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Cast List

G, a group
k a field of characteristic p ≥ 0
V , a finite-dimensional k -vector space on which G acts
G acts on k [V ] via σ.f (v) = f (σ−1v)

Definition

The Ring of Invariants, k [V ]G is the ring of fixed points under
this action.
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Separating Invariants
A polynomial f ∈ k [V ] is said to separate the points v and w if
f (v) 6= f (w).

Theorem
Let G be a finite group and v, w ∈ V. Then the following are
equivalent:

v and w lie in the same G-orbit
There exists some f ∈ k [V ]G separating v and w.
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Separating Sets

Definition
A separating set is a set S of invariants with the following
property: If v , w ∈ V are separated by invariants, there exists
f ∈ S such that f (v) 6= f (w).
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Many results about generating sets of rings of invariants in
characterstic zero extend to separating sets in arbitrary
characteristic.
Suppose G is finite.

In characteristic zero, the ring of invariants k [V ]G is
generated as a k -algebra by a set of invariants of degree
≤ |G|.
In prime characteristic, this is no longer true.
In arbitrary characteristic, there exists a separating set
consisting of invariants of degree ≤ |G|.
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Definition

Definition

A separating algebra is a subalgebra of k [V ]G containing a
separating set.

In characteristic zero, the ring of invariants k [V ]G is always
a Cohen-Macaulay ring.
In prime characteristic, this is not generally true.
Perhaps in arbitrary characteristic the ring of invariants
k [V ]G should contain a Cohen-Macaulay separating
algebra?
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Depth and the Cohen-Macaulay property
An element f ∈ k [V ]G is called regular on k [V G] if the map
k [V ]G → k [V ]G defined by multiplication with f is injective.
A sequence f1, · · · fr is called a regular sequence if fi is
regular on k [V G]/(f1, · · · , fi−1).
If I ⊂ k [V ]G is an ideal, then the length of the longest
regular sequence in I is called the depth of I. The depth of
k [V G] is defined to be the depth of the maximal ideal
k [V ]G+ generated by positive degree invariants.
k [V ]G is called Cohen-Macaulay if its depth and dimension
are equal. In this case, the depth of any ideal is equal to its
height. In fact, we have

depth(k [V ]G) ≤ dim(k [V ]G) + depth(I)− height(I)
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Separating algebras are very closely related to rings of
invariants:

Theorem (Derksen, Kemper)
Suppose k is an algebraically closed field of characteristic
p > 0. Let A ⊂ k [V ]G be a separating algebra. Then

k [V G] = {f ∈ k [V ] : f pm ∈ A for some m ≥ 0}

.
k [V ]G is an integral extension of A.

Depth of Separating Algebras



Basic Definitions
Separating Algebras

Our results
Example

Separating algebras are very closely related to rings of
invariants:

Theorem (Derksen, Kemper)
Suppose k is an algebraically closed field of characteristic
p > 0. Let A ⊂ k [V ]G be a separating algebra. Then

k [V G] = {f ∈ k [V ] : f pm ∈ A for some m ≥ 0}

.
k [V ]G is an integral extension of A.

Depth of Separating Algebras



Basic Definitions
Separating Algebras

Our results
Example

Separating algebras are very closely related to rings of
invariants:

Theorem (Derksen, Kemper)
Suppose k is an algebraically closed field of characteristic
p > 0. Let A ⊂ k [V ]G be a separating algebra. Then

k [V G] = {f ∈ k [V ] : f pm ∈ A for some m ≥ 0}

.
k [V ]G is an integral extension of A.

Depth of Separating Algebras



Basic Definitions
Separating Algebras

Our results
Example

Let A ⊂ k [V ]G be a separating algebra:
Question: Is depth(A) ≤ depth(k [V ]G)?
To answer this, we recall a method of calculating depth(k [V ]G).
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Theorem (Kemper,1999)

Let 0 6= α ∈ Hm(G, k [V ]) where m := min{i : H i(G, k [V ]) 6= 0}.
Let I := Annk [V ]G(α). Then

depth(I) = min{m + 1, height(I)}

Theorem

Let χα := {X ≤ G : resG
X (α) 6= 0}. Then

height(I) = min{dim(V X ) : X ∈ χα}.
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Theorem (Dufresne, E, Kohls ,2009)

Let 0 6= α ∈ Hm(G, k [V ]) be such that αpr
is nonzero for all r

and m is the smallest index for which such an α exists. Let
I := AnnA(α). Then

depth(I) ≤ m + 1.

Theorem

Let χα := {X ≤ G : resG
X (α) 6= 0}. Then

height(I) = min{dim(V X ) : X ∈ χα}.
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Our main result is the following:

Theorem
Suppose G and V are such that one of the following holds:

G is p-nilpotent with a cyclic Sylow-p-subgroup P,
(G, V ) is a shallow group,
V is a permutation module, and |G| is not divisible by p2.

Suppose A ⊂ k [V ]G is a separating algebra. Then
depth(A) ≤ depth(k [V ]G).
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Let G := Z/2× Z/2 and let k be an algebraically closed field of
characteristic 2. Let V be an indecomposable kG-module. Let
Q1, Q2, Q3 be the nontrivial proper subgroups of G with
dim(V Q1 ≤ dim(V Q2) ≤ dim(V Q3)). Let A ⊂ k [V ]G be a
separating algebra.

Theorem (E, 2007)
Provided V is not projective

depth(k [V ]G) = max{dim(V G) + 2, dim(V )}.

Theorem (E, 2010)

depth(A) ≤ dim(V Q2) + 2.
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The indecomposable representations of G are classified into
certain families. It turns out that for all V of even dimension we
have depth(A) ≤ depth(k [V ]G). In each odd dimension, there
are two non-isomorphic kG-modules, one of which satisfies
depth(A) ≤ depth(k [V ]G), while for the other only the weaker
statement depth(A) ≤ depth(k [V ]G) + 1 holds.
Of these modules, only one could possibly provide an example
of a non-Cohen-Macaulay ring of invariants containing a
Cohen-Macaulay separating algebra.
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Consider the 5-dimensional representation of G given by

σ 7→
( 1 0 1 0 0

0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
, τ 7→

( 1 0 0 1 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
.

The depth of the ring of invariants is 4. A separating set is given
by the following seven polynomials:

{a1 := x3, a2 := x4, a3 := x5,
a4 := x4

1 + x2
1 x2

3 + x2
1 x3x4 + x1x2

3 x4 + x1x3x2
4 + x1x3x4x5+

x1x3
4 + x2

2 x2
3 + x2x2

3 x5 + x2x3x2
4 ,

a5 := x4
2 + x2

2 x2
4 + x2

2 x4x5 + x2
2 x2

5 + x2x2
4 x5 + x2x4x2

5 ,
a6 := x2

1 x2
4 + x1x3x4x5 + x1x3

4 + x2
2 x2

3 + x2x2
3 x5 + x2x3x2

4 ,
a7 := x1x2

4 x5 + x1x4x2
5 + x2

2 x3x5 + x2
2 x2

4 + x2x3x2
5 + x2x3

4}

These generate a Cohen-Macaulay separating algebra.
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