On the depth of separating algebras of finite groups

Jonathan Elmer

School of Mathematical Sciences Queen Mary, University of London

Summer Meeting of the Canadian Mathematical Society, Fredericton NB

イロト イポト イヨト イヨト 一座

Outline

- Our results
- Example

Depth of Separating Algebras

ヘロト 人間 とくほとくほとう

∃ 990

Outline

- 2 Separating Algebras
 - Our results
 - Example

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Cast List

- G, a group
- k a field of characteristic $p \ge 0$
- V, a finite-dimensional k-vector space on which G acts
- *G* acts on k[V] via $\sigma f(v) = f(\sigma^{-1}v)$

Definition

The Ring of Invariants, $k[V]^G$ is the ring of fixed points under this action.

Cast List

- G, a group
- k a field of characteristic $p \ge 0$
- V, a finite-dimensional k-vector space on which G acts
- *G* acts on k[V] via $\sigma f(v) = f(\sigma^{-1}v)$

Definition

The Ring of Invariants, $k[V]^G$ is the ring of fixed points under this action.

Cast List

- G, a group
- k a field of characteristic $p \ge 0$
- V, a finite-dimensional k-vector space on which G acts
- *G* acts on k[V] via $\sigma f(v) = f(\sigma^{-1}v)$

Definition

The Ring of Invariants, $k[V]^G$ is the ring of fixed points under this action.

Separating Invariants A polynomial $f \in k[V]$ is said to separate the points v and w if $f(v) \neq f(w)$.

Theorem

Let G be a finite group and v, $w \in V$. Then the following are equivalent:

- v and w lie in the same G-orbit
- There exists some $f \in k[V]^G$ separating v and w.

Separating Invariants

A polynomial $f \in k[V]$ is said to separate the points v and w if $f(v) \neq f(w)$.

Theorem

Let G be a finite group and v, $w \in V$. Then the following are equivalent:

- v and w lie in the same G-orbit
- There exists some $f \in k[V]^G$ separating v and w.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Separating Invariants

A polynomial $f \in k[V]$ is said to separate the points v and w if $f(v) \neq f(w)$.

Theorem

Let G be a finite group and v, $w \in V$. Then the following are equivalent:

- *v* and *w* lie in the same G-orbit
- There exists some $f \in k[V]^G$ separating v and w.

イロト イポト イヨト イヨト 一座

Separating Sets

Definition

A separating set is a set *S* of invariants with the following property: If $v, w \in V$ are separated by invariants, there exists $f \in S$ such that $f(v) \neq f(w)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Many results about generating sets of rings of invariants in characterstic zero extend to separating sets in arbitrary characteristic.

Suppose G is finite.

- In characteristic zero, the ring of invariants k[V]^G is generated as a k-algebra by a set of invariants of degree ≤ |G|.
- In prime characteristic, this is no longer true.
- In arbitrary characteristic, there exists a separating set consisting of invariants of degree ≤ |G|.

イロン 不良 とくほう 不良 とうほ

Invariant Theory

Many results about generating sets of rings of invariants in characterstic zero extend to separating sets in arbitrary characteristic.

Suppose G is finite.

- In characteristic zero, the ring of invariants k[V]^G is generated as a k-algebra by a set of invariants of degree ≤ |G|.
- In prime characteristic, this is no longer true.
- In arbitrary characteristic, there exists a separating set consisting of invariants of degree ≤ |G|.

<ロ> (四) (四) (三) (三) (三)

Invariant Theory

Many results about generating sets of rings of invariants in characterstic zero extend to separating sets in arbitrary characteristic.

Suppose G is finite.

- In characteristic zero, the ring of invariants k[V]^G is generated as a k-algebra by a set of invariants of degree ≤ |G|.
- In prime characteristic, this is no longer true.
- In arbitrary characteristic, there exists a separating set consisting of invariants of degree ≤ |G|.

<ロ> (四) (四) (三) (三) (三)

Invariant Theory

Many results about generating sets of rings of invariants in characterstic zero extend to separating sets in arbitrary characteristic.

Suppose G is finite.

- In characteristic zero, the ring of invariants k[V]^G is generated as a k-algebra by a set of invariants of degree ≤ |G|.
- In prime characteristic, this is no longer true.
- In arbitrary characteristic, there exists a separating set consisting of invariants of degree ≤ |G|.

イロト イポト イヨト イヨト 一座

Definition

A separating algebra is a subalgebra of $k[V]^G$ containing a separating set.

- In characteristic zero, the ring of invariants k[V]^G is always a Cohen-Macaulay ring.
- In prime characteristic, this is not generally true.
- Perhaps in arbitrary characteristic the ring of invariants k[V]^G should contain a Cohen-Macaulay separating algebra?

・ロト ・ 一下・ ・ ヨト ・ ヨト

Definition

A separating algebra is a subalgebra of $k[V]^G$ containing a separating set.

- In characteristic zero, the ring of invariants k[V]^G is always a Cohen-Macaulay ring.
- In prime characteristic, this is not generally true.
- Perhaps in arbitrary characteristic the ring of invariants k[V]^G should contain a Cohen-Macaulay separating algebra?

ヘロン ヘアン ヘビン ヘビン

Definition

A separating algebra is a subalgebra of $k[V]^G$ containing a separating set.

- In characteristic zero, the ring of invariants k[V]^G is always a Cohen-Macaulay ring.
- In prime characteristic, this is not generally true.
- Perhaps in arbitrary characteristic the ring of invariants k[V]^G should contain a Cohen-Macaulay separating algebra?

イロン 不良 とくほう 不良 とうほ

Definition

A separating algebra is a subalgebra of $k[V]^G$ containing a separating set.

- In characteristic zero, the ring of invariants k[V]^G is always a Cohen-Macaulay ring.
- In prime characteristic, this is not generally true.
- Perhaps in arbitrary characteristic the ring of invariants k[V]^G should contain a Cohen-Macaulay separating algebra?

ヘロト ヘアト ヘビト ヘビト

Depth and the Cohen-Macaulay property

- An element $f \in k[V]^G$ is called regular on $k[V^G]$ if the map $k[V]^G \rightarrow k[V]^G$ defined by multiplication with f is injective.
- A sequence f₁, ... f_r is called a regular sequence if f_i is regular on k[V^G]/(f₁, ..., f_{i-1}).
- If *I* ⊂ *k*[*V*]^{*G*} is an ideal, then the length of the longest regular sequence in *I* is called the depth of *I*. The depth of *k*[*V*^{*G*}] is defined to be the depth of the maximal ideal *k*[*V*]^{*G*}₊ generated by positive degree invariants.
- $k[V]^G$ is called Cohen-Macaulay if its depth and dimension are equal. In this case, the depth of any ideal is equal to its height. In fact, we have

 $depth(k[V]^G) \le dim(k[V]^G) + depth(I) - height(I)$

イロン 不良 とくほう 不良 とうほ

Depth and the Cohen-Macaulay property

- An element $f \in k[V]^G$ is called regular on $k[V^G]$ if the map $k[V]^G \rightarrow k[V]^G$ defined by multiplication with f is injective.
- A sequence f₁, ... f_r is called a regular sequence if f_i is regular on k[V^G]/(f₁, ..., f_{i-1}).
- If *I* ⊂ *k*[*V*]^{*G*} is an ideal, then the length of the longest regular sequence in *I* is called the depth of *I*. The depth of *k*[*V*^{*G*}] is defined to be the depth of the maximal ideal *k*[*V*]^{*G*}₊ generated by positive degree invariants.
- $k[V]^G$ is called Cohen-Macaulay if its depth and dimension are equal. In this case, the depth of any ideal is equal to its height. In fact, we have

 $depth(k[V]^G) \le dim(k[V]^G) + depth(I) - height(I)$

イロン 不良 とくほう 不良 とうほ

Depth and the Cohen-Macaulay property

- An element $f \in k[V]^G$ is called regular on $k[V^G]$ if the map $k[V]^G \rightarrow k[V]^G$ defined by multiplication with f is injective.
- A sequence f₁, ... f_r is called a regular sequence if f_i is regular on k[V^G]/(f₁,..., f_{i-1}).
- If *I* ⊂ *k*[*V*]^{*G*} is an ideal, then the length of the longest regular sequence in *I* is called the depth of *I*. The depth of *k*[*V*^{*G*}] is defined to be the depth of the maximal ideal *k*[*V*]^{*G*}₊ generated by positive degree invariants.
- $k[V]^G$ is called Cohen-Macaulay if its depth and dimension are equal. In this case, the depth of any ideal is equal to its height. In fact, we have

 $depth(k[V]^G) \le dim(k[V]^G) + depth(I) - height(I)$

・ロト ・ 同ト ・ ヨト ・ ヨト

Depth and the Cohen-Macaulay property

- An element $f \in k[V]^G$ is called regular on $k[V^G]$ if the map $k[V]^G \rightarrow k[V]^G$ defined by multiplication with f is injective.
- A sequence f₁, ... f_r is called a regular sequence if f_i is regular on k[V^G]/(f₁, ..., f_{i-1}).
- If *I* ⊂ *k*[*V*]^G is an ideal, then the length of the longest regular sequence in *I* is called the depth of *I*. The depth of *k*[*V*^G] is defined to be the depth of the maximal ideal *k*[*V*]^G₊ generated by positive degree invariants.
- $k[V]^G$ is called Cohen-Macaulay if its depth and dimension are equal. In this case, the depth of any ideal is equal to its height. In fact, we have

 $depth(k[V]^G) \leq dim(k[V]^G) + depth(I) - height(I)$

イロン 不良 とくほう 不良 とうほ

Outline

• Example

Depth of Separating Algebras

ヘロト 人間 とくほとくほとう

∃ 990

Separating algebras are very closely related to rings of invariants:

Theorem (Derksen, Kemper)

Suppose k is an algebraically closed field of characteristic p > 0. Let $A \subset k[V]^G$ be a separating algebra. Then

 $k[V^G] = \{ f \in k[V] : f^{p^m} \in A \text{ for some } m \ge 0 \}$

• $k[V]^G$ is an integral extension of A.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Separating algebras are very closely related to rings of invariants:

Theorem (Derksen, Kemper)

۲

.

Suppose k is an algebraically closed field of characteristic p > 0. Let $A \subset k[V]^G$ be a separating algebra. Then

$$k[V^G] = \{ f \in k[V] : f^{p^m} \in A \text{ for some } m \ge 0 \}$$

• *k*[*V*]^{*G*} is an integral extension of *A*.

イロト イポト イヨト イヨト 三日

Separating algebras are very closely related to rings of invariants:

Theorem (Derksen, Kemper)

۲

Suppose k is an algebraically closed field of characteristic p > 0. Let $A \subset k[V]^G$ be a separating algebra. Then

$$k[V^G] = \{ f \in k[V] : f^{p^m} \in A \text{ for some } m \ge 0 \}$$

k[V]^G is an integral extension of A.

ヘロト ヘアト ヘビト ヘビト

Let $A \subset k[V]^G$ be a separating algebra:

Question: Is depth(A) \leq depth($k[V]^G$)? To answer this, we recall a method of calculating depth($k[V]^G$).

イロト イポト イヨト イヨト 一座

Let $A \subset k[V]^G$ be a separating algebra: Question: Is depth(A) \leq depth($k[V]^G$)? To answer this, we recall a method of calculating depth($k[V]^G$).

イロン 不得 とくほ とくほ とう

Theorem (Kemper, 1999)

Let $0 \neq \alpha \in H^m(G, k[V])$ where $m := \min\{i : H^i(G, k[V]) \neq 0\}$. Let $I := \operatorname{Ann}_{k[V]^G}(\alpha)$. Then

 $depth(I) = min\{m + 1, height(I)\}$

Theorem

Let
$$\chi_{\alpha} := \{X \leq G : \operatorname{res}_{X}^{G}(\alpha) \neq 0\}$$
. Then

height(I) = min{dim(V^X) : $X \in \chi_{\alpha}$ }.

Depth of Separating Algebras

Theorem (Kemper, 1999)

Let $0 \neq \alpha \in H^m(G, k[V])$ where $m := \min\{i : H^i(G, k[V]) \neq 0\}$. Let $I := \operatorname{Ann}_{k[V]^G}(\alpha)$. Then

 $depth(I) = min\{m + 1, height(I)\}$

Theorem

Let
$$\chi_{\alpha} := \{ X \leq G : \operatorname{res}_{X}^{G}(\alpha) \neq 0 \}$$
. Then

height(I) = min{dim(V^X) : $X \in \chi_{\alpha}$ }.

Depth of Separating Algebras

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Theorem (Dufresne, E, Kohls ,2009)

Let $0 \neq \alpha \in H^m(G, k[V])$ be such that α^{p^r} is nonzero for all r and m is the smallest index for which such an α exists. Let $I := Ann_A(\alpha)$. Then

depth(I) $\leq m + 1$.

Theorem

Let $\chi_{\alpha} := \{X \leq G : \operatorname{res}_{X}^{G}(\alpha) \neq 0\}$. Then

height(I) = min{dim(V^X) : $X \in \chi_{\alpha}$ }.

Depth of Separating Algebras

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Theorem (Dufresne, E, Kohls ,2009)

Let $0 \neq \alpha \in H^m(G, k[V])$ be such that α^{p^r} is nonzero for all rand m is the smallest index for which such an α exists. Let $I := Ann_A(\alpha)$. Then

depth(I) $\leq m + 1$.

Theorem

Let
$$\chi_{\alpha} := \{X \leq G : \operatorname{res}_{X}^{G}(\alpha) \neq 0\}$$
. Then
height(I) = min{dim(V^{X}) : $X \in \chi_{\alpha}$ }.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Our main result is the following:

Theorem

Suppose G and V are such that one of the following holds:

- G is p-nilpotent with a cyclic Sylow-p-subgroup P,
- (G, V) is a shallow group,

• *V* is a permutation module, and |G| is not divisible by p^2 . Suppose $A \subset k[V]^G$ is a separating algebra. Then depth $(A) \leq depth(k[V]^G)$.

イロト イポト イヨト イヨト 一座

Let $G := \mathbb{Z}/2 \times \mathbb{Z}/2$ and let k be an algebraically closed field of characteristic 2. Let V be an indecomposable kG-module. Let Q_1, Q_2, Q_3 be the nontrivial proper subgroups of G with $\dim(V^{Q_1} \leq \dim(V^{Q_2}) \leq \dim(V^{Q_3}))$. Let $A \subset k[V]^G$ be a separating algebra.

Theorem (E, 2007)

Provided V is not projective

$$depth(k[V]^G) = max\{dim(V^G) + 2, dim(V)\}.$$

Theorem (E, 2010)

$$depth(A) \leq dim(V^{Q_2}) + 2.$$

イロト イポト イヨト イヨト 一座

Let $G := \mathbb{Z}/2 \times \mathbb{Z}/2$ and let *k* be an algebraically closed field of characteristic 2. Let *V* be an indecomposable *kG*-module. Let Q_1, Q_2, Q_3 be the nontrivial proper subgroups of *G* with $\dim(V^{Q_1} \leq \dim(V^{Q_2}) \leq \dim(V^{Q_3}))$. Let $A \subset k[V]^G$ be a separating algebra.

Theorem (E, 2007)

Provided V is not projective

$$depth(k[V]^G) = max\{dim(V^G) + 2, dim(V)\}.$$

Theorem (E, 2010)

$$depth(A) \leq dim(V^{Q_2}) + 2.$$

ヘロト ヘ回ト ヘヨト ヘヨト

The indecomposable representations of *G* are classified into certain families. It turns out that for all *V* of even dimension we have depth(A) \leq depth($k[V]^G$). In each odd dimension, there are two non-isomorphic kG-modules, one of which satisfies depth(A) \leq depth($k[V]^G$), while for the other only the weaker statement depth(A) \leq depth($k[V]^G$) + 1 holds.

Of these modules, only one could possibly provide an example of a non-Cohen-Macaulay ring of invariants containing a Cohen-Macaulay separating algebra.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

The indecomposable representations of *G* are classified into certain families. It turns out that for all *V* of even dimension we have depth(A) \leq depth($k[V]^G$). In each odd dimension, there are two non-isomorphic kG-modules, one of which satisfies depth(A) \leq depth($k[V]^G$), while for the other only the weaker statement depth(A) \leq depth($k[V]^G$), while for the other only the weaker statement depth(A) \leq depth($k[V]^G$) + 1 holds. Of these modules, only one could possibly provide an example of a non-Cohen-Macaulay ring of invariants containing a Cohen-Macaulay separating algebra.

(雪) (ヨ) (ヨ)

Outline

Example

Depth of Separating Algebras

ヘロト 人間 とくほとくほとう

∃ 990

Consider the 5-dimensional representation of G given by

$$\sigma \mapsto \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \ \tau \mapsto \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

The depth of the ring of invariants is 4. A separating set is given by the following seven polynomials:

These generate a Cohen-Macaulay separating algebra.

イロン 不良 とくほう 不良 とうほ

Consider the 5-dimensional representation of G given by

$$\sigma \mapsto \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \ \tau \mapsto \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

The depth of the ring of invariants is 4. A separating set is given by the following seven polynomials:

$$\begin{aligned} \{a_1 &:= x_3, a_2 &:= x_4, a_3 &:= x_5, \\ a_4 &:= x_1^4 + x_1^2 x_3^2 + x_1^2 x_3 x_4 + x_1 x_3^2 x_4 + x_1 x_3 x_4^2 + x_1 x_3 x_4 x_5 + \\ & x_1 x_4^3 + x_2^2 x_3^2 + x_2 x_3^2 x_5 + x_2 x_3 x_4^2, \\ a_5 &:= x_2^4 + x_2^2 x_4^2 + x_2^2 x_4 x_5 + x_2^2 x_5^2 + x_2 x_4^2 x_5 + x_2 x_4 x_5^2, \\ a_6 &:= x_1^2 x_4^2 + x_1 x_3 x_4 x_5 + x_1 x_4^3 + x_2^2 x_3^2 + x_2 x_3^2 x_5 + x_2 x_3 x_4^2, \\ a_7 &:= x_1 x_4^2 x_5 + x_1 x_4 x_5^2 + x_2^2 x_3 x_5 + x_2^2 x_4^2 + x_2 x_3 x_5^2 + x_2 x_4^3 \end{aligned}$$

These generate a Cohen-Macaulay separating algebra.

イロン 不良 とくほう 不良 とうほ

Consider the 5-dimensional representation of G given by

$$\sigma \mapsto \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \ \tau \mapsto \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

The depth of the ring of invariants is 4. A separating set is given by the following seven polynomials:

$$\begin{aligned} &\{a_1 := x_3, a_2 := x_4, a_3 := x_5, \\ &a_4 := x_1^4 + x_1^2 x_3^2 + x_1^2 x_3 x_4 + x_1 x_3^2 x_4 + x_1 x_3 x_4^2 + x_1 x_3 x_4 x_5 + \\ &x_1 x_4^3 + x_2^2 x_3^2 + x_2 x_3^2 x_5 + x_2 x_3 x_4^2, \\ &a_5 := x_2^4 + x_2^2 x_4^2 + x_2^2 x_4 x_5 + x_2^2 x_5^2 + x_2 x_4^2 x_5 + x_2 x_4 x_5^2, \\ &a_6 := x_1^2 x_4^2 + x_1 x_3 x_4 x_5 + x_1 x_4^3 + x_2^2 x_3^2 + x_2 x_3^2 x_5 + x_2 x_3 x_4^2, \\ &a_7 := x_1 x_4^2 x_5 + x_1 x_4 x_5^2 + x_2^2 x_3 x_5 + x_2^2 x_4^2 + x_2 x_3 x_5^2 + x_2 x_4^3 \end{aligned}$$

These generate a Cohen-Macaulay separating algebra.

ヘロン ヘアン ヘビン ヘビン