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The Orbit Problem

k a field with algebraic closure k
G a linear algebraic group defined over k
V a representation of G

Orbit Problem

Given v ,w ∈ V , do v ,w lie in the same G (k)-orbit?

Isomorphism problems can be translated to orbit problems.
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Example: The Graph Isomorphism Problem

Γ1, Γ2 graphs with vertex set {1, 2, . . . , n}
A1,A2 ∈ Matn,n(k) the adjacency matrices of Γ1, Γ2 respectively

G set of n × n permutation matrices
G acts on Matn,n(k) (n × n matrices) by conjugation:
P · A := PAP−1, P ∈ G , A ∈ Matn,n(k)

Translation of Isomorphism Problem into Orbit Problem

Γ1
∼= Γ2 ⇔ A1,A2 in same G -orbit

We’ll get back to graphs later.
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Example: Isomorphism of Modules

T = k〈x1, . . . , xr 〉/I associative algebra over k (with 1)
M,N n-dimensional T -modules

xi · : M → M given by matrix Ai ∈ Matn,n(k)
xi · : N → N given by matrix Bi ∈ Matn,n(k)
A = (A1, . . . ,Ar ),B = (B1, . . . ,Br ) ∈ Matn,n(k)r

G = GLn(k) acts on Matn,n(k) by conjugation:

U · (C1, . . . ,Cr ) = (UC1U
−1, . . . ,UCrU

−1)

Isomorphism Test

M ∼= N ⇔ A,B in same G -orbit

Remark

A,B in same G (k)-orbit⇔ A,B in same G (k)-orbit
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Complexity of the Module Isiomorphism Problem

Theorem (Chistov–Invanyos–Karpinski ’97, Brooksbank–Luks ’08)

There exists a T -module isomorphism test that requires only a
polynomial number (in the dimension of the modules) of arithmetic
operations in the field k .
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Isomorphism Test using Ideals

G linear algebraic group
k[G ] coordinate ring of G over k
V representation of G
v ,w ∈ V

g · v = w gives a system of polynomial equations for g ∈ G
Let I ⊆ k[G ] be the ideal generated by these polynomials

Isomorphism Test

v ,w in the distinct G -orbits⇔ 1 ∈ I
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Isomorphism Test using Gröbner Bases

If G is fixed, then one can test whether 1 ∈ I efficiently: the
number of arithmetic operations in k required is polynomial in n
and the degrees of the polynomials defining the representation V .

In many interesting examples, such as the graph isomorphism
problem, G is not fixed.

One can use Buchberger’s algorithm to test whether 1 ∈ I , but this
may not be efficient.
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Approximate Categories

(k , G , V as before)
For every d will construct an “approximate” k-category Cd(V )
with the following properties:

1 Every element v ∈ V is an object in Cd(V )

2 If v ,w lie in the same G -orbit, then v and w are isomorphic
in Cd(V )

3 If v ,w are isomorphic in Cd+1(V ), then they are isomorphic in
Cd(V )

4 If v ,w are isomorphic in Cd(V ) for all d ≥ 1, then v and w
are in the same G -orbit

5 There exists an efficient algorithm to determine if v and w are
isomorphic in Cd(V )
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Truncated Ideals

Suppose that R is a finitely generated commutative k-algebra
(with 1) with a filtration

R0 = k ⊆ R1 ⊆ R2 ⊆ · · ·

If S ⊆ Rd then we define

(S)d =
d∑

e=0

(S ∩ Re)Rd−e .

We call S ⊆ Rd a d-truncated ideal if (S)d = S .

The sequence

(S)d ⊆ ((S)d)d ⊆ (((S)d)d)d ⊆ · · ·

stabilizes to a d-truncated ideal which will be denoted by ((S))d .
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A nice Filtration for k[G ]

Let G be a linear algebraic group over k
G × G acts on R = k[G ] by

((g , h) · f )(u) = f (g−1uh), f ∈ R, g , h, u ∈ G

Fix a finite dimensional subspace W ⊆ R such that

1 k ⊆W

2 W is G × G -stable

3 W generates R

Define a filtration by R =
⋃

d Rd , where Rd = W d
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The Algebra Structure for R?
d

Let ∆ : K [G ]→ K [G ]⊗ K [G ] be the co-multiplication of K [G ]

Then ∆(Rd) ⊆ Rd ⊗ Rd

So R?
d is an associative algebra
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The category Cd(V )

Objects

Objects in Cd(V ) are affine subspaces of the form v + Z with
v ∈ V and Z ⊆ V a subspace.

Suppose that X1 = v1 + Z1 and X2 = v2 + Z2 are objects. The
equation

g · X1 ⊆ X2

gives a system of polynomials S(X1,X2) ⊂ Rd

Define Id(X1,X2) = ((S(X1,X2)))d

Morphisms

We define Homd(X1,X2) = (Rd/Id(X1,X2))?. The bilinear map
Homd(X1,X2)× Homd(X2,X3)→ Homd(X1,X3) is the restriction
of the multiplication R?

d × R?
d → R?

d .
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Isomorphism Testing in Cd(V )

Suppose that X1,X2 are objects in Cd(V ) We can test whether X1

and X2 are isomorphic as follows:

T = Homd(X1,X1) is a finite dim. associative algebra
If T and Homd(X2,X1) are not isomorphic as T -modules,
then X1 and X2 are not isomorphic

We can test whether two T -modules are isomorphic
efficiently, and if T and Homd(X2,X1) are isomorphic, we can
compute an isomorphism ϕ : Homd(X1,X1)→ Homd(X2,X1)

Let f = ϕ(id). Then X1 and X2 are isomorphic if and only if f
is an isomorphism. This is easy to test.
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The Graph Isomorphism Problem

The Graph isomorphism is in NP, but it is not known whether it is
in P. In other words, it is not known whether there exists an
algorithm that can determine if two graphs with n vertices are
isomorphic in O(nm) time, for some fixed m.

If the graphs have bounded valence, then there exists a polynomial
time algorithm (Luks ’82).

Another well-known algorithm is the d-dimensional
Weisfeiler-Lehman algorithm (60’s).
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The d-dimensional Weisfeiler-Lehman algorithm

Γ = (X ,E ) Graph, X set with n elements
E ⊆ X × X symmetric relation

Idea: color i tuples in X i for i ≤ d recursively until a stable
coloring is obtained.

For fixed d , this algorithm is polynomial time in n.

The stable coloring is invariant under Aut(X ). If Γ1, Γ2 are distinct
graphs, then we can take Γ as the disjoint union. If a vertex of Γ1

get a color that does not appear in Γ2, then Γ1 and Γ2 are not
isomorphic.

Harm Derksen Approximate Categories for the Graph Isomorphism Problem



The d-dimensional Weisfeiler-Lehman algorithm

Γ = (X ,E ) Graph, X set with n elements
E ⊆ X × X symmetric relation

Idea: color i tuples in X i for i ≤ d recursively until a stable
coloring is obtained.

For fixed d , this algorithm is polynomial time in n.

The stable coloring is invariant under Aut(X ). If Γ1, Γ2 are distinct
graphs, then we can take Γ as the disjoint union. If a vertex of Γ1

get a color that does not appear in Γ2, then Γ1 and Γ2 are not
isomorphic.

Harm Derksen Approximate Categories for the Graph Isomorphism Problem



The d-dimensional Weisfeiler-Lehman algorithm

Γ = (X ,E ) Graph, X set with n elements
E ⊆ X × X symmetric relation

Idea: color i tuples in X i for i ≤ d recursively until a stable
coloring is obtained.

For fixed d , this algorithm is polynomial time in n.

The stable coloring is invariant under Aut(X ). If Γ1, Γ2 are distinct
graphs, then we can take Γ as the disjoint union. If a vertex of Γ1

get a color that does not appear in Γ2, then Γ1 and Γ2 are not
isomorphic.

Harm Derksen Approximate Categories for the Graph Isomorphism Problem



The d-dimensional Weisfeiler-Lehman algorithm

Γ = (X ,E ) Graph, X set with n elements
E ⊆ X × X symmetric relation

Idea: color i tuples in X i for i ≤ d recursively until a stable
coloring is obtained.

For fixed d , this algorithm is polynomial time in n.

The stable coloring is invariant under Aut(X ). If Γ1, Γ2 are distinct
graphs, then we can take Γ as the disjoint union. If a vertex of Γ1

get a color that does not appear in Γ2, then Γ1 and Γ2 are not
isomorphic.

Harm Derksen Approximate Categories for the Graph Isomorphism Problem



d-Variable first order language Ld

We can think of a graph Γ = (X ,E ) as a structure, and to this
structure we can associate the first order logic. In the d-variable
language Ld , we only allow d variables to be used (but one may
re-use variables)

For example:

ϕ(x1, x2) = ∃x3 [∃x2 E (x1, x2) ∧ E (x2, x3)] ∧ E (x3, x2)

says “x1 and x2 are connected by a path of length 3”. The formula
uses 3 variables (x2 has been re-used).
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d-Variable Logic with Counting Cd

In the d-variable first order language with counting Cd , we allow
also quantors that can count.

∃l x means “there exist exactly l values for x such that . . . ”

For example
ψ(x1) = ∃37x2 ϕ(x1, x2)

means “ there are exactly 37 vertices that can be connected to x1
by a path of length 3”.
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Cai–Fürer–Immerman ’92

Theorem

The d-dimensional Weisfeiler-Lehman algorithm can distinguish
two graphs Γ1, Γ2 if and only if there exists a closed formula ψ in
the (d + 1)-variable logic with counting such that ψ is true for Γ1

but not for Γ2.

Theorem (CFI)

For every d there exists two non-isomorphic graphs Γ1 and Γ2 such
that for every formula ψ in Cd+1, ψ is true for Γ1 if and only if ψ
is true for Γ2. So the d-dimensional Weisfeiler-Lehman algorithm
cannot distinguish Γ1 and Γ2.
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Distinguishing Graphs using the category Cd(V )

Γ1, Γ2 two graphs with n vertices
A1,A2 corresponding adjacency matrices

G ⊆ Matn,n(k) set of n × n permutation matrices,
W the space of linear functions on G ⊆ Matn,n(k)
V = Matn,n(k), G acts on V by conjugation

Theorem

Assume that k has characteristic 0 or > n. If A1,A2 are isomorphic
in Cd(V ), then the (d − 1)-dimensional Weisfeiler-Lehman
algorithm cannot distinguish the graphs Γ1, Γ2.

For fixed d , isomorphisms in Cd(V ) can be checked using a
polynomial number of arithmetic operations in k . If k = Fp and
p = O(n) then isomorphism can be checked in polynomial time.

So our algorithm is at least as powerful as the Weisfeiler-Lehman
algorithm.
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Distinguishing the CFI graphs in polynomial time

Suppose that Γ1, Γ2 is a pair of non-isomorphic graphs in the
Cai-Fürer-Immerman family.

Theorem

If k = F2 then A1,A2 are not isomorphic in C3(V ).

So using our algorithm distinguishes these graphs in polynomial
time, but the Weisfeiler-Lehman algorithm cannot distinguish these
graphs in polynomial time.
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Why is our algorithm more powerful?

It is hard to say “the rank of the adjacency matrix (over the field
Fp) of Γ has rank r . One cannot express such a sentence in Cd for
small d .

Our algorithm captures a “logic” that is more powerful. For d = 3
one can already express that the adjacency matrix has rank r .

The CFI graphs can easily be distinguished, because their
adjacency matrices have canonical submatrices with distinct ranks
(when working over F2).
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Questions

Can our algorithm distinguish the CFI graphs in polynomial time if
we work over fields of characteristic 6= 2?

Can our algorithm distinguish graphs of bounded valence in
polynomial time?

(Wishful thinking)

Can our algorithm distinguish all graphs in polynomial time?
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