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(joint with A. Maurischat)

� k = k is an algebraically closed field.

� B is a finitely generated k-algebra.

� G is an algebraic group acting on B via k-algebra automorphisms.

� Finally, BG, the ring of invariants, is the subring of B fixed by the

action of G.
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(joint with A. Maurischat)

� k = k is an algebraically closed field.

� B is a finitely generated k-algebra.

� G is an algebraic group acting on B via k-algebra automorphisms.

� Finally, BG, the ring of invariants, is the subring of B fixed by the

action of G.

A central question in invariant theory:

Is BG a finitely generated k-algebra?
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� yes,

� if G is a finite group. (Hilbert and Noether, 1916, 1926)

� if G is a reductive group. (Nagata, 1964)
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� yes,

� if G is a finite group. (Hilbert and Noether, 1916, 1926)

� if G is a reductive group. (Nagata, 1964)

� no, in general:

� Nagata’s counterexample (1959)

� If G is not reductive, there always exists B with a G-action such

that BG is not finitely generated. (Popov, 1979)
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� yes,

� if G is a finite group. (Hilbert and Noether, 1916, 1926)

� if G is a reductive group. (Nagata, 1964)

� no, in general:

� Nagata’s counterexample (1959)

� If G is not reductive, there always exists B with a G-action such

that BG is not finitely generated. (Popov, 1979)

Now, we concentrate on G = Ga and B = k[x1, . . . , xn].
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In characteristic zero:

� Maurer-Weitzenböck Theorem (1932):

Linear Ga-actions have finitely generated invariants.

� If n ≤ 3, then the invariants are finitely generated. (Zariski, 1954)

� If n ≥ 5, the invariants may not be finitely generated:

� n = 7: Roberts’s counterexample (1990)

� n = 6: Freudenburg’s counterexample (2000)

� n = 5: Daigle and Freudenburg’s counterexample (1999)

� The case n = 4 remains open for general Ga-actions.
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In positive characteristic:

� If n ≤ 3, then the invariants are finitely generated. (Zariski, 1954)

� The invariants of some linear actions are finitely generated:

� Basic actions (Seshadri, 1962)

� Codimension-1 modules (Fauntleroy, 1977)

� It is not known if linear actions have finitely generated invariants.

� There are no known examples of Ga-actions on polynomial rings with

infinitely generated invariants.
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In positive characteristic:

� If n ≤ 3, then the invariants are finitely generated. (Zariski, 1954)

� The invariants of some linear actions are finitely generated:

� Basic actions (Seshadri, 1962)

� Codimension-1 modules (Fauntleroy, 1977)

� It is not known if linear actions have finitely generated invariants.

� There are no known examples of Ga-actions on polynomial rings with

infinitely generated invariants.

In this talk:

we construct positive characteristic analogs to Daigle and Freudenburg’s,

Freudenburg’s, and Roberts’s counterexamples, and show that in in every

pisitive characteristic the invarinat rings are finitely generated.
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� In characteristic zero, additive group actions correspond to locally

nilpotent derivations (LND).

� It provides useful extra structure:

for example, van den Essen’s algorithm.

� This correspondance fails in positive characteristic.
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� In characteristic zero, additive group actions correspond to locally

nilpotent derivations (LND).

� It provides useful extra structure:

for example, van den Essen’s algorithm.

� This correspondance fails in positive characteristic.

� But there is a notion which plays the role of LND:

Locally finite iterative higher derivations (lfihd).
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Definition 1. A family
(
θ(i)

)
i≥0

of k-linear maps B → B is a locally

finite iterative higher derivation (lfihd) if and only if it fulfills the following

properties:

1. θ(0) = idB ,
2. for all l ≥ 0 and a, b ∈ B, one has

θ(l)(ab) =
∑

i+j=l θ
(i)(a)θ(j)(b),

3. for all j, k ≥ 0 and b ∈ B, one has

θ(j)(θ(k)(b)) =
(
j+k

j

)
θ(j+k)(b),

4. for all b ∈ B, there is l ≥ 0 such that θ(j)(b) = 0 for all j ≥ l.

The ring of constants is

Bθ := {b ∈ B | θ(i)(b) = 0, for all i ≥ 1}.
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Definition 1. A family
(
θ(i)

)
i≥0

of k-linear maps B → B is a locally

finite iterative higher derivation (lfihd) if and only if it fulfills the following

properties:

1. θ(0) = idB ,
2. for all l ≥ 0 and a, b ∈ B, one has

θ(l)(ab) =
∑

i+j=l θ
(i)(a)θ(j)(b),

3. for all j, k ≥ 0 and b ∈ B, one has

θ(j)(θ(k)(b)) =
(
j+k

j

)
θ(j+k)(b),

4. for all b ∈ B, there is l ≥ 0 such that θ(j)(b) = 0 for all j ≥ l.

The ring of constants is

Bθ := {b ∈ B | θ(i)(b) = 0, for all i ≥ 1}.

Note that in characteristic zero: θ(j) = 1
j!(θ

(1))j .
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A Ga-action on B corresponds to a k-algebra automorphism

θ : B −→ B ⊗k k[U ] = B[U ]

via θ(b)|U=σ = σ · b, for b ∈ B.
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A Ga-action on B corresponds to a k-algebra automorphism

θ : B −→ B ⊗k k[U ] = B[U ]

via θ(b)|U=σ = σ · b, for b ∈ B.

The k-algebra automorphism θ corresponds to a family
(
θ(i)

)
i≥0

of

k-linear maps on B via

θ(b) =
∑

i≥0

θ(i)(b)U i.
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A Ga-action on B corresponds to a k-algebra automorphism

θ : B −→ B ⊗k k[U ] = B[U ]

via θ(b)|U=σ = σ · b, for b ∈ B.

The k-algebra automorphism θ corresponds to a family
(
θ(i)

)
i≥0

of

k-linear maps on B via

θ(b) =
∑

i≥0

θ(i)(b)U i.

�
(
θ(i)

)
i≥0

is a lfihd.

� The ring of invariants is equal to the ring of constants: BGa = Bθ.
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B5 := k[x, y, s, t, u, v] and in characteristic 0:

θ(1) = x3 ∂

∂s
+ s

∂

∂t
+ t

∂

∂u
+ x2 ∂

∂v
.

To get something which works in all characteristics, we rescale the

variables: t := 2t, u := 6u.

The lfihd is then given by

θ(x) = x,
θ(s) = s + x3U,
θ(t) = t + 2sU + x3U2,
θ(u) = u + 3tU + 3sU2 + x3U3,
θ(v) = v + x2U.
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Theorem 2.
Contrary to characteristic zero, in every positive characteristic, the ring of

invariants Bθ
5 is finitely generated.

Proof.

As the lfihd θ is triangular, it restricts to a lfihd θ on A5 = k[x, s, t, u].

Aθ
5 is finitely generated. (easy, van den Essen’s algorithm)
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Proof of Theorem 2 (continued).

There is an invariant of the form vp + vb′ − b. (the hard step!)

� van den Essen already had a sequence xvn + . . . for all n
� when n = p, p divides the coefficients that are not divisible by x.
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Proof of Theorem 2 (continued).

There is an invariant of the form vp + vb′ − b. (the hard step!)

� van den Essen already had a sequence xvn + . . . for all n
� when n = p, p divides the coefficients that are not divisible by x.

The extension A5[vp + vb′ − b] ⊂ B5 is integral, hence so is the

extension A5[vp + vb′ − b]θ ⊂ Bθ
5 .

Thus, as A5[vp + vb′ − b]θ = Aθ
5[v

p + vb′ − b] is finitely generated,

Bθ
5 is finitely generated.
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Robert’s example: B7 = k[x1, x2, x3, y1, y2, y3, v], with a lfihd θ
Freudenburg’s example: B6 = k[x, y, s, t, u, v], with a lfihd θ.

Theorem 3.
Contrary to characteristic zero, in every positive characteristic, the rings of

invariants Bθ
5 , Bθ

6 , and Bθ
7 are finitely generated.

Remark 4. Kurano (1993) did Roberts’s example (B7).
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Robert’s example: B7 = k[x1, x2, x3, y1, y2, y3, v], with a lfihd θ
Freudenburg’s example: B6 = k[x, y, s, t, u, v], with a lfihd θ.

Theorem 3.
Contrary to characteristic zero, in every positive characteristic, the rings of

invariants Bθ
5 , Bθ

6 , and Bθ
7 are finitely generated.

Remark 4. Kurano (1993) did Roberts’s example (B7).

Lemma 5 (The examples are closely related).

1. B5
∼= B6/(y − 1) (respects the lfihd)

2. α : B6 → B7 a homomorphism respecting the lfihd
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[1] Emilie Dufresne and Andreas Maurischat. On the finite generation of

additive group invariants in positive characteristic. accepted for

publication in J. Algebra, 2010.


