ! 1, this movement becomes in-
stantaneous, and the process immediately jumps to ⌦ at time t = 0. Moreover, stochastic fluc-
tuations away from ⌦ are restored instantaneously, so the process becomes “trapped” on ⌦ as
n ! 1. The following statement formalizes this idea using the projection ⇡ defined as follows.
Let E(t,x) = (S(t,x), I(t,x), N(t,x)) be the solution to (S.12) with initial conditions S(0) = x0,
Ii(0) = xi, and N(0) = xd+1 and let

⇡(x) := lim
t!1

E(t,x),

i.e.,⇡(x) is the point on ⌦ at which the trajectory of (S.12) starting from x meets ⌦.
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Proposition 6. As n ! 1, (Ê(n)(t)) ) (Ê(t))1 where the latter is a di↵usion on the manifold
⌦, solution to the system of stochastic di↵erential equations

dÊi =
d+1X

j=0

@⇡i

@xj
(Ê)fj(Ê) dt+

1

2

d+1X

j=0

d+1X

k=0

@
2
⇡i

@xj@xk
(Ê)ajk(Ê) dt+

d+1X

j=0

DX

k=1

@⇡i

@xj
(Ê)�jk(Ê) dBk(t) (S.16)

where the (Bk) denote D = 3(d+ 1) independent standard Brownian motions,

f(x) := lim
n!1

n

⇣
F

(n)(x)� F (x)
⌘
,

and �(x) is the (d+ 1)⇥D matrix

2

666666664

p
� �

p
�x0 �

q
�1x0x1
xd+1

0 0 �

q
�2x0x2
xd+1

· · · 0 �

q
�dx0xd
xd+1

0 0 0

0 0
q

�1x0x1
xd+1

�
p
(�+↵1)x1 �

p
�1x1 0 · · · · · · · · · · · · 0 0

...
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 0 0 · · · · · · · · · · · · 0
q

�dx0xd
xd+1

�
p
(�+↵d)xd �

p
�dxd 0

p
� �

p
�x0 0 �

p
(�+↵1)x1 0 0 · · · · · · 0 �

p
(�+↵d)xd 0 �

r
�(xd+1�

Pd
i=0 xi)

3

777777775

,

and
a(x) = lim

n!1
na

(n)(x) = �(x)�(x)>.

In other words, for each i

dÊi(t) = D⇡i(Ê(t))f(Ê(t)) dt+D⇡i(Ê(t))�(Ê(t)) dB(t)

+
1

2
Tr

h
�
>(Ê(t))H⇡i(Ê(t))�(Ê(t))

i
dt, (S.17)

where D⇡i denotes the gradient vector of ⇡i, H⇡i its Hessian matrix, and Tr denotes the trace
operator.

This di↵usion can be understood as the result of stochastic fluctuations around ⌦ immediately
followed by a strong deterministic drift towards ⌦.

As can be seen from Proposition 3, the drift pushes the process very rapidly onto ⌦, so that
in the limit, the process lives permanently in ⌦. Now to understand the interplay between the
deterministic dynamics towards ⌦ and the stochastic fluctuations around ⌦, it is useful to think of
the dynamics in two steps. Suppose that starting from a point Ê(t�) 2 ⌦, the process E has a
jump l. Then, the rescaled process (Ê(n)(t)) has a jump 1

n l.

1A family of random variables {X(n)} taking values in a space S is said to converge weakly to X if

lim
n!1

E[f(X(n))] = E[f(X)]

for all f 2 C(S); the values E[f(X)] completely characterise the distribution of X. Weak convergence is denoted by

X(n) ) X.

Here, S is the Skorokhod space DRd+2 [0,1) of right- continuous functions from [0,1) to Rd+2 with left limits; the
interested reader is referred to [5] for a very readable account of weak convergence on D.
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In a second step, it is immediately projected back to the manifold by the drift at the new location,
so:

dÊ(t) = ⇡

✓
Ê(t�) +

1

n
l

◆
� Ê(t�)

Thus, expanding the i-th component of the r.h.s. of the last equation and recalling that ⇡
⇣
Ê(t�)

⌘
=

Ê(t�) yields

dÊ
(n)
i (t) = ⇡i

✓
Ê

(n)(t�) +
1

n
l

◆
� E

(n)
i (t�)

=
1

n

X

j

@⇡i

@xj
(Ê(n)(t�))li +

1

n2

X

j

X

k

1

2

@
2
⇡i

@xj@xk
(Ê(n)(t�))ljlk + o

�
1
n2

�
.

To determine E[dÊ(n)
i (t)] (i.e., the i

th component of the drift in the di↵usion approximation) we
need only sum this over all possible jumps l, weighted by their probabilities:

E[dÊ(n)
i (t)]

=
X

l

0

@ 1

n

X

j

@⇡i

@xj
(E(n)(t�))lj +

1

n2

X

j

X

k

1

2

@
2
⇡i

@xj@xk
(E(n)(t�))ljlk + o

�
1
n

�
1

An⇢l(E
(n)(t�)) d(nt)

= n

X

j

@⇡i

@xj
(Ê(n)(t�))F (n)

j (Ê(t�)) dt+
1

2

X

j

X

k

@
2
⇡i

@xj@xk
(Ê(n)(t�))ajk(Ê

(n)(t�)) dt,

where, because we have rescaled time, d(nt) replaces dt in probability of a jump at t. Recalling
F (Ê(t)) = 0 and (S.7), this yields the first term of the previous equation yields the first term of
Eq (S.16).

A picture (Figure S.2) more immediately explains the emergence of the variance induced drift:
unless the flow lines are parallel, jumps of identical magnitude and direction will be returned to
the manifold ⌦ at di↵erent distances from the initial point, as one moves along the manifold:

Of course the rigorous way of obtaining the result is to use Itô’s formula as done in the proof.

Proof. The weak convergence Ê
(n)

) Ê is proven in [19] (see [27] for an informal, applications-
oriented discussion).

To characterise the limit Ê, we shall make use of ⇡. Unfortunately, ⇡(x) is impossible to compute
analytically, but we can still use it to obtain an SDE for Ê(t). We first observe that if F is
twice-continuously di↵erentiable, then ⇡ is as well [18]. The continuity of ⇡ then tells us that
⇡(Ê(n)(t)) ) ⇡(Ê(t)) as well. Since ⇡ has first and second derivatives, we may apply Itô’s formula
(see Section 4) to ⇡(Ê(n)(t)):
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Figure S.2: Dynamics of the densities of the resident and the mutant strain in the phase plane
when the two strains have the same basic reproduction number R0, but under three di↵erent
scenarios. (A) The mutant strain has a lower virulence than the resident. (B) The two strains
have the same virulence. (C) The mutant strain has a higher virulence than the resident. The
deterministic trajectories are shown as grey arrows that point towards the manifold ⌦ (the black
line). The light red ellipsoid has axes proportional to the infinitesimal variance of the jumps that
displace each strain from a given point on the manifold (black dot). The combination of the e↵ect
of stochasticity and the fast deterministic return to the manifold generates a drift (red arrow) that
favours the strain with the lower virulence. Parameter values of the resident: �1 = 10, ↵1 = 2,
� = 0.05, � = 0.5. Virulence of the mutant: ↵2 = 1.25, 2, and 2.75 in A, B and C, respectively.
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⇡i(Ê
(n)(t)) = ⇡i(Ê

(n)(0))

+

Z t

0

d+1X

j=0

n
@⇡i

@xj
(E(n)(s))F (n)

j (Ê(n)(s)) +
1

2

d+1X

j,k=0

na
(n)
jk (Ê(n)(s))

@⇡i

@xj@xk
(E(n)(s)) ds

+

Z t

0

1

n

d+1X

j=0

@⇡i

@xj
(E(n)(s)) dM (n)

j (ns) + "
(n)
i (nt) (S.18)

where, as before, a(n)jk (x) is given by (S.6) and "
(n)
i (nt) is a smaller order error term.

On first inspection, it might appear that the drift term, which is multiplied by n, explodes as
n ! 1; however, from the definition of ⇡, we see that ⇡(E(t,x)) = ⇡(x), and thus,

0 =
d

dt

����
t=0

⇡(E(t,x)) =
d+1X

j=0

@⇡i

@xj
(x)Fj(x),

and the terms of order O(n) vanish identically.

We can thus replace F
(n) by F

(n)
� F in (S.18), leaving

d+1X

j=0

@⇡i

@xj
(E(n)(s))n

⇣
F

(n)
j (Ê(n)(s))� Fj(Ê

(n)(s))
⌘
,

which remains bounded, as our assumptions (S.1) guarantee that F (n)
� F is O

�
1
n

�
.

Next, we recall (S.2)

M
(n)(t) = (e0 + ed+1)M

(n)
e0+ed+1

(t)� (e0 + ed+1)M
(n)
�e0�ed+1

(t)

+
dX

i=1

(ei � e0)M
(n)
�e0+ei(t)�

dX

i=1

(ei + ed+1)M
(n)
�ei�ed+1

(t)�
dX

i=1

eiM
(n)
�ei(t)� ed+1M

(n)
�ed+1

(t),

where, for example,

M
(n)
�e0�ed+1

(t) = P̃�e0�ed+1

✓Z t

0
�
(n)

S
(n)(s) ds

◆
.

Thus,

1

n
M

(n)
�e0�ed+1

(nt) = P̃�e0�ed+1

✓Z nt

0
�
(n)

S
(n)(s) ds

◆

=
1

n
P̃�e0�ed+1

✓
n
2
Z t

0
�
(n)

S̄
(n)(ns) ds

◆
.

The latter is a stochastic process with jumps of order 1
n and variance

Z t

0
�
(n)

S̄
(n)(ns) ds =

Z t

0
�
(n)

Ê
(n)
0 (s) ds.
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Thus, as n ! 1, 1
nM

(n)
�e0�ed+1

(nt) approaches a continuous stochastic process with variance

Z t

0
�Ê0(s) ds.

The martingale central limit theorem (see e.g., [14]) tells us that the only stochastic process with
these properties is a Brownian motion with the same variance,

Z t

0

q
�Ê0(s) dB�e0�ed+1(s).

(i.e.,B�e0�ed+1(t) is a standard Brownian motion with mean 0 and variance t).

Proceeding similarly, in the limit, we may replace all the terms M (n)
l with integrals of independent

Brownian motions, so that as n ! 1, 1
nM

(n)(nt) aproaches

Z t

0
�(Ê(s)) dB(s)

where

B(t) =
�
Be0+ed+1(t), B�e0�ed+1(t), B�e0+e1(t), B�e1�ed+1(t), B�e1 , (t),

. . . , B�e0+ed(t), B�ed�ed+1(t), B�ed(t), B�ed+1(t)
�

is an ordered list of the D Brownian motions corresponding to the D noises M
(n)
l (t) and �(x)

is as in the statement. Taking the limit as n ! 1 on both sides of (S.18) and recalling that
⇡(Ê(t)) = Ê(t), we obtain (S.16).

While the drift terms seem rather mysterious, they may be interpreted geometrically. We first
observe that
Proposition 7. (D⇡)(x) is the projection onto the tangent space to ⌦ at x, Tx⌦.

Proof. We first observe that, since ⇡(x) 2 ⌦ for all x, we must have

⇡(⇡(x)) = ⇡(x).

If, moreover, x 2 ⌦, we also have ⇡(⇡(x)) = x, so taking derivatives on left and right, using the
chain rule, we have that

(D⇡)(⇡(x))(D⇡)(x) = I,

where I denotes the identity matrix. Now, since x 2 ⌦, the right hand side is equal to

(D⇡)(x)(D⇡)(x),

so we have that (D⇡)(x) is a projection. It remains to see that it is a projection onto the tangent
space. We will do so by showing it’s image contains, and is contained by, the tangent space.

For the former, we recall that a vector X is in the tangent space to ⌦ if and only if there exists a
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parametric curve �x,X(t) such that

(i) �x,X(0) = x,

(ii) �̇x,X(0) = X, and,

(iii) �x,X(t) 2 ⌦ for all t 2 R.

We then have ⇡(�x,X(t)) = �x,X , and thus

(D⇡)(x)X =
d

dt

����
t=0

⇡(�x,X(t)) = �̇x,X(0) = X,

and thus Tx⌦ is in the image of (D⇡)(x).

On the other hand, since ⇡(x) 2 ⌦, we have F (⇡(x)) = 0, and again, taking derivatives using the
chain rule, we have

(DF )(⇡(x))(D⇡)(x) = 0,

so that if x 2 ⌦, we have (DF )(x)(D⇡)(x) = 0 and thus

(DF )(x)(D⇡)(x)X = 0

i.e., the image of (D⇡)(x) is contained in the kernel of (DF )(x), which we have already observed
is Tx⌦. Thus, Im ((D⇡)(x)) = Tx⌦.

Thus, the drift vector (D⇡)(x)f(x) from (S.17) is the projection of the vector f(x) onto the tangent
space to ⌦. This is an immediate consequence of the strong drift: in the absence of constraints, the
process would move (on average) in the direction of this vector, whose components are the relative
fitness of each strain, multiplied by the density of that strain. However, density limitation prevents
unlimited growth, confining the process to the manifold ⌦, and thus the direction of motion to
the tangent plane, and the strains experience a drift that is the best approximating vector to their
unconstrained growth rates.

5.3.1 Computing the derivatives of ⇡

To complete our derivation of the equations for the limiting process Ê(t), we must compute the
derivatives of the ⇡i.
Proposition 8. Let x 2 ⌦ and 0  i  d+ 1. The first partial derivatives of ⇡i at x are given by
@⇡i
@xk

= 0 if k = 0 or d+ 1, otherwise by

@⇡i

@xk
= {i=k} �

(�k � ↵k)�ixiPd
j=1(�j � ↵j)�jxj

.

The second partial derivatives ⇡i at x are given for any k, n both di↵erent from 0 and d+ 1, by:

@
2
⇡i

@xk@xn
=

�iPd
j=1(�j � ↵j)�jxj

�
�(�k � ↵k) {n=i} � (�n � ↵n) {k=i}
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+
(�k � ↵k)(�n � ↵n)xiPd

j=1(�j � ↵j)�jxj

 
�k + �n + �i �

Pd
j=1(�j � ↵j)�2

j xjPd
j=1(�j � ↵j)�jxj

!!
.

Proof. We recall that under the weak selection hypothesis,

İi(t) = �i

✓
S(t)

N(t)
�

1

R
?
0

◆
Ii(t),

so that
dIi

dIj
=

�iIi

�jIj
.

We can solve this to obtain
1

�i
ln

✓
Ii(t)

Ii(0)

◆
=

1

�j
ln

✓
Ij(t)

Ij(0)

◆
,

for all i, j, i.e.,
1

�i
ln

✓
Ii(t,x)

xi

◆
=

1

�j
ln

✓
Ij(t,x)

xj

◆
,

and, taking the limit as t ! 1,

1

�i
ln

✓
⇡i(x)

xi

◆
=

1

�j
ln

✓
⇡j(x)

xj

◆
. (S.19)

Taking derivatives, we then have

1

�i

✓
1

⇡i

@⇡i

@xk
�

1

xi
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◆
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1
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✓
1
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@⇡j

@xk
�

1

xj
{k=j}

◆
,

1

�i⇡i

@⇡i

@x0
=

1

�j⇡j

@⇡j

@x0

1

�i⇡i

@⇡i

@xd+1
=

1

�j⇡j

@⇡j

@xd+1
,

and

1

�i

✓
�

1

⇡
2
i

@⇡i

@xk

@⇡i

@xn
+

1

⇡i

@
2
⇡i

@xk@xn
+

1

x
2
i

{k=i} {n=i}

◆

=
1

�j

 
�

1

⇡
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@xn
+

1

⇡j

@
2
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@xk@xn
+

1

x
2
j
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!
.

Moreover, using (S.14) we have that

dX

i=1

(�i � ↵i)⇡i(x) = �(R?
0 � 1),
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so that
dX

i=1

(�i � ↵i)
@⇡i

@xk
=

dX

i=1

(�i � ↵i)
@⇡i

@x0
=

dX

i=1

(�i � ↵i)
@⇡i

@xd+1
= 0

and
dX

i=1

(�i � ↵i)
@
2
⇡i

@xk@xn
= 0.

Together, these equations give us systems of linear equations that may be solved for the various
derivatives of ⇡i(x). To illustrate, consider @⇡i

@x0
; from the above, we have that

0 =
dX

i=1

(�i � ↵i)
@⇡i

@x0
= (�1 � ↵1)

@⇡1

@x0
+

dX

i=2

(�i � ↵i)
�i⇡i

�1⇡1

@⇡1

@x0
=

 
dX

i=1

(�i � ↵i)
�i⇡i

�1⇡1

!
@⇡1

@x0
,

whence @⇡1
@x0

= 0, and thus @⇡i
@x0

= 0 for all i. Proceeding in the same manner, we find @⇡i
@xd+1

= 0 as

well, and thus that all second derivatives of ⇡i(x) involving x0 or xd+1 vanish identically, whilst

@⇡i

@xk
=

⇡i

xi
{i=k} �

⇡k

xk

(�k � ↵k)�i⇡iPd
j=1(�j � ↵j)�j⇡j

.

We shall only need to evaluate these for x 2 ⌦, where Ê(t) is trapped. For such x, the first
derivatives simplify to the expression given in the statement, since ⇡(x) = x for x 2 ⌦. Similar
calculations lead to the second partial derivatives.

5.3.2 Reduced Di↵usion

We can use the results of the previous section to provide semi-explicit expressions for the SDE
satisfied by Ê and displayed in Proposition 6.
Proposition 9. Unlike the full stochastic SIR model, the weak selection limit Ê can be completely
characterised by a system of equations that depend only on the variables Î1, . . . , Îd:

dÎi = si(I(t))Îi(t) dt+
1p
R

?
0

dX

k=1

 

{i=k} �
(�k � ↵k)�iÎi(t)Pd
j=1(�j � ↵j)�j Îj(t)

!q
2�kÎk(t) dBk(t). (S.20)

where

si(x) = ŝi(x)�
�ixiPd

j=1(�j � ↵j)�jxj

dX

j=1

(�j � ↵j)ŝj(x) (S.21)

for

ŝi(x) :=
�i

R
?
0

 
ri �

1
Pd

j=1(�j � ↵j)�jxj

 
2(�i � ↵i)�

Pd
j=1(�j � ↵j)2�jxj

Pd
j=1(�j � ↵j)�jxj

!!
, (S.22)

and dB1(t), . . . , dBD(t) are independent Brownian motions.
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Proof. In the previous section, we observed that @⇡i
@x0

= @⇡i
@xd+1

= 0, and thus any second partial

derivative with respect to x0 or xd+1 vanishes as well. Moreover, for i = 1, . . . , d,

n

⇣
F

(n)
i (x)� Fi(x)

⌘
= n

 
�
(n)
i

 
x0

xd+1
�

1

R
(n)
0,i

!
xi � �i

✓
x0

xd+1
�

1

R
?
0

◆
xi

!

! �
�irixi

R
?
0

,

Moreover, for x 2 ⌦, we have

x0

xd+1
=

1

R
?
0

✓
=

� + ↵j + �j

�j

◆
,

so that, from (S.6), we obtain in the limit n ! 1

ajk(x) =

(
2�ixj

R?
0

if j = k, and

0 otherwise.

Similarly, for 1  j, k  d, �jk(x) depends on x0 or xd+1 only via the ratio x0
xd+1

which is identically

equal to 1
R?

0
on x 2 ⌦.

Substituting these and the first derivatives into (S.16) allows us to complete the description of the
weak limit Ê(t), exploiting the fact that the triples of Brownian motions B�e0+ei , B�ei�ed+1 and
B�ej and B�e0+ej , B�ej�ed+1 and B�ei are independent for i 6= j to combine each triple into a
single Brownian motion.

5.3.3 Frequency Process

Repeating the argument of Section 4, we can use the functions ⇧i to finding an equation for the
frequency of strain i,

Pi(t) =
Îi(t)Pd
j=1 Îj(t)

where, because the limiting process is a di↵usion, the standard Itô formula applies. We omit the
lengthy calculations this entails, and present simply the result.

For our process P (t), we find that

dPi(t) = bi(P (t)) dt+
1p
R

?
0

1p
Ie(P (t))

1
Pd

j=1(�j � ↵j)�jPj(t)

⇥

dX

j=1

( {i=j} � Pi(t))
dX

k=1

(�k � ↵k)

✓
�kPk(t)

q
2�jPj(t) dBj(t)� �jPj(t)

p
2�kPk(t) dBk(t)

◆
.

(S.23)
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where

bi(p) := pi

 
si(Ie(p)p)�

dX

m=1

sd(Ie(p)p)pd

!
,

for s(x) as defined by (S.21) and (S.22), and where, if p 2 �d corresponds to the point x 2 ⌦,
i.e.,

pi :=
xiPd
j=1 xj

,

then

Ie(x) =
dX

j=1

xj .

Writing

pi :=
xiPd
j=1 xj

=
xi

Ie(x)
,

and recalling that

�(R?
0 � 1) =

dX

i=1

(�i � ↵i)xi =
dX

i=1

(�i � ↵i)Ie(x)pi

we see that we can explicitly express Ie as a function of p:

Ie(p) =
�(R?

0 � 1)
Pd

i=1(�i � ↵i)pi
.

Remark 3. The notation above has been deliberately chosen to evoke the Wright-Fisher di↵usion
in population genetics, with si(p) and Ie(p) a frequency-dependent selection coe�cient and an
e↵ective population size, respectively. To understand the motivation for the latter, note that

Ie = lim
n!1

1

n

dX

j=1

I
(n)
j (t),

so that Ie(x) is an idealization of the total density of infected individuals (which is itself a random
variable) when the di↵usion limit is at the point x 2 ⌦, or, equivalently, when the frequencies of the
various strains is p. In principle, additional population structure and the corresponding sampling
e↵ects could be taken into account via an “e↵ective infected population size” much as e↵ective
population sizes are used in the Wright-Fisher model.
Remark 4. As before, vector b(p) may be interpreted geometrically as the projection of the vector

2

64
s1(Ie(p)p)p1

...
sd(Ie(p)p)pd

3

75

onto the simplex �d.
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5.3.4 Results for d = 2

If we have d = 2 strains, then, since P1(t) + P2(t) = 1, it is su�cient to consider the frequency of
the invading strain, strain 2. Writing P (t) := P2(t), the results of the previous section tell us that
the generator of P (t)2 is

Lf(p) = b(p)f 0(p) +
1

2
a(p)f 00(p),

where

b(p) :=
1

R
?
0

(r2�r1)
�2�1 ((�2�↵2)p+(�1�↵1)(1�p))

((�2�↵2)�2p+(�1�↵1)�1(1�p))
p(1�p)

�
1

R
?
0

1

Ie(p)

�2�1 ((�2�↵2)p+(�1�↵1)(1�p)) (�2p+�1(1�p))

((�2�↵2)�2p+(�1�↵1)�1(1�p))2
⇥ (((�2�↵2)�2�(�1�↵1)�1)

�((�2�↵2)�(�1�↵1))

✓
�2�1 ((�2�↵2)p+(�1�↵1)(1�p))

((�2�↵2)�2p+(�1�↵1)�1(1�p))
�2(�2p+�1(1�p))

◆◆
p(1�p)

and

a(p) :=
2

R
?
0

1

Ie(p)

�2�1 ((�2 � ↵2)p+ (�1 � ↵1)(1� p))2 (�2p+ �1(1� p))

((�2 � ↵2)�2p+ (�1 � ↵1)�1(1� p))2
p(1� p).

The generator allows us to compute many quantities of interest for the process P (t). In particular,
if h(p) is the probability of fixation of strain 1 given P (0) = p, then h(p) satisfies the boundary
problem

Lh(p) = 0

h(0) = 0

h(1) = 1

2The generator of P (t) is the operator on the space of continuous functions on the d-simplex

�d =

(
p :

dX

i=1

pi = 1

)

defined by

Lf(p) := lim
t#0

E [f(P (t))|P (0) = p]� f(p)
t

.

We recall that if the di↵usion process P (t) has SDE

dP (t) = b(P (t))) dt+ &(P (t))) dB(t),

then

Lf(p) =
dX

i=1

bi(p)
@f
@pi

+
1
2

dX

i=1

dX

i=1

aij(p)
@2f

@pi@pj

where a(x) = &(x)&(x)> is the variance-covariance matrix for dP (t), and the probability density function for P (t),
say f(t,p), satisfies the Kolmogorov backward equation

@
@t

f(t,p) = Lf(t,p).
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(see e.g., [15, 11, 13]). This may be solved to give

h(p) =

R p
0 e

�2
R b(q)

a(q) dq dq

R 1
0 e

�2
R b(q)

a(q) dq dq

. (S.24)

Let h̃(p) be the numerator of this fraction. Substituting the expressions for a(p) and b(p) and some
simplification yields

h̃(p) :=

Z p

0

(�2q+�1(1�q))
�(�2+�1)((�2�↵2)�(�1�↵1))

�2↵1��1↵2 ((�2�↵2)q+(�1�↵1)(1�q))
2�((�2�↵2)�2�(�1�↵1)�1)

�2↵1��1↵2

((�2�↵2)�2q+(�1�↵1)�1(1�q))

⇥ e
�(r2�r1)

R q
0 Ie(u)

((�2�↵2)�2u+(�1�↵1)�1(1�u))
((�2�↵2)u+(�1�↵1)(1�u))(�2u+�1(1�u))

du
dq,

whereas

h(p) =
h̃(p)

h̃(1)
.

For ease of notation, we will write

�(q) =

Z q

0
Ie(u)

((�2 � ↵2)�2u+ (�1 � ↵1)�1(1� u))

((�2 � ↵2)u+ (�1 � ↵1)(1� u)) (�2u+ �1(1� u))
du

and

g(q) =
(�2q + �1(1� q))

� (�2+�1)((�2�↵2)�(�1�↵1))
�2↵1��1↵2 ((�2 � ↵2)q + (�1 � ↵1)(1� q))

2� ((�2�↵2)�2�(�1�↵1)�1)
�2↵1��1↵2

((�2 � ↵2)�2q + (�1 � ↵1)�1(1� q))
,

so that

h̃(p) =

Z p

0
g(q)e�(r2�r1)�(q) dq.

We can evaluate this expression numerically, but we will be particularly interested in a number of
special cases, when we can obtain analytical approximations to h̃(p).

(i) When r2 = r1 (or, more generally, when R0,i = R
?
0

�
1 + o

�
1
n

��
) we can give an explicit closed

form for h̃(p), and thus h(p):

h̃(p) /
(�2p+�1(1�p))

1�(�2+�1)((�2�↵2)�(�1�↵1))
�2↵1��1↵2 ((�2�↵2)p+(�1�↵1)(1�p))

3�((�2�↵2)�2�(�1�↵1)�1)
�2↵1��1↵2

((�2�↵2)p+(�1�↵1)(1�p))

�
(�2+�1)

1�(�2+�1)((�2�↵2)�(�1�↵1))
�2↵1��1↵2 ((�2�↵2)+(�1�↵1))

3�((�2�↵2)�2�(�1�↵1)�1)
�2↵1��1↵2

((�2�↵2)+(�1�↵1))
. (S.25)

This expression is not, however, especially illuminating.

(ii) We shall principally be interested in the case when p is small, in which case we can Taylor
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Figure S.3: We compare (S.25) (red curve) and its order p2 approximation (S.26) (blue line) with
fixation probabilities for a single mutant invader obtained via simulating the Markov chain with
rates given by Table 1 (black diamonds). We vary �2 by setting �1 = �2(1 + �), while holding
R0,1 = R0,2 by setting ↵2 = �+↵1+�

1+� � � � �. The other parameters are fixed at n = 100, R?
0 = 4,

� = 2, � = 1, �1 = 20, and ↵1 = 3.

expand h̃(p) as

h̃(p) = h̃(0) + h̃
0(0)p+

1

2
h̃
00(0)p2 +O

�
p
3
�

= g(0)p+
1

2
(g0(0) + g(0)(r2 � r1)�

0(0))p2 +O
�
P

3
�

= g(0)

✓
p+

1

2

✓
g
0(0)

g(0)
+ (r2 � r1)Ie(0)

◆
p
2

◆
+O

�
p
3
�

Unfortunately, this does not yield an estimate of the normalising constant, h̃(1). To obtain
this, we consider the case when �2 � �1 and ↵2 � ↵1 are small. While this is a restrictive
assumption, it will allow us to consider the long-term evolution in the framework of adaptive
dynamics, where mutational changes are assumed to be very small. To this end, we introduce
� and ✓ such that

�2 = �1(1 + �) and ↵2 = ↵1(1 + ✓).
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We then have that

g
0(0)

g(0)
= � +O(2),

g(p)

g(0)
= 1� �p+O(2),�0(p) = �Ie(p) +O(2),

and

h̃(1)

g(0)
=

Z 1

0
(1� �p)e�(r2�r1)

R p
0 Ie(q) dq dp+O(2)

= 1�
�

2
� (r2 � r1)Ie(0) +O(2),

where O(2) is used to denote terms of order O
�
�
2
�
, O
�
✓
2
�
, or O(�✓).

Then, to order p2, the fixation probability is

h(p) :=
h̃(p)

h̃(1)
= p+

1

2
(� + (r2 � r1)Ie(0))p(1� p) +O(2), (S.26)

which may be written informally in terms of the original parameters as

h(p) :=
h̃(p)

h̃(1)
= p+

1

2

 
�1 � �2

�2
+

 
1�

R
(n)
0,1

R
(n)
0,2

!
nIe(0)

!
p(1� p) +O(2)

to lowest order. Here we have used

r2 � r1 = n
R

(n)
0,2 �R

(n)
0,1

R
?
0

+ o(1) = n
R

(n)
0,2 �R

(n)
0,1

R
(n)
0,2

⇣
1 +

r2

n
+ o(1)

⌘
+ o(1).

In practice, we are most interested in the case when a single individual carries the mutant
strain, so p = 1

nIe(0)
= 1

I(n)(0)
. While our proofs – which assume that p is independent of n,

and thus that the number of invading individuals is proportional to n – do not justify taking
this value for p, we find that the expression for the fixation probability obtained by taking
p = 1

I(n)(0)
, which to lowest order is

1

I(n)(0)
+

1

2

 
1

I(n)(0)

�1 � �2

�2
+ 1�

R
(n)
0,1

R
(n)
0,2

!
, (S.27)

agrees extremely well with simulations (Figure S.4c) – an example of the so-called “unreason-
able e↵ectiveness of mathematics’ [33] – and will use it to investigate the long term evolution
of the virulence in Section 6.

5.4 Reconciling the Strong and Weak Selection Results

On first inspection, our expressions for the strong and weak selection limits have little in common.

In Section 5.2, we saw that if R(n)
0,i ! R0,i and R0,2 6= R0,1, then, if I

(n)
2 (0) ! I2(0), the fixation
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probability was 8
<

:
1�

⇣
R0,1

R0,2

⌘I2(0)
if R0,2 > R0,1, and

0 otherwise

On the other hand, in Section 5.3, we assume that

R
(n)
0,i = R

?
0

⇣
1 +

ri

n

⌘
+ o

�
1
n

�

and Ī
(n)(0) = 1

nI
(n)
2 (0) ! I2(0), and derive a quite di↵erent appearing expression for the fixation

probability.

More generally, we might consider the intermediary scalings: let 1 ⌧ n ⌧ n, and suppose
that

R
(n)
0,i = R

?
0

✓
1 +

ri

n

◆
+ o

⇣
1
n

⌘

whilst

lim
n!1

I
(n)
2 (0)

n
= ◆.

Substituting these into our expression for strong selection, we see that, provided r2 > r1, we have
that the probability of fixation is

1�

0

@

⇣
1 + r1

n

⌘
+ o

⇣
1
n

⌘

⇣
1 + r2

n

⌘
+ o

⇣
1
n

⌘

1

A
n

I(n)(0)
n

! 1� e
�(r2�r1)◆

as n ! 1 (n.b., that when n � n,
I
(n)
2 (0)
n

! 0, so trivially the probability of fixation is 0).

On the other hand, we can begin with our expression for the fixation probability under weak

selection, which written in terms of the original parameters R(n)
0,2 and R

(n)
0,1 , was proportional to

h̃(p) =

Z p

0

(�2q��1(1�q))
�(�2+�1)((�2�↵2)�(�1�↵1))

�2↵1��1↵2 ((�2�↵2)q+(�1�↵1)(1�q))
2�((�2�↵2)�2�(�1�↵1)�1)

�2↵1��1↵2

((�2�↵2)�2q+(�1�↵1)�1(1�q))

⇥ e

�n
 

R
(n)
0,2�R

(n)
0,1

R?
0

+o
�
1
n

�!
((�2�↵2)�2q+(�1�↵1)�1(1�q))

�2�1((�2�↵2)q+(�1�↵1)(1�q))(�2q+�1(1�q))
dq

dq

Replacing R
(n)
0,2 and R

(n)
0,1 with the intermediary scalings, our expression becomes

Z p

0

(�2q��1(1�q))
�(�2+�1)((�2�↵2)�(�1�↵1))

�2↵1��1↵2 ((�2�↵2)q+(�1�↵1)(1�q))
2�((�2�↵2)�2�(�1�↵1)�1)

�2↵1��1↵2

((�2�↵2)�2q+(�1�↵1)�1(1�q))

⇥ e
� n

n
(r2�r1+o(1))

R
Ie(q)

((�2�↵2)�2q+(�1�↵1)�1(1�q))
�2�1((�2�↵2)q+(�1�↵1)(1�q))(�2q+�1(1�q))

dq
dq.
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We can find a large n asymptotic expression for this probability using a pair of lemmas:
Lemma 1. Suppose that �(x) and g(x) are an increasing continuously di↵erentiable function and
a continuous function on [a, b] (�1 < a < b < 1) respectively, and that �0(a) 6= 0. Then,

lim
M!1

R b
a g(x)e�M�(x)

dx

g(a)e�M�(a)

M�0(a)

= 1.

Proof. Fix " > 0 such that �0(a) > ". Using Taylor’s theorem, we may write

�(x) = �(a) + �
0(a)(x� a) +R(x)(x� a),

where R(x) ! 0 as x ! a. Fix � > 0 such that

|R(x)| < " and |g(x)� g(a)| < "

for all x such that x � a < �. Finally, choose ⌘ > 0 such that �(x) > �(a) + ⌘ for all x such that
x� a � � and B such that |g(x)| < B for all x 2 [a, b]. Then,

Z b

a
g(x)e�M�(x)

dx = e
�M�(a)

Z b

a
g(x)e�M(�(x)��(a))

dx

= e
�M�(a)

✓Z a+�

a
g(x)e�M(�(x)��(a))

dx+

Z b

a+�
g(x)e�M(�(x)��(a))

dx

◆
.

Now, ����
Z b

a+�
g(x)e�M(�(x)��(a))

dx

���� 
Z b

a+�
Be

�M⌘
dx ! 0

as M ! 1, whereas

(g(a)� ")

Z a+�

a
e
�M(�0(a)+")(x�a)

dx 

Z b

a
g(x)e�M(�(x)��(a))

dx

 (g(a) + ")

Z a+�

a
e
�M(�0(a)�")(x�a)

dx.

Now, letting y = M(x� a), we have

Z a+�

a
e
�M(�0(a)�")(x�a)

dx =
1

M

Z M�

0
e
�(�0(a)�")y

dy

whilst Z M�

0
e
�(�0(a)�")y

dy =
1

�0(a)� "

⇣
1� e

�(�0(a)�")M�
⌘
!

1

�0(a)� "

as M ! 1, and similarly for the lower bound.

Since " > 0 can be chosen arbitrarily small, the result follows.
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Lemma 2. Let �(x), g(x), and [a, b] be as above. Then,

lim
M!1

R a+ X
M

a g(x)e�M�(x)
dx

g(a)e�M�(a)

M�0(a)

= 1� e
��0(a)X

.

Proof. By direct computation, we have

Z a+ X
M

a
g(x)e�M�(x)

dx =

Z X

0
g(a+

y

M
)e�M�(a+ y

M )
dy

=
1

M

Z X

0
g(a+

y

M
)e�M(�(a)+�0(a) y

M +R(a+ y
M ) y

M dy

so that as M ! 1, R a+ X
M

a g(x)e�M�(x)
dx

g(a)e�M�(a)

M�0(a)

! �
0(a)

Z X

0
e
��0(a)y

dy.

The result follows.

To apply the lemmas here, we take a = 0 and b = 1, Mn = n
n

, and, as before,

g(p) =
(�2p��1(1�p))

�(�2+�1)((�2�↵2)�(�1�↵1))
�2↵1��1↵2 ((�2�↵2)p+(�1�↵1)(1�p))

2�((�2�↵2)�2�(�1�↵1)�1)
�2↵1��1↵2

((�2�↵2)�2p+(�1�↵1)�1(1�p))

whereas we now take a slightly di↵erent definition for �(p), which now has an o(1) correction:

�(p) = (r2 � r1 + o(1))

Z
Ie(p)

((�2 � ↵2)�2p+ (�1 � ↵1)�1(1� p))

�2�1 ((�2 � ↵2)p+ (�1 � ↵1)(1� p)) (�2p+ �1(1� p))
dp

so that
�
0(0) ! Ie(0)(r2 � r1)

as n ! 1. Then, using Lemma 1 we conclude that h̃(1) is asymptotically equivalent to

g(0)e�Mn�(0)

Mn�
0(0)

.

Now, to consider the numerator when we start with I
(n)
2 (0) ⇠ ◆n individuals of the invading strain,

we recall that

p = lim
n!1

P
(n)
2 (0) = lim

n!1

I
(n)
2 (0)

I
(n)
2 (0) + I

(n)
1 (0)

= lim
n!1

I
(n)
2 (0)

Ie(P
(n)
2 (0))n

so, to apply Lemma 2, we will take

X := X
(n) = Mn

I
(n)
2 (0)

Ie(P
(n)
2 (0))n

=
I
(n)
2 (0)

Ie(P (n)(0))n
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i.e., so that X(n)

Mn
⇠ p.

We note that P (n)(0) / n◆
n ! 0 as n ! 1, so

lim
n!1

X
(n) =

◆

Ie(0)
.

Thus, applying Lemma 2, we have

h̃

✓
I
(n)
2 (0)

Ie(P
(n)
2 (0))n

◆
⇠

g(0)e�Mn�(0)

Mn�
0(0)

⇣
1� e

�(r2�r1)◆
⌘
,

and the probability of fixation obtained from the weak selection expression is again asymptotic
to

1� e
�(r2�r1)◆.

While this is not a rigorous proof, it does demonstrate heuristically that the weak and strong
selection expressions for the fixation probability agree to first order when applied across the inter-
mediate selective regimes. In particular, we can use the method of matched asymptotic expansions
(see e.g., [17, 20]) to combine our two solutions into a single expression valid across all scales, by
summing the expressions for strong and weak selection and subtracting their common limit, where
all are expressed in the unscaled (i.e., strong selection parameters):

2

641�
 
R

(n)
0,1

R
(n)
0,2

!I
(n)
2 (0)

+ h

✓
I
(n)
2 (0)
Ie(0)n

◆
�

0

B@1� e

 
R
(n)
0,1

R
(n)
0,2

�1

!
I
(n)
2 (0)

1

CA

3

75

+

, (S.28)

where [x]+ = max{x, 0} and we have used that

R
(n)
0,1

R
(n)
0,2

� 1 =
1 + r1

n

1 + r2
n

� 1 =
1

n

r1 � r2

1 + r2
n

=
1

n
(r1 � r2) +O

⇣
1
2
n

⌘
,

so that

(r1 � r2)◆ ⇠ (r1 � r2)
I
(n)
2 (0)

n
⇠

 
R

(n)
0,1

R
(n)
0,2

� 1

!
I
(n)
2 (0).

We illustrate how these approximations compare to a simulated epidemic in Figure S.4.

6 Adaptive Dynamics

Using the expressions for the fixation probability derived above, we can use the framework of
adaptive dynamics to investigate the long-term evolution of strains. In what follows, we give an
informal discussion of the derivation of the canonical di↵usion for the process, a generalisation
of the canonical equation of adaptive dynamics which allows us to consider the influence of ran-
dom drift on phenotypic evolution. We refer the reader to [26] for a more extensive discussion
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(a) all approximations (b) strong selection

(c) weak selection (d) matched

Figure S.4: We compare our various approximations to fixation probabilities obtained by Markov
chain simulations (black diamonds), where we assume a single mutant invading a resident population
at equilibrium. We have implemented selection on the invading strain by setting �2 = �1(1+ s), so

that R(n)
0,2 = R

(n)
0,1 (1 + s). The other parameters are fixed at n = 100, R(n)

0,1 = R
?
0 = 4, � = 2, � = 1,

�1 = 20, and ↵1 = 3. (b) shows strong selection approximation (S.15) (green curve), (c) shows
the weak selection approximation (S.24) (red curve) and its second order approximation (S.24)
(blue line), (d) shows the matched asymptotic approximation (S.28), whereas (a) overlays all the
approximations for comparison. As would be expected, the strong and weak approximations do well
in their corresponding parameter regimes, but poorly elsewhere, whereas the matched asymptotic
provides a compromise, performing worse than the weak or strong approximations at the respective
extremes, but interpolating between them for intermediate values of s.
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aimed at a biological audience and to [9] for a mathematically rigorous derivation of the canonical
equation.

We briefly recall the assumptions of adaptive dynamics in the context of our epidemic models;
throughout, we assume that a novel mutant strain with virulence ↵

0 invades a population which is
at the endemic equilibrium with a resident strain ↵.

We assume a tradeo↵ between transmissibility and virulence, so that the contact rate of a strain
depends on its virulence according to some fixed function �(↵). For our numerical investigations,
we take

�(↵) = (� + ↵+ �)(R0,max � w(↵� ↵0)
2),

where w is a parameter that determines the “flatness” of the fitness landscape.

The reproductive number is a function of the virulence,

R0(↵) =
�(↵)

� + ↵+ �
.

We will assume that there is a value, ↵0, for the virulence that maximises R0(↵).

Under these assumptions, the density of ndividuals infected with the resident strain at the endemic
equilibrium is

Ieq(↵) ⇠
�(R0(↵)� 1)

�(↵)� ↵

Ieq(↵) is non-zero on a range (↵min,↵max); outside of this range, R0(↵)  1, and the pathogen goes
extinct (when R0 is independent of the virulence, ↵min = 0; in this case, as we will see below, we
must fix ↵max < 1 to have a probability distribution. The choice of ↵max is arbitrary).

We then have, using (S.27), that the fixation probability of a mutant strain of virulence ↵
0 arising

in a single individual in a population in which a strain of virulence ↵
0, is

S(↵,↵0) ⇠
1

nIeq(↵)
+

1

2

✓
1

nIeq(↵)

�(↵)� �(↵0)

�(↵0)
+ 1�

R0(↵)

R0(↵0)

◆
+O

⇣
|↵� ↵

0
|
2
⌘
.

To introduce the evolutionary dynamics, we assume that mutations occur in individuals with vir-
ulence ↵ at a per-capita rate ✏⌘(↵), where ✏ > 0 is a dimensionless parameter that we will take
to 0. This will ensure that, with high probability, fixation occurs before a second novel mutation
can arise. The population is thus assumed to be monomorphic (i.e., all individuals have the same
virulence) between invasion events. We will assume that given a mutation occurs in an individual
↵, the o↵spring has virulence ↵

0 with probability K(↵,↵0
� ↵) where K has mean 0 and finite

variance:
Z 1

�1
K(↵, z)zk dz =

8
><

>:

0 if k = 1,

⌫(↵) if k = 2, and

O(1) otherwise.

We now pass from the individual based model to the trait substitution sequence [25, 10]: we have
seen that whenever a new strain arises, either the mutant or resident strain will rapidly go extinct.
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Until a new mutant arises, the population will be composed entirely of individuals of the surviving
strain. Let A✏(t) be a random variable giving the virulence of the strain that survived the last
competition event prior to time t. The population is thus entirely composed of the strain A✏(t)
except for times t in the short intervals when two strains are competing. If we pass to a “mutational
time scale”, t

✏ , as ✏ ! 0 the duration of these intervals shrinks to 0, and we are left with a process
in which novel mutations either fix or disappear instantly, so that the population is only observed
with a single strain at equilibrium.

Formally, as ✏ ! 0, A✏(
t
✏) ) A(t), a continuous time Markov chain that jumps from virulence

↵ to ↵
0 when a strain of virulence ↵

0 successfully invades a population with resident virulence ↵

[9]. The process A(t) has generator (recall, the generator is the operator L defined by Lf(↵) :=
d
dt

��
t=0

E[f(A(t))|A(0) = ↵]):

Lf(↵) = n⌘(↵)Ieq(↵)

Z ↵max

↵min

K(↵,↵0)s(↵,↵0)
�
f(↵0)� f(↵)

�
d↵

0

n.b., If ↵0
62 [↵min,↵max], then the mutant cannot fix.

We now consider the limit of small mutations, and, following [8] assume that mutations will be
of order O("), where " is a dimensionless parameter which we will take to 0; this limit of small

mutational e↵ects allows us to ignore terms of order O

⇣
|↵� ↵

0
|
2
⌘
in the fixation probability. In

particular, we introduce a rescaled kernel

K"(↵, z) =
1

"
K

⇣
↵,

z

"

⌘
,

so that K"(↵, z) dz is the probability the mutant has virulence ↵ + "z. Let A
"(t) be the process

defined as A(t) above, but with the kernel K replaced by the kernel K".

Now, consider the time rescaled process Â"(t) := A
"
�

t
"2

�
; this has generator

L̂"f(↵) =
n

"2
⌘(↵)Ieq(↵)

Z ↵max

↵min

K"(↵,↵
0
� ↵)s(↵,↵0)

�
f(↵0)� f(↵)

�
d↵

0
.

In Section 8.3, we prove
Proposition 10. As " ! 0, Â"(t) converges to a limiting di↵usion Â(t) with advective coe�cient

µ(↵) = n⌘(↵)Ieq(↵)⌫(↵)
@

@↵0 s(↵,↵) =
⌘(↵)⌫(↵)

2

✓
nIeq(↵)

R
0
0(↵)

R0(↵)
�

�
0(↵)

�(↵)

◆
(S.29)

and di↵usion coe�cient

�
2(↵) = n⌘(↵)Ieq(↵)⌫(↵)s(↵,↵) = ⌘(↵)⌫(↵). (S.30)

and generator

L̂f(↵) = µ(↵)f 0(↵) +
1

2
�
2(↵)f 00(↵).

for f 2 C
2[↵min,↵max] such that f 0(↵min) = f

0(↵max) = 0.
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The process Â(t) is our canonical di↵usion.
Remark 5. The condition that f

0(↵min) = f
0(↵max) = 0 corresponds to a zero-flux (reflecting)

boundary condition at ↵min and ↵max for the corresponding forward equation [16]:

Z ↵max

↵min

g(↵)L̂f(↵) d↵ =

Z ↵max

↵min

g(↵)µ(↵)f 0(↵) d↵+
1

2

Z ↵max

↵min

g(↵)�2(↵)f 00(↵) d↵

=
⇣
g(↵min)µ(↵min)�

�
g(↵min)�

2(↵min)
�0⌘

f(↵min)�
⇣
g(↵max)µ(↵max)�

�
g(↵max)�

2(↵max)
�0⌘

f(↵max)

� g(↵min)�
2(↵min)f(↵min)f

0(↵min) + g(↵max)�
2(↵max)f(↵max)f

0(↵max)

�

Z ↵max

↵min

(g(↵)µ(↵))0 f(↵) d↵+
1

2

Z ↵max

↵min

�
g(↵)�2(↵)

�00
f(↵) d↵,

which equals
R ↵max

↵min
L̂
⇤
g(↵)f(↵) d↵ for arbitrary f such that f 0(↵min) = f

0(↵max) = 0 if and only if

the flux g(↵)µ(↵)�
�
g(↵)�2(↵)

�0
vanishes at ↵min and ↵max.

6.1 Stationary Distribution

Using (S.29) and (S.30), we may compute the stationary distribution  of Â(t); this stationary
distribution describes the long-term behaviour of the virulence, after any “memory” of the initial
state has been lost. Given any subset A ⇢ (↵min,↵max),  (A) gives the proportion of time that
the virulence is in the set A, or equivalently, the probability that at some random sampling time
t, the virulence takes a value in A.  is characterised by the relation

Z ↵max

↵min

L̂f(↵) (d↵) = 0.

In particular, if  (d↵) has a density, which, in a slight abuse of notation, we write as  (↵),

L̂
⇤
 = 0,

where L̂
⇤, defined by

L̂
⇤
f(↵) = �

d

d↵
[µ(↵)f(↵)] +

1

2

d
2

d↵2

⇥
�
2(↵)f(↵)

⇤
,

is the adjoint operator to L̂ (and thus,

d

dt
f(↵, t) = L̂

⇤
f(↵, t)

is the Fokker-Planck equation for the probability density of Â(t), f(↵, t)).

Thus,

 (↵) =
1

Z

1

�2(↵)
e

R 2µ(↵)

�2(↵)
d↵

d↵ (S.31)

where Z =
R ↵max

↵min

1
�2(↵)e

R 2µ(↵)

�2(↵)
d↵

d↵ is a normalising constant.
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From the previous, we have
2µ(↵)

�2(↵)
= nIeq(↵)

R
0
0(↵)

R0(↵)
�
�
0(↵)

�(↵)
. (S.32)

Unfortunately, we can only compute its integral analytically in the case of a “flat landscape”, when
R0(↵) ⌘ R0, independently of ↵. In this case, we have �(↵) = R0(�+↵+�), �0(↵) = R0, and

2µ(↵)

�2(↵)
= �

�
0(↵)

�(↵)
= �

1

� + ↵+ �

which has integral � ln (� + ↵+ �), so that

1

�2(↵)
e

R 2µ(↵)

�2(↵)
d↵

d↵ =
1

�2(↵)

1

� + ↵+ �
.

In particular, in the case when ⌘(↵) and ⌫(↵) (and thus �2(↵)) are constants independent of ↵, then
we can integrate this to obtain Z and thus a closed expression for the stationary distribution:

 (↵) =
1

ln
⇣
�+↵max+�
�+↵min+�

⌘ 1

(� + ↵+ �)
. (S.33)

Because this is a zero-flux solution, ↵min and ↵max may be chosen arbitrarily (we have a zero-flux
boundary condition). We take ↵min = 0; ↵max must be finite to ensure that Z is finite.

In the next section we will show how one may obtain an analytical approximation in the large n

limit.

6.2 Asymptotic Approximation to Stationary Distribution

The stationary distribution (S.31) lends itself to an approximation by Laplace’s method (see
e.g., [12]), which tells us that if �(x) is a twice di↵erentiable function with a unique local max-
imum attained at x0 2 (a, b), and g(x) is continuous, then

Z b

a
g(x)en�(x) dx =

s

�
2⇡

n�00(x0)
g(x0)e

n�(x0)
�
1 +O

�
1
n

��
.

(To order 1
n , one has

Z b

a
g(x)en�(x) dx =

s

�
2⇡

n�00(x0)
e
n�(x0)

 
g(x0)

+
1

n

 
1

2

g
00(x0)

�00(x0)
+

1

8

g
(4)(x0)

(�00(x0))2
+

1

2

g
0(x0)�(3)(x0)

(�00(x0))2
+

5

24

g(x0)(�(3)(x0))2

(�00(x0))3

!
+O

�
1
n2

�
!
; (S.34)

see e.g., [4]).

41



We can apply this to our stationary distribution by first observing from (S.32) that

1

�2(↵)
e

R 2µ(↵)

�2(↵)
d↵

= g(↵)en�(↵)

for

�(↵) =

Z
Ieq(↵)

R
0
0(↵)

R0(↵)
d↵ (S.35)

and

g(↵) =
1

�2(↵)�(↵)
,

and we can thus apply Laplace’s formula to compute Z.

To find our ↵0, we note that by assumption, we have chosen ↵min and ↵max so that �(R0(↵)�1)
�(↵)�↵ > 0

for all ↵ 2 (↵min,↵max). Thus, all values of ↵0 such that �0(↵0) = 0 satisfy R
0
0(↵0) = 0.

On the other hand, we recall that R0(↵) =
�(↵)

�+↵+� , so that

R
0
0(↵) =

�
0(↵)

� + ↵+ �
�

�(↵)

(� + ↵+ �)2
, (S.36)

and thus also R0(↵0) = �
0(↵0).

We next observe that

R
00(↵0) =

�
00(↵0)

� + ↵0 + �
. (S.37)

which depends on the choice of tradeo↵ function �(↵). We note briefly that this is a local maximum
if and only if �00(↵0) < 0. In particular, if we assume that R0(↵) has a unique global maximum,
then it must occur at ↵0. We will henceforth make this assumption (n.b., we don’t have to assume
this in general, but in applying Laplace’s method, we require that ↵0 be a global maximum; more
generally we could partition (↵min,↵max) into intervals containing a single local maxima).

We then have

�
00(↵) = I

0
eq(↵)

R
0
0(↵)

R0(↵)
+ Ieq(↵)

 
R

00
0(↵)

R0(↵)
�

✓
R

0
0(↵)

R0(↵)

◆2
!

so that

�
00(↵0) = Ieq(↵0)

R
00
0(↵0)

R0(↵0)
.

Thus,

Z =

Z ↵max

↵min

1

�2(↵)
e

R 2µ(↵)

�2(↵)
d↵

d↵ =

vuut
2⇡

nIeq(↵0)
|R00

0 (↵0)|
R0(↵0)

e
n�(↵0)

✓
1

�2(↵0)�(↵0)
+O

�
1
n

�◆
.
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We then have

1

Z

1

�2(↵)
e

R 2µ(↵)

�2(↵)
d↵

=
�
2(↵0)�(↵0)

�2(↵)�(↵)

1s
2⇡

nIeq(↵0)
|R00

0 (↵0)|
R0(↵0)

e
n(�(↵)��(↵0))

�
1 +O

�
1
n

��
.

Next, recalling that �0(↵0) = 0, a Taylor expansion gives

n(�(↵)� �(↵0)) =
1

2
n
�
�
00(↵0)(↵� ↵0)

2 +O
�
(↵� ↵0)3

��
.

Now, for ↵ close to ↵0, (↵ � ↵0)3 will be quite small, so we can locally approximate our full
stationary distribution by a process that is almost a Gaussian with mean ↵0 and variance

1

nIeq(↵0)
|R00

0 (↵0)|
R0(↵0)

,

except for a pre-factor of �2(↵0)�(↵0)
�2(↵)�(↵) , which skews the distribution:

1

Z

1

�2(↵)
e

R 2µ(↵)

�2(↵)
d↵

⇡
�
2(↵0)�(↵0)

�2(↵)�(↵)

1s
2⇡

nIeq(↵0)
|R00

0 (↵0)|
R0(↵0)

e
� 1

2nIeq(↵0)
|R00

0 (↵0)|
R0(↵0)

(↵�↵0)2

=
⌘(↵0)

⌘(↵)

⌫(↵0)

⌫(↵)

�(↵0)

�(↵)

1s
2⇡

nIeq(↵0)
|R00

0 (↵0)|
R0(↵0)

e
� 1

2nIeq(↵0)
|R00

0 (↵0)|
R0(↵0)

(↵�↵0)2
.

Again assuming that ⌘(↵) and ⌫(↵) are constants independent of ↵, this simplifies to

 approx(↵) =
�(↵0)

�(↵)

1s
2⇡

nIeq(↵0)
|R00

0 (↵0)|
R0(↵0)

e
� 1

2nIeq(↵0)
|R00

0 (↵0)|
R0(↵0)

(↵�↵0)2
. (S.38)

Remark 6. Applying (S.34) with f(↵)g(↵) in place of g(↵) for an arbitrary di↵erentiable function
f(↵), we may estimate the error in integrating f(↵) versus the true and approximate densities for
the stationary distribution:

������
1

Z

Z ↵max

↵min

f(↵)g(↵)e�n
R
�(↵) d↵

d↵�
1q

2⇡
n|�00(↵0)|g(↵0)

Z ↵max

↵min

f(↵)g(↵)e�n
�00(↵0)

2 (↵�↵0)2 d↵

������

=
1

n

����
1

2

f
0(↵0)�000(↵0)

(�00(↵0))2
�

1

2

f(↵0)g00(↵0)

g(↵0)|�00(↵0)|

����+O
�

1
n2

�

From this, see that in the bounded Lipschitz metric on probability measures, the di↵erence between
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the true stationary approximation  (d↵) and the Laplace approximation  approx(d↵) satisfies

lim
n!1

dBL( , approx) 
1

2

����
�
000(↵0)

(�00(↵0))2

����+
1

2

����
g
00(↵0)

g(↵0)|�00(↵0)|

���� .

Unfortunately, we cannot similarly bound the total variation distance: for any M > 0 the function
f(↵) := e

�M(↵�↵min)2 satisfies
sup

↵2[↵min,↵max]
|f(↵)|  1,

but, since

sup
↵2[↵min,↵max]

|f(↵)| =
p

2Me
� 1

2 ,

the bound
1

n

����
1

2

f
0(↵0)�000(↵0)

(�00(↵0))2
�

1

2

f(↵0)g00(↵0)

g(↵0)|�00(↵0)|

����

may be made arbitrarily large.

6.3 Mean & Mode of the Stationary Distribution

We observe that, whilst the stationary distribution is closely related to a Gaussian centred at ↵0,
the value of the virulence that maximises R0(↵), the full stationary distribution does not have mean
↵0, and ↵0 is not the most probable value of the virulence.

6.3.1 Estimating the Mean

Applying Laplace’s method with g(↵) replaced by ↵g(↵) allows us to estimate the mean of the
stationary distribution; to lowest order, we have

Z ↵max
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s

�
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n�(↵0)
�
1 +O

�
1
n

��
,

so that, normalising by our prior estimate of Z, we find that the mean is ↵0 to order O
�
1
n

�
. To

observe the e↵ects of a finite population size, we can the use higher order corrections to Laplace’s
method to obtain the O

�
1
n

�
terms in both the integral above and in Z; we omit the calculations,

but remark that the mean can then be shown to be
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✓
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where

g
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which simplifies to �
1

�+↵0+� in the case when ⌘ and ⌫ are independent of ↵, and

�
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�00(↵0)
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R
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0 (↵0)

R
00
0(↵0)

�
�
0(↵0)� 1

�(↵0)� ↵0
=

I
0
eq(↵0)

Ieq(↵0)
�

R
000
0 (↵0)

|R00
0(↵0)|

.

We note that this order O
�
1
n

�
term is proportional to the variance of the best-fit Gaussian of the

previous section. Note also that

I
0
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�R
0
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�(↵)� ↵
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�R0(↵)(�0(↵)� 1)
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,

so that I 0eq(↵0) = �
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< 0.

One may similarly show that the variance and skewness of the stationary distribution are
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respectively. We note that if ⌘0(↵0) � 0 and ⌫
0(↵0) � 0 (for example, if both rates are independent

of ↵), then the stationary distribution has negative skew.

6.3.2 Estimating the Mode

We begin by observing the density function of the stationary distribution (S.31) may be written
as

e

R 2µ(↵)

�2(↵)
d↵�ln �2(↵)

Z d↵

and thus has its maximum where

�
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,

or equivalently, for the value of ↵? such that

n�
0(↵?) = �

g
0(↵?)

g(↵?)
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where �(↵) is given by (S.35).

When �
2(↵) is constant (i.e., the variance of the mutation kernel is independent of the resident

variance) then this reduces to
2µ(↵?)

�2
= 0,

and thus µ(↵?) = 0. Recalling (S.29), this tells us that

1

� + ↵? + �
�

✓
1�
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◆
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= 0,

and thus

�
0(↵?) = R0(↵
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◆
. (S.39)

On the other hand, (S.36) tells us that

R
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,

so that
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> 0,

since �(↵) is increasing. In particular, since R
0
0(↵) is maximized at ↵0, we see immediately that

↵
?
< ↵0.

Even in this special case, we cannot solve for ↵? exactly. Instead we will seek a perturbative solution
to

�
0(↵?) = �

1

n

g
0(↵?)

g(↵?)
(S.40)

in the general case. We already know that �0(↵0) = 0; we thus seek a solution of the form

↵
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.

Substituting this into (S.40) and Taylor expanding right and left, we find that
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which may be expanded using the expression for g0(↵0)
g(↵0)

given in the previous sections. In particular,
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when when ⌘(↵) and ⌫(↵) (and thus �2(↵)) are constants independent of ↵, we have that

↵
? = ↵0 �

1

nIeq(↵0)
|R00

0 (↵0)|
R0(↵0)

1

� + ↵0 + �
+ o

�
1
n

�
, (S.41)

so that to first order, the modal virulence is the virulence maximizing R0(↵) less the product of the
variance of the best-fit Gaussian and the expected infectious period when the virulence is ↵0.

7 Some Remarks Regarding Simulations

For all simulations, we simulate the Markov process described in Table 1.

For Figure 2, we consider a single individual infected with the mutant strain with the initial number
of susceptibles, infecteds and total individuals set equal to the closest integers to nSeq, nIeq and
nNeq, where (Seq, Ieq, Neq) is the (deterministic) endemic equilibrium with only the resident strain
present. No further mutations are allowed to occur. For each value of s and �, 106 simulations
were allowed to continue until fixation of the mutant or resident, and we plot the fraction in which
the mutant fixed.

For Figures 3, 4 & 5, following Section 6, we impose a tradeo↵ between � and ↵, here taking

�(↵) = (� + ↵+ �)(R0,max � w(↵� ↵0)
2).

The simulations were started with nNeq(↵0) individuals, nIeq(↵0) infected with a resident strain
with virulence ↵0 – the virulence maximizing R0(↵) – and nSeq(↵0) susceptibles (as previously,
(Seq(↵0), Neq(↵0), Neq(↵0)) is the endemic equilibrium for the deterministic limit with a resident
strain of virulence ↵0.) With probability µ per time-step, an individual was selected uniformly
at random from the infected population, and the virulence of the mutant pathogen was selected
according to the kernel

K(↵m,↵) =

(
1
2 if ↵m � ↵ = ±�↵, and

0 otherwise,

for �↵ = 6
100 , ↵min = 0, and ↵max = 6. There are thus 100 discrete values for the virulence (n.b.,

by assumption, for ↵ = ↵min, mutations �↵ occur with probability 1
2 , whereas the process remains

at ↵min with probability 1
2 , and similarly for ↵ = ↵max) which are the bins of the histogram in

Figures 3, 4 & 5.

In [7], it is shown that µ has to be of the order of O
�

1
n lnn

�
or smaller to ensure that mutations occur

su�ciently rarely that little or no clonal interference occurs, and such that the resident population
is in a small neighbourhood of the equilibrium of the deterministic limit when a mutation occurs.
In Figures 3& 4, we take n = 200, so n lnn ⇡ 1060 and take µ = 1

1000 to be in the appropriate
range. A small amount of clonal interference was observed, but it did not contribute significantly
to the histogram. For selection, taking w = 0 forces all strains to have equal R0, ensuring weak
selection, whereas for w > 0,

|R0(↵)�R0(↵
0)| ⇡ |R

0
0(↵)(↵� ↵

0)| = 2wR0,max|↵0 � ↵||↵� ↵
0
|  1.44w,
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so selection is always of order O
�
1
n

�
for w = 0.01, whereas when w = 0.1, one could see strong

selection when |↵0 � ↵| is large. Despite this, our analytical results continue to accurately predict
the stationary distribution in Figures 4C & 5, where selection need not be weak (↵ is far from
↵0).

8 Some Rigorous Demonstrations

8.1 Proof of Proposition 2

Substituting f with ⇧i in Itô’s formula (S.8) for jump processes yields
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where "
(n)
i (t) can be expressed thanks to Equation (S.9) as
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Now some elementary computations yield
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!
,

where {i=j} is equal to 1 if i = j and 0 otherwise. Substituting these and (S.6) into (S.42) yields
after some simplification Equation (S.10) in Proposition 2.

Now it remains to prove that n2
"
(n)
i (t) is uniformly bounded with high probability. Taylor’s theorem

tells us that
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where the functions gij(x,y) satisfy
lim
x!y

gij(x,y) = 0

uniformly on compact sets.

Now, recalling
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we see that �Ī
(n)
i (s) is non-zero only at the jump-times of the Poisson processes and are always

of magnitude 1
n . In particular, since fi(x) is smooth outside of a neighbourhood of 0, we can

conclude that gij is bounded above by a constant multiple of kx� yk; this allows us to conclude
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(n)
k (s)|.

Further, |�Ī
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We seek an upper bound on this quantity. To that end, we begin by observing that S̄
(n)(t) and
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i (t) is bounded above by N̄

(n)(t), and that
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Now,
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and, applying Chebyshev’s inequality, we see that for any C > 0,
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as n ! 1. Thus, for any fixed T > 0, N̄ (n)(t) is bounded above and below on [0, T ] by e.g., N̄ (n)(0)+
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T ± 1, with probability that approaches one as n tends to infinity.

Thus, for example,
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and we may proceed exactly as above to conclude that fo t  T ,
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Z t
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�
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i S̄

(n)(s)Ī(n)i (s)
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is bounded above with probability approaching 1 as n ! 1, and similarly for the other Poisson
processes, from which we conclude that there exists some constant C 0 such that

|"
(n)
i (t)| 

C
0

n2

with high probability.

8.2 Proof of Proposition 5

In this section, we will make the heuristic argument of Section 5.2 rigorous using the technique of
coupling (see [2] for a very good introduction): we start by constructing birth and death processes

that bound I
(n)
1 (t) above and below provided S̄

(n)(t) and N̄
(n)(t) remain within " of the endemic

equilibrium, and such that the upper and lower bounds approach one another as " ! 0. Finally,
we show that the probability that S̄

(n)(t) and N̄
(n)(t) depart a "-neighbourhood of the endemic

equilibrium before strain 2 has either successfully invaded or gone extinct goes to 0 as n ! 1.
Since " is arbitrary, we recover the näıve branching process result.

8.2.1 Macroscopic Initial Frequencies

In this section we prove the following extinction of part (i) of Proposition 5, where the population
is infected with d � 2 strains.
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Proposition 11. Suppose that R0,1 > R0,i for all i > 1. If Ī(n)1 (0) ! I1(0) > 0, then all strains
i > 1 will go extinct with high probability.

In light of the results in Section 5.1, we might, without loss of generality, assume that at time t = 0,
the process is in some neighbourhood of endemic fixed point Ē

?,1 = (S̄?,1
, Ī

?,1
1 , . . . , Ī

?,1
d , N̄

?,1), as
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Lemma 3. Provided t < ⌧
(n)
" , the number of infectives of strain i is stochastically smaller 3 than

the birth and death process Z
+
i (t) with Z

+
i (0) = I
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i (0) and birth and death rates
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Proof. It su�ces to construct coupled versions of I(n)i (t), Z+
i (t) and Z

�
i (t) such that

Z
+
i (t) � I

(n)
i (t) � Z

�
i (t).

We will do so inductively, at each step constructing the processes up to the next among the aggre-
gated jump times of all three processes, which we denote

0 = ⌧0 < ⌧1 < ⌧2 < · · · .

For our underlying probability space, we assume sequences of independent rate 1 exponential
random variables Ek and independent uniformly distributed random variables Uk on [0, 1], for
k = 1, 2, . . ..

Suppose that I
(n)
i (t), Z+

i (t) and Z
�
i (t) have been constructed up to ⌧k (trivially true for k = 0).
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,

so ⌧k+1 is a rate ⇢k+1 exponential random variable. Next, for t < ⌧k+1 we set
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i (t) = I

(n)
i (⌧k), Z
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i (t) = Z

+
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�
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�
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3Given random variables X and X 0, we say that X is stochastically smaller than X 0, denoted X � X 0 if

P{X 0 � x} � P{X � x}.

Similarly, a stochastic process X is stochastically smaller than the process X 0 if S(t) � X 0(t) for all t � 0. One
defines stochastically greater analogously.
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Finally, we set
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(�i+⌘)
S̄?,1+"
N̄?,1�"

⇢k+1

(I(n)i (⌧k)�1, Z+
i (⌧k)�1, Z�

i (⌧k)�1) if
(�i+⌘)

S̄?,1+"
N̄?,1�"

⇢k+1
< Uk+1 

(�i+⌘)
S̄?,1+"
N̄?,1�"

+�+↵i+�i�3⌘
⇢k+1

(I(n)i (⌧k), Z
+
i (⌧k)�1, Z�

i (⌧k)�1) if
(�i+⌘)

S̄?,1+"
N̄?,1�"

+�+↵i+�i�3⌘
⇢k+1

< Uk+1 
(�i+⌘)

S̄?,1+"
N̄?,1�"

+�(n)+↵
(n)
i +�

(n)
i

⇢k+1

(I(n)i (⌧k), Z
+
i (⌧k), Z

�
i (⌧k)�1) if

(�i+⌘)
S̄?,1+"
N̄?,1�"

+�(n)+↵
(n)
i +�

(n)
i

⇢k+1
< Uk+1  1.

It is readily verified that the resulting processes have the correct jump rates.

Remark 7. Note that given " > "1 > 0, choosing ⌘ > 0 as before and ⌘1 > 0 analogously, we can
similarly construct processes Z+,1

i (t) and Z
�,1
i (t) such that

Z
+
i (t) ⌫ Z

+,1
i (t) ⌫ I

(n)
i (t) ⌫ Z

�,1
i (t) ⌫ Z

�
i (t),

etc. We shall apply this with a decreasing sequence of values "n > 0 below.

Now, our choice of ⌘ ensures that Z+
i (t) is subcritical for all i > 1. In particular, setting

µ
+
i := (�i + ⌘)

S̄
?,1 + "

N̄?,1 � "
� (� + ↵i + �i � 3⌘) < 0,

we have
E
⇥
Z

+
i (t)

⇤
= Z

+
i (0)eµ

+
i t
,

and, for any sequence tn >
1

|µ+
i | lnn, for all i > 1, we have, using Markov’s inequality

P
�
Z

+
i (tn) � 1

 
 E

⇥
Z

+
i (tn)

⇤
 B"ne

µ+
i tn ! 0

as n ! 1. Thus, if we show that P
n
⌧
(n)
" > tn

o
! 1 as n ! 1, we can conclude that all strains

i > 1 vanish after before tn with high probability.

To this end, we start by defining

⌧
(n)
",i := inf

n
t : |Ī(n)i (t)� Ī

?,1
i | � "n

o
,

for i = 1, . . . , d. We define ⌧ (n)",0 and ⌧
(n)
",d+1 similarly, replacing Īi by S̄ or N̄ respectively in the above
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definition (again, ⌧ (n)",i = 1 should the respective process never exceed "n). We then have

⌧
(n)
" = min

i
⌧
(n)
",i .

We continue with a classical result for birth and death processes: for i > 1, let

ai =
� + ↵i + �i � 3⌘

(�i + ⌘) S̄?,1+"
N̄?,1�"

> 1.

Then, a simple calculation shows that

E

a
Z+
i (t)

i

����Z
+
i (s)

�
= a

Z+
i (s)

i

i.e., a
Z+
i (t)

i is a martingale. Let

⌧
(n)
0,i = inf

�
t : Z+

i (t) = 0
 

and ⌧
(n)
i = min{⌧ (n)0,i , ⌧

(n)
",i }.

We saw above that ⌧
(n)
0,i and thus ⌧

(n)
i are with high probability bounded above by any sequence

tn >
1

mini>1 |µ+
i | lnn. Now,

a
Z+
i (0)

i = E

a
Z+
i (⌧

(n)
i )

i

�
= a

b"nc
i P

n
⌧
(n)
0,i > ⌧

(n)
",i

o
+
⇣
1� P

n
⌧
(n)
0,i > ⌧

(n)
",i

o⌘

i.e.,

P
n
⌧
(n)
0,i > ⌧

(n)
",i

o
=

a
Z+
i (0)

i � 1

a
b"nc
i � 1

�
a
bB"nc
i � 1

a
b"nc
i � 1

,

which converges to 0 as n ! 1 for any B < 1. We thus have

P
n
⌧
(n)
",i > tn

o
! 1

as n ! 1.

For the remaining three values ⌧ (n)",i , i = 0, 1, d+1, we take a di↵erent approach, as the values S̄?,1,

Ī
?,1
1 , and N̄

?,1 are all non-zero and a branching process approach is no longer appropriate. Instead,
we recall the SDE representation of our process (Proposition 1).

Now Ē
?,1 is a stable fixed point for the dynamical system ˙̄

E = F (Ē), so we may write

F (Ē) = A(Ē � Ē
?,1) +G(Ē � Ē

?,1),

where A := DF (Ē?,1), the Jacobian of F (x) evaluated at the resident endemic equilibrium, is a
stable matrix and ��G(Ē)

��  M
��Ē

��2

for some fixed M > 0.
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Now, let
⌅(n)(t) := Ē

(n)(t)� Ē
?,1

.

Then, using Duhamel’s principle, we have that

⌅(n)(t) = e
tA⌅(n)(0) +

Z t

0
e
(t�s)A

G

⇣
⌅(n)(s)

⌘
ds

+
1

n

Z t

0
e
(t�s)A(e0 + ed+1) dM

(n)
e0+ed+1

(t)�
1

n

Z t

0
e
(t�s)A(e0 + ed+1) dM

(n)
�e0�ed+1

(t)

+
1

n

dX

i=1

Z t

0
e
(t�s)A(ei � e0) dM

(n)
�e0+ei(t)�

1

n

dX

i=1

Z t

0
e
(t�s)A(ei + ed+1) dM

(n)
�ei�ed+1

(t)

�
1

n

dX

i=1

Z t

0
e
(t�s)A

ei dM
(n)
�ei(t)�

1

n

Z t

0
e
(t�s)A

ed+1 dM
(n)
�ed+1

(t). (S.43)

Let ↵1, . . . ,↵d denote the eigenvalues of A. It is a standard result (see e.g., [30]) that, given any
↵ < min{�<(↵j) : <(↵j) < 0}, there exists a constant C, depending on ↵ such that, when restricted
to Es, we have

ke
(t�r)A

k  Ce
�↵(t�r)

.

Thus,

k⌅(n)(t)k  Ce
�↵t

k⌅(n)(0)k+

Z t

0
Ce

�↵(t�s)
Mk⌅(n)(s)k2 ds

+
1

n

Z t

0
Ce

�↵(t�s)
dM

(n)
e0+ed+1

(t) +
1

n

Z t

0
Ce

�↵(t�s)
dM

(n)
�e0�ed+1

(t)

+
1

n

dX

i=1

Z t

0
Ce

�↵(t�s)
dM

(n)
�e0+ei(t) +

1

n

dX

i=1

Z t

0
Ce

�↵(t�s)
dM

(n)
�ei�ed+1

(t)

+
1

n

dX

i=1

Z t

0
Ce

�↵(t�s)
dM

(n)
�ei(t) +

1

n

Z t

0
Ce

�↵(t�s)
dM

(n)
�ed+1

(t).

Now, fix a sequence lnn ⌧ tn ⌧ n, we observe that

P
n
⌧
(n)
" < tn

o
= P

(
sup

t⌧
(n)
" ^tn

k⌅(n)(t)k � "

)

 P
⇢
Ce

�↵t
k⌅(n)(0)k �

"

5 + 3d

�
+ P

(
sup

t⌧
(n)
"

Z t

0
Ce

�↵(t�s)
Mk⌅(n)(s)k2 ds �

"

5 + 3d

)

+ P
(
1

n
sup

t⌧
(n)
" ^tn

Z t

0
Ce

�↵(t�s)
dM

(n)
e0+ed+1

(s) �
"

5 + 3d

)
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+ P
(
1

n
sup

t⌧
(n)
" ^tn

Z t

0
Ce

�↵(t�s)
dM

(n)
�e0�ed+1

(s) �
"

5 + 3d

)

+
dX

i=1

P
(
1

n
sup

t⌧
(n)
" ^tn

Z t

0
Ce

�↵(t�s)
dM

(n)
�e0+ei(s) �

"

5 + 3d

)

+
dX

i=1

P
(
1

n
sup

t⌧
(n)
" ^tn

Z t

0
Ce

�↵(t�s)
dM

(n)
�ei�ed+1

(s) �
"

5 + 3d

)

+
dX

i=1

P
(
1

n
sup

t⌧
(n)
" ^tn

Z t

0
Ce

�↵(t�s)
dM

(n)
�ei(s) �

"

5 + 3d

)

+ P
(
1

n
sup

t⌧
(n)
" ^tn

Z t

0
Ce

�↵(t�s)
dM

(n)
�ed+1

(s) �
"

5 + 3d

)

Now,
Ce

�↵t
k⌅(n)(0)k  CB"

and

sup
t⌧

(n)
"

Z t

0
Ce

�↵(t�s)
Mk⌅(n)(s)k2 ds 

CM

↵
"
2
.

Thus, provided we choose B <
1

C(5+3d) and " <
↵

CM(5+3d) , then

P
⇢
Ce

�↵t
k⌅(n)(0)k �

"

5 + 3d

�
= P

(
sup

t⌧
(n)
"

Z t

0
Ce

�↵(t�s)
Mk⌅(n)(s)k2 ds �

"

5 + 3d

)
= 0,

Finally, we turn to the integrals
R t
0 e

�↵(t�s)
dM

(n)
l (s). Recall that each of the integrators M

(n)
l (t)

takes the form

P̃l

✓
n

Z
⇤l(Ē

(n)(t)) ds

◆
,

for some continuous function ⇤l. We will thus prove the generic lemma:
Lemma 4. Let P be a Poisson process, ⇤ : Rd+2

! R be continuous, and let

M
(n)(t) = P̃

✓
n

Z
⇤(Ē(n)(t)) ds

◆
.

then for any ↵ > 0, any constant C, any sequence tn ⌧ n, and ⌧
(n)
" as above, we have

P
(
C

n
sup

t⌧
(n)
" ^tn

Z t

0
e
�↵(t�s)

dM
(n)(s) > R

)
! 0

as n ! 1, for any fixed R > 0.
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Proof. We start by observing that for t  ⌧
(n)
" , Ē(n)(t)) 2 B"(Ē?,1), a compact set, and thus

⇤(Ē(n)(t))  ⇤

for a constant ⇤ > 0 depending on ⇤, ", and Ē
?,1.

P
(
C

n
sup

t⌧
(n)
" ^tn

Z t

0
e
�↵(t�s)

dM
(n)(s) > R

)
= P

(
sup

t⌧
(n)
" ^tn

e
�↵t

Z t

0
e
↵s

dM
(n)(s) >

nR

C

)

 P
(
sup
ttn

e
�↵t

Z t^⌧ (n)
"

0
e
↵s

dM
(n)(s) >

nR

C

)



tn�1X

k=0

P
(

sup
k<tk+1

e
�↵t

Z t^⌧ (n)
"

0
e
↵s

dM
(n)(s) >

nR

C

)



tn�1X

k=0

P
(

sup
k<tk+1

e
�↵k

Z t^⌧ (n)
"

0
e
↵s

dM
(n)(s) >

nR

C

)

=
tn�1X

k=0

P
(

sup
k<tk+1

Z t^⌧ (n)
"

0
e
↵s

dM
(n)(s) >

nR

C
e
↵k

)



tn�1X

k=0

P
(

sup
tk+1

Z t^⌧ (n)
"

0
e
↵s

dM
(n)(s) >

nR

C
e
↵k

)
.

Now, applying Doob’s inequality,

P
(

sup
tk+1

Z t^⌧ (n)
"

0
e
↵s

dM
(n)(s) >

nR

C
e
↵k

)


C
2

n2R2
e
�2↵kE

2

4
 Z k+1^⌧ (n)

"

0
e
↵s

dM
(n)(s)

!2
3

5

=
C

2

n2R2
e
�2↵kE

"Z k+1^⌧ (n)
"

0
e
2↵s

n⇤(Ē(n)(s)) ds

#


C
2

nR2
e
�2↵kE

Z k+1

0
e
2↵s⇤ ds

�


C

2⇤

2↵nR2
e
�2↵k

⇣
e
2↵(k+1)

� 1
⌘


C
2⇤

2↵nR2
e
2↵

Thus,

P
(
C

n
sup

t⌧
(n)
" ^tn

Z t

0
e
�↵(t�s)

dM
(n)(s) > R

)


C
2⇤

2↵nR2
e
2↵
tn ! 0

as n ! 1.

Applying the lemma, we have

P
n
⌧
(n)
" < tn

o
! 0

and, with high probability, all strains i > 1 will vanish before tn, and moreover, during this time,
the process Ē(n)(t)) will remain in B"(Ē?,1).
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8.2.2 Novel Strain in Small Number of Copies

We now consider the possibility that a new strain invades an established population. From the
results of the previous section, we see that generically, the population will eventually be in an "-

neighbourhood of the fixed point Ē?,1 for arbitrary " > 0, and that I(n)i (t) ⌘ 0 for all i > 1.

If the new strain has reproductive number less than R0,1, then the arguments of the preceding
section apply directly, and we can conclude that the novel strain will very rapidly go extinct.

If, however, it has higher reproductive number, the invading strain now has a non-zero probability
of establishing itself and replacing the resident strain. In this section, we adapt the techniques
above to deal with this case (by the above, we may take d = 2).

We start by defining the quantities ⌧ (n)",i and ⌧
(n)
" as before, with the understanding that ⌧ (n)",1 = 1

if the new strain goes extinct before hitting "n.

We now fix " > 0 such that

1

R0,1
<

S̄
?,1

� "

N̄?,1 + "
<

1

R0,2
=

S̄
?,1

N̄?,1
<

S̄
?,1 + "

N̄?,1 � "
,

and ⌘ > 0 su�ciently small that

µ
+
2 := (�2 + ⌘)

S̄
?,1 + "

N̄?,1 � "
� (� + ↵2 + �2 � 3⌘)

> µ
�
2 := (�2 � ⌘)

S̄
?,1

� "

N̄?,1 + "
� (� + ↵2 + �2 + 3⌘)

= �2

✓
S̄
?,1

� "

N̄?,1 + "
�

1

R0,2

◆
+ ⌘

✓
S̄
?,1

� "

N̄?,1 + "
� 3

◆
> 0,

and suppose that n is su�ciently large that |�(n)
2 � �2| < ⌘, etc.

Again, provided t < ⌧
(n)
" , we have that

S̄
?,1

� "

N̄?,1 + "
<

S̄
(n)(t)

N̄ (n)(t)
<

S̄
?,1 + "

N̄?,1 � "
,

and thus, if Z+(t) and Z
�(t) are birth and death processes with birth and death rates

(�2 + ⌘)
S̄
?,1 + "

N̄?,1 � "
and � + ↵2 + �2 � 3⌘

and

(�2 � ⌘)
S̄
?,1

� "

N̄?,1 + "
and � + ↵2 + �2 + 3⌘

respectively, then both Z
+(t) and Z

�(t) are supercritical with Malthusian parameters µ+
2 and µ

�
2 ,

respectively, and

Z
�(t) < I

(n)
2 (t) < Z

+(t)
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stochastically for t < ⌧
(n)
" .

Now, set

q2 :=
� + ↵2 + �2 � 3⌘

(�2 + ⌘) S̄?,1+"
N̄?,1�"

< q
2
:=

� + ↵2 + �2 + 3⌘

(�2 � ⌘) S̄?,1�"
N̄?,1+"

< 1.

Classical results for birth and death processes (e.g., [1]) tell us that Z+(t) and Z
�(t) will hit 0 in

finite time with probability q
Z+(0)
2 and q

2
respectively, and will grow indefinitely otherwise, and,

moreover, that there exist random variables W and W taking values on [0,1) such that

P{W = 0} = q
Z+(0)
2 and P{W = 0} = q

Z�(0)
2

and
e
�µ+

2 t
Z

+(t) ! W and e
�µ�

2 t
Z

�(t) ! W (S.44)

both almost surely and in L
2.

Now, as before, fix lnn ⌧ tn ⌧ n. Taking logarithms in (S.44), we see that for almost all
! 62 {W = 0}, we have

lnZ�(!, tn)

tn
! µ

�
2 .

Now, if Z�(tn)  "n then the right hand side converges to 0. Moreover, if I(n)2 (t)  "n, then
necessarily Z

�(tn)  "n, and we conclude that

lim sup
n!1

P
n
tn < ⌧

(n)
"

o
 P{W = 0} = q

Z�(0)
2

.

In particular, if we can establish that with high probability ⌧
(n)
" = ⌧

(n)
",2 , then this gives a lower

bound on the probability that the novel strain invades, as the latter is the probability that ⌧ (n)" is
finite.

Now,

P
n
⌧
(n)
" < ⌧

(n)
",2

o
= P

n
⌧
(n)
" < ⌧

(n)
",2 ; ⌧

(n)
" < tn

o
+ P

n
⌧
(n)
" < ⌧

(n)
",2 ; ⌧

(n)
" > tn

o
.

We have already established that the latter is bounded above by q
Z�(0)
1 as n ! 1. The former

follows almost exactly as the proof that P
n
⌧
(n)
" < tn

o
! 0 of the previous section; Ē?,1 is now a

hyperbolic fixed point rather than a stable fixed point, and A has a positive eigenvalue, but the
stable manifold of Ē?,1 coincides with the subset of Rd+2 with x1 = 0. In particular, we may
decompose

Rd+2 = ES � EX ,

where ES = {x1 = 0} and EX are A invariant subspaces, corresponding to the sum of the generalised
eigenspaces for eigenvalues with negative and positive real parts respectively. We will write PS and
PX for the corresponding projections (i.e.,PS has image ES and kernel EX , and oppositely for PX),
and note that both PS and PX commute with A. Proceeding exactly as previously, we define

⌅(n)(t) := Ē
(n)(t)� Ē

?,1

59



and let ⌅(n)
S (t) = PS⌅(n)(t) denote it’s projection onto the stable subspace. Then, if

⌧
(n)
",S = ⌧

(n)
",0 ^ ⌧

(n)
",2 ^ ⌧

(n)
",3

then

P
n
⌧
(n)
" < ⌧

(n)
",2 ; tn < ⌧

(n)
"

o
= P

n
⌧
(n)
",S = ⌧

(n)
" ; tn < ⌧

(n)
"

o
= P

(
sup

t⌧
(n)
" ^tn

k⌅(n)
S (t)k � "

)
.

Applying the arguments of the previous section, using the equation for ⌅(n)
S (t) obtained by letting

PS act on both sides of (S.43), one obtains almost identically that

P
(

sup
t⌧

(n)
" ^tn

k⌅(n)
S (t)k � "

)
! 0

as n ! 1.

Now, note that for any ! 2 {W = 0}, we must have Z
+(!, t) < "n for all t, for some su�ciently

large n, so ! 2 {⌧
(n)
" < ⌧

(n)
",2 }. Thus we have

q
Z+(0)
1 = P{W = 0}  lim inf

n!1
P
n
⌧
(n)
" < ⌧

(n)
",1

o

Finally, we notice that as " ! 0 (and thus ⌘ ! 0 also,) both q2 and q
2
approach

q2 :=
� + ↵2 + �2

�2
S̄?,1

N̄?,1

=
R0,1

R0,2
.

Since the choice of " was arbitrary in our definition of invasion, we conclude that the probability
of successful invasion of the new strain 1 is

1�

✓
R0,1

R0,2

◆I2(0)

. (S.45)

Once this has happened, as we note above, Kurtz’s deterministic approximation is applicable, and
with high probability, the system will approach any arbitrarily small neighbourhood of the endemic
fixed point for the new strain 1, at which point, by the argument above, the former resident strain,
strain 2, goes extinct with probability approaching 1 as n ! 1.
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8.3 Proof of Proposition 10

We start with a lemma:
Lemma 5. Suppose that ↵ 2 [↵min,↵max]. Then,

Z ↵max

↵min

K"(↵,↵
0
� ↵)(↵0

� ↵)k d↵0 =

8
><

>:

"
k
R1
0 K(↵, z)zk dz + o("k) if ↵ = ↵min,

"
k
R 0
�1K(↵, z)zk dz + o("k) if ↵ = ↵max, andR1

�1K(↵, z)zk dz + o("k) if ↵min < ↵ < ↵max

Proof. Making a change of variable, we have

Z ↵max

↵min

K"(↵,↵
0
� ↵)(↵0

� ↵)k d↵0 =

Z ↵max

↵min

K

✓
↵,

↵
0
� ↵

"

◆
(↵0

� ↵)k
d↵

0

"

= "
k
Z ↵max�↵

"

↵min�↵
"

K(↵, z)zk dz,

and ↵min�↵
" and ↵max�↵

" tend to �1 and +1 respectively as " ! 0, unless ↵ = ↵min or ↵ = ↵max.
By assumption, the integrals converge, so the tails must vanish as " ! 0.

Taylor expanding s(↵,↵0) (f(↵0)� f(↵)) in ↵
0 about ↵, we have

L̂"f(↵) =
n

"2
⌘(↵)Ieq(↵)

Z ↵max

↵min

K"(↵,↵
0
� ↵)

⇥
s(↵,↵)(↵� ↵

0)f 0(↵)

+

✓
@s

@↵0 (↵,↵)f
0(↵) +

1

2
s(↵,↵0)f 00(↵)

◆
(↵� ↵

0)2 + · · ·

�
d↵

0

From the Lemma, we have

L̂"f(↵min) =
n

"
⌘(↵min)Ieq(↵min)s(↵min,↵min)f

0(↵min)

Z 1

0
K(↵min, z)z dz

+

✓
n⌘(↵min)Ieq(↵min)

@s

@↵0 (↵min,↵min)f
0(↵min)

+
n

2
⌘(↵min)Ieq(↵min)s(↵min,↵min)f

00(↵min)
⌘Z 1

0
K(↵min, z)z

2
dz + o("),

L̂"f(↵max) =
n

"
⌘(↵max)Ieq(↵max)s(↵max,↵max)f

0(↵max)

Z 0

�1
K(↵max, z)z dz

+

✓
n⌘(↵max)Ieq(↵max)

@s

@↵0 (↵max,↵max)f
0(↵max)

n

2
⌘(↵max)Ieq(↵max)s(↵max,↵max)f

00(↵max)
⌘Z 0

�1
K(↵max, z)z

2
dz + o("),

and

L̂"f(↵) = n⌘(↵)Ieq(↵)⌫(↵)
@s

@↵0 (↵,↵)f
0(↵) +

n

2
⌘(↵)Ieq(↵)⌫(↵)s(↵,↵)f

00(↵) + o(").
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for ↵ 2 (↵min,↵max).

We first note that to have a well-posed (finite) limit as " ! 0, we must have f 0(↵min) = f
0(↵max) = 0,

so that the first term, which is otherwise of order O
�
"
�1

�
, vanishes.

To deal with the discontinuities at ↵min and ↵max, suppose we have f such that f
0(↵min) =

f
0(↵max) = 0. Choose h 2 C

2[↵min,↵max] such that h
0(↵min) = 1

2f
00(↵min)

R 0
�1 K(↵min,z)z2 dzR1
0 K(↵min,z)z dz

and

h
0(↵max) =

1
2f

00(↵max)
R1
0 K(↵max,z)z2 dzR 0
�1 K(↵max,z)z dz

, and let f" = f + "h, then

L̂"f(↵min) =
n

2
⌘(↵min)Ieq(↵min)⌫(↵min)s(↵min,↵min)f

00(↵min) + o("),

L̂"f(↵max) =
n

2
⌘(↵max)Ieq(↵max)⌫(↵max)s(↵max,↵max)f

00(↵max) + o("),

so that L̂"f"(↵) ! L̂f(↵), f"(↵) ! f(↵), for all ↵ 2 [↵min,↵max], and weak convergence follows by
Corollary 8.7 in Chapter 4 of [14]
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