Contents

Preface
To the Student
Calculators, Computers, and Other Graphing Devices
Diagnostic Tests
Prologue: Mathematics and Biology
Case Studies in Mathematical Modeling
CASE STUDY 1 Kill Curves and Antibiotic Effectiveness
CASE STUDY 2 Hosts, Parasites, and Time-Travel

1 Functions and Sequences

1.1 Four Ways to Represent a Function
 • Representations of Functions • Piecewise Defined Functions • Symmetry
 • Periodic Functions • Increasing and Decreasing Functions

1.2 A Catalog of Essential Functions
 • Linear Models • Polynomials • Power Functions • Rational Functions
 • Algebraic Functions • Trigonometric Functions • Exponential Functions
 • Logarithmic Functions

1.3 New Functions from Old Functions
 • Transformations of Functions • Combinations of Functions
PROJECT The Biomechanics of Human Movement

1.4 Exponential Functions
 • The Growth of Malarial Parasites • Exponential Functions • Exponential Growth
 • HIV Density and Exponential Decay • The Number e

1.5 Logarithms; Semilog and Log-Log Plots
 • Inverse Functions • Logarithmic Functions • Natural Logarithms • Graph and Growth of the Natural Logarithmic Function
 • Semilog Plots • Log-Log Plots
PROJECT The Coding Function of DNA

1.6 Sequences and Difference Equations
 • Recursive Sequences: Difference Equations
 • Discrete-Time Models in the Life Sciences
PROJECT Drug Resistance in Malaria

Review

CASE STUDY 1a Kill Curves and Antibiotic Effectiveness
2 Limits

2.1 Limits of Sequences
- Long-Term Behavior of a Sequence
- Definition of a Limit
- Limit Laws
- Geometric Sequences
- Recursion for Medication
- Geometric Series
- The Logistic Sequence in the Long Run

PROJECT Modeling the Dynamics of Viral Infections

2.2 Limits of Functions at Infinity
- The Monod Growth Function
- Definition of a Limit at Infinity
- Limits Involving Exponential Functions
- Infinite Limits at Infinity

2.3 Limits of Functions at Finite Numbers
- Velocity Is a Limit
- Limits: Numerical and Graphical Methods
- One-sided Limits
- Infinite Limits

2.4 Limits: Algebraic Methods
- The Limit Laws
- Additional Properties of Limits
- Limits of Trigonometric Functions

2.5 Continuity
- Definition of a Continuous Function
- Which Functions Are Continuous?
- Approximating Discontinuous Functions by Continuous Ones

Review

CASE STUDY 2a Hosts, Parasites, and Time-Travel

3 Derivatives

3.1 Derivatives and Rates of Change
- Measuring the Rate of Increase of Blood Alcohol Concentration
- Tangent Lines
- Derivatives
- Rates of Change

3.2 The Derivative as a Function
- Graphing a Derivative from a Function’s Graph
- Finding a Derivative from a Function’s Formula
- Differentiability
- Higher Derivatives
- What a Derivative Tells Us about a Function

3.3 Basic Differentiation Formulas
- Power Functions
- New Derivatives from Old
- Exponential Functions
- Sine and Cosine Functions

3.4 The Product and Quotient Rules
- The Product Rule
- The Quotient Rule
- Trigonometric Functions

3.5 The Chain Rule
- Combining the Chain Rule with Other Rules
- Exponential Functions
- Arbitrary Bases
- Longer Chains
- Implicit Differentiation
- Related Rates
- How To Prove the Chain Rule
3.6 **Exponential Growth and Decay**
- Population Growth
- Radioactive Decay
- Newton’s Law of Cooling
PROJECT: Controlling Red Blood Cell Loss during Surgery

3.7 **Derivatives of the Logarithmic and Inverse Tangent Functions**
- Differentiating Logarithmic Functions
- Logarithmic Differentiation
- The Number e as a Limit
- Differentiating the Inverse Tangent Function

3.8 **Linear Approximations and Taylor Polynomials**
- Tangent Line Approximations
- Newton’s Method
- Taylor Polynomials
PROJECT: Harvesting Renewable Resources

Review

CASE STUDY 1b Kill Curves and Antibiotic Effectiveness

4 **Applications of Derivatives**

4.1 **Maximum and Minimum Values**
- Absolute and Local Extreme Values
- Fermat’s Theorem
- The Closed Interval Method
PROJECT: The Calculus of Rainbows

4.2 **How Derivatives Affect the Shape of a Graph**
- The Mean Value Theorem
- Increasing and Decreasing Functions
- Concavity
- Graphing with Technology

4.3 **L'Hospital's Rule: Comparing Rates of Growth**
- Indeterminate Quotients
- Which Functions Grow Fastest?
- Indeterminate Products
- Indeterminate Differences
PROJECT: Mutation-Selection Balance in Genetic Diseases

4.4 **Optimization Problems**
PROJECT: Flapping and Gliding
PROJECT: The Tragedy of the Commons: An Introduction to Game Theory

4.5 **Recursions: Equilibria and Stability**
- Equilibria
- Cobwebbing
- Stability Criterion

4.6 **Antiderivatives**

Review

5 **Integrals**

5.1 **Areas, Distances, and Pathogenesis**
- The Area Problem
- The Distance Problem
- Pathogenesis

5.2 **The Definite Integral**
- Calculating Integrals
- The Midpoint Rule
- Properties of the Definite Integral
CONTENTS

5.3 The Fundamental Theorem of Calculus
 ■ Evaluating Definite Integrals ■ Indefinite Integrals ■ The Net Change Theorem
 ■ The Fundamental Theorem ■ Differentiation and Integration as Inverse Processes
 PROJECT: The Outbreak Size of an Infectious Disease

5.4 The Substitution Rule
 ■ Substitution in Indefinite Integrals ■ Substitution in Definite Integrals ■ Symmetry

5.5 Integration by Parts
 ■ Indefinite Integrals ■ Definite Integrals

5.6 Partial Fractions

5.7 Integration Using Tables and Computer Algebra Systems
 ■ Tables of Integrals ■ Computer Algebra Systems ■ Can We Integrate All Continuous Functions?

5.8 Improper Integrals
 Review
 CASE STUDY 1c Kill Curves and Antibiotic Effectiveness

6 Applications of Integrals

6.1 Areas Between Curves
 ■ Cerebral Blood Flow
 PROJECT: Disease Progression and Immunity
 PROJECT: The Gini Index

6.2 Average Values

6.3 Further Applications to Biology
 ■ Survival and Renewal ■ Blood Flow ■ Cardiac Output

6.4 Volumes
 Review
 CASE STUDY 1d Kill Curves and Antibiotic Effectiveness
 CASE STUDY 2b Hosts, Parasites, and Time-Travel

7 Differential Equations

7.1 Modeling with Differential Equations
 ■ Models of Population Growth ■ Modeling Drug Concentrations in the Blood
 ■ Classifying Differential Equations
 PROJECT: Chaotic Blowflies and the Dynamics of Populations
7.2 Phase Plots, Equilibria, and Stability
- Phase Plots
- Equilibria and Stability
- A Mathematical Derivation of the Local Stability Criterion

PROJECT: Catastrophic Population Collapse: An Introduction to Bifurcation Theory

7.3 Direction Fields and Euler’s Method
- Direction Fields
- Euler’s Method

7.4 Separable Equations

PROJECT: Why Does Urea Concentration Rebound after Dialysis?

7.5 Systems of Differential Equations
- Parametric Curves
- Systems of Two Autonomous Differential Equations

PROJECT: The Flight Path of Hunting Raptors

7.6 Phase Plane Analysis
- Equilibria
- Qualitative Dynamics in the Phase Plane

PROJECT: Determining the Critical Vaccination Coverage

Review

CASE STUDY 2c Hosts, Parasites, and Time-Travel

8 Vectors and Matrix Models

8.1 Coordinate Systems
- Three-Dimensional Space
- Higher-Dimensional Space

8.2 Vectors
- Combining Vectors
- Components

8.3 The Dot Product
- Projections

PROJECT: Microarray Analysis of Genome Expression
PROJECT: Vaccine Escape

8.4 Matrix Algebra
- Matrix Notation
- Matrix Addition and Scalar Multiplication
- Matrix Multiplication

8.5 Matrices and the Dynamics of Vectors
- Systems of Difference Equations–Matrix Models
- Leslie Matrices
- Summary

8.6 The Inverse and Determinant of a Matrix
- The Inverse of a Matrix
- The Determinant of a Matrix
- Solving Systems of Linear Equations

PROJECT: Cubic Splines

8.7 Eigenvectors and Eigenvalues
- Linear Transformations
- Characterizing the Dynamics of Vectors
- Eigenvectors and Eigenvalues
8.8 Iterated Linear Transformations
- Solving Linear Recursions
- Solutions with Complex Eigenvalues
- Perron-Frobenius Theory

PROJECT: The Emergence of Geometric Order in Proliferating Cells

Review

9 Multivariable Calculus

9.1 Functions of Several Variables
- Functions of Two Variables
- Graphs
- Level Curves
- Functions of Three or More Variables
- Limits and Continuity

9.2 Partial Derivatives
- Interpretations of Partial Derivatives
- Functions of More than Two Variables
- Higher Derivatives
- Partial Differential Equations

9.3 Tangent Planes and Linear Approximations
- Tangent Planes
- Linear Approximations

PROJECT: The Speedo LZR Race Suit

9.4 The Chain Rule
- Implicit Differentiation

9.5 Directional Derivatives and the Gradient Vector
- Directional Derivatives
- The Gradient Vector
- Maximizing the Directional Derivative

9.6 Maximum and Minimum Values
- Absolute Maximum and Minimum Values

Review

10 Systems of Linear Differential Equations

10.1 Qualitative Analysis of Linear Systems
- Terminology
- Saddles
- Nodes
- Spirals

10.2 Solving Systems of Linear Differential Equations
- The General Solution
- Nullclines versus Eigenvectors
- Saddles
- Nodes
- Spirals
- Long-Term Behavior

10.3 Applications
- Metapopulations
- Natural Killer Cells and Immunity
- Gene Regulation
- Transport of Environmental Pollutants

PROJECT: Pharmacokinetics of Antimicrobial Dosing

10.4 Systems of Nonlinear Differential Equations
- Linear and Nonlinear Differential Equations
- Local Stability Analyses
- Linearization
- Examples

Review

CASE STUDY 2d: Hosts, Parasites, and Time-Travel

Unless otherwise noted, all content on this page is © Cengage Learning.
11 Descriptive Statistics

11.1 Numerical Descriptions of Data
- Types of Variables
- Categorical Data
- Numerical Data: Measures of Central Tendency
- Numerical Data: Measures of Spread
- Numerical Data: The Five-Number Summary
- Outliers

11.2 Graphical Descriptions of Data
- Displaying Categorical Data
- Displaying Numerical Data: Histograms
- Interpreting Area in Histograms
- The Normal Curve

11.3 Relationships between Variables
- Two Categorical Variables
- Categorical and Numerical Variables
- Two Numerical Variables

11.4 Populations, Samples, and Inference
- Populations and Samples
- Properties of Samples
- Types of Data
- Causation

PROJECT: The Birth Weight Paradox

Review

12 Probability

12.1 Principles of Counting
- Permutations
- Combinations

12.2 What Is Probability?
- Experiments, Trials, Outcomes, and Events
- Probability When Outcomes Are Equally Likely
- Probability in General

12.3 Conditional Probability
- Conditional Probability
- The Multiplication Rule and Independence
- The Law of Total Probability
- Bayes’ Rule

PROJECT: Testing for Rare Diseases

12.4 Discrete Random Variables
- Describing Discrete Random Variables
- Mean and Variance of Discrete Random Variables
- Bernoulli Random Variables
- Binomial Random Variables

PROJECT: DNA Supercoiling
PROJECT: The Probability of an Avian Influenza Pandemic in Humans

12.5 Continuous Random Variables
- Describing Continuous Random Variables
- Mean and Variance of Continuous Random Variables
- Exponential Random Variables
- Normal Random Variables

Review
13 Inferential Statistics

13.1 The Sampling Distribution
- Sums of Random Variables
- The Sampling Distribution of the Mean
- The Sampling Distribution of the Standard Deviation

13.2 Confidence Intervals
- Interval Estimates
- Student's t-Distribution

13.3 Hypothesis Testing
- The Null and Alternative Hypotheses
- The t Statistic
- The P-Value
- Summary

13.4 Contingency Table Analysis
- Hypothesis Testing with Contingency Tables
- The Chi-Squared Test Statistic
- The Hypothesis Test
- Summary

Review

APPENDIXES

A Intervals, Inequalities, and Absolute Values

B Coordinate Geometry

C Trigonometry

D Precise Definitions of Limits

E A Few Proofs

F Sigma Notation

G Complex Numbers

H Statistical Tables

I Glossary of Biological Terms

J Answers to Odd-Numbered Exercises

LIST OF BIOLOGICAL APPLICATIONS

INDEX