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k is a field of characteristic 0, and R is a commutative k-algebra.
For a ring B, LND(B) is the set of locally nilpotent derivations D
of B. These correspond to the Ga-actions on Spec(B).

Main Idea. Study LND(B) when B = R[z ] is a domain, and
zn ∈ R for n ≥ 2.

In this case, B is a free R-module:

B = R + Rz + · · ·+ Rzn−1

This becomes a Zn-grading of B over R when deg z ∈ Z∗
n. It is

natural to consider LNDs of B which are homogeneous relative to
this grading.
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Basic Theorem.

Let f ∈ R be such that B = R[z ]/(f + zn)

Theorem 1. Let D ∈ LND(B) be Zn-homogeneous.

(a) D|R = zλδ for some δ ∈ LND(R) and 0 ≤ λ ≤ n − 1

(b) Dz , δf ∈ ker δ = R ∩ kerD

(c) If Dz 6= 0, then λ = n − 1 and kerD = ker δ

Definition. Given non-zero D ∈ LND(R), if K = frac(kerD) and
t ∈ R is a local slice, then R ⊂ K [t] = K [1]. Therefore, D defines
a degree function on R. The absolute degree of f ∈ R is the
minimal degree of f over all such D, denoted |f |R . In case
LND(R) = {0} (R is rigid), set |f |R =∞ for f 6= 0.

Note. Part (b) of the theorem says |f |R ≤ 1. We therefore obtain:
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Corollary 1. R is Z-graded and affine, f ∈ R is homogeneous
(f 6= 0), n ≥ 2 and gcd(n, deg f ) = 1. TFAE:

(a) |f |R ≥ 2

(b) B = R[z ]/(f + zn) is rigid

Corollary 2. R is a rigid affine k-domain and f ∈ R is non-zero.
Given relatively prime m, n ≥ 1, the ring

B = R[x , y ]/(f + xmyn) .

is rigid.

In order to apply these results, we first need to calculate some
absolute degrees, which is generally difficult if R is not rigid.
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Proposition 1. If R = k[x , y ] = k[2] and a, b ≥ 2, then

|xa + yb|R ≥

{
min{a, b} a 6= b

a− 1 a = b
,

with equality when k is algebraically closed.

Proposition 2. (due to Daigle) If R = k[x , y , z ] = k[3] and
a, b, c ≥ 2, where at most one of a, b, c equals 2, then

|xa + yb + zc |R ≥ 2 .
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Application: Pham-Brieskorn Surfaces

The Pham-Brieskorn surfaces are defined by S = Spec(B) for

B = k[x , y , z ]/(xa + yb + zc) ,

where a, b, c ≥ 2.

Theorem 2. If at most one of a, b, c equals 2, then B is rigid.
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Proof. If LND(B) 6= {0}, then B ⊂ K [t] as above, and

x(t)a + y(t)b + z(t)c = 0 in K [t] .

By Mason’s Theorem, 1/a + 1/b + 1/c > 1, meaning (a, b, c)
equals

(2, 3, 3) , (2, 3, 4) , or (2, 3, 5)

in some order. We may thus assume gcd(ab, c) = 1. Set

R = k[x , y ] and f = xa + yb .

Then R is Z-graded with deg x = b, deg y = a, and deg f = ab.
Since |f |R ≥ 2, the ring B = R[z ]/(f + zc) is rigid by Cor.2, a
contradiction. Therefore, LND(B) = {0}. 2
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Pham-Brieskorn Threefolds.

Suppose a, b, c ≥ 2 and at most one of these integers equals 2. If
R = k[x , y , z ], then by Daigle’s result, |xa + yb + zc |R ≥ 2. It
follows from Cor. 1 that, for any d ≥ 2 with gcd(abc, d) = 1, the
ring

B = k[x , y , z , t]/(xa + yb + zc + td)

is rigid.

Open Question. Is the affine Fermat cubic threefold

x3 + y3 + z3 + t3 = 0

rigid?
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Stable Rigidity.

Definition. If A is an affine k-domain, then A is stably rigid if,
for all n ≥ 0,

LND(A[n]) = LNDA(A[n]) .

If A is stably rigid, then it is rigid, but it is an open question
whether the converse holds.

Makar-Limanov has shown:

I If A is rigid, then LND(A[1]) = LNDA(A[1]).

I If A is rigid and dimA = 1, then A is stably rigid.
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What about the Pham-Brieskorn surfaces? When

1/a + 1/b + 1/c ≤ 1 ,

the proof above shows B = k[x , y , z ]/(xa + yb + zc) is stably
rigid.

Question. Let

B = k[x , y , z ]/(x2 + y3 + z5)

which is a UFD, and let D ∈ LND(B[X ,Y ]). Does DB = 0?
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Pham-Brieskorn Surfaces with Parameters.

Note that for any a, b, c ≥ 2, the ring

B = k[t, x , y , z ]/(txa + yb + zc)

is non-rigid. However, we have:

Theorem 3. Given a, b, c, d ≥ 2, let e = gcd(a, d), and

B = k[t, x , y , z ]/(tdxa + yb + zc) .

If at most one of e, b, c equals 2, then B is rigid.
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Proof. By Thm. 2, the ring R = k[y , z , v ]/(v e + yb + zc) is rigid.
Therefore, if a = em and d = en, then Cor. 2 implies that

B = R[t, x ]/(v − tnxm)

is rigid. 2

Note. We have similar results for

B = k[t, x , y , z ]/(tdxa + teyb + zc) .

These threefolds have been studied by Kaliman and
Makar-Limanov.
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A Second Basic Theorem

I f ∈ R and m, n ≥ 2 are relatively prime

I B = R[y , z ]/(f + ym + zn)

I S = R[y ] ∩ R[z ]

Then B is a free S-module:

B = ⊕Sy iz j (0 ≤ i ≤ m − 1 , 0 ≤ j ≤ n − 1) .

This yields a Zmn-grading of B over S when

deg y = un (u ∈ Z∗
m) and deg z = vm (v ∈ Z∗

n) .
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Theorem 4. Let D ∈ LND(B) be Zmn-homogeneous.

(a) D2y = D2z = 0

(b) Dy = 0 or Dz = 0

Application. Let A be a commutative k-domain and
B = A[x1, ..., xn] = A[n]. Suppose B is Z-graded over A, where
deg xi = ai and gcd(a1, ..., an) = 1.

Theorem 5. Suppose D ∈ LND(B) is Z-homogeneous.

(a) If gcd(a1, ..., âi , ..., an) 6= 1, then D2xi = 0.

(b) If gcd(a1, ..., âi , ..., an) 6= 1 and gcd(a1, ..., âj , ..., an) 6= 1 for
i 6= j , then Dxi = 0 or Dxj = 0.

In other words, we get information about all homogeneous LNDs
just from numerical data! Note that we do not assume DA = 0.
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Concluding Remarks.

1. Fields are rigid, and in this sense, rigid rings are generalizations
of fields.

2. We have focused on rings R[z ] such that zn ∈ R. There are 3
related classes of rings which naturally suggest themselves for
similar investigation.

I Rings of the form R[z ] where z is integral over R

I Rings of the form R[z ] where z ∈ frac(R)

I Rings of the form R[x , y ] where xy ∈ R.

Two basic results:

I If a, b ∈ R are non-zero, and |a|R = 0, then R[z ]/(az + b) is
not rigid.

I (from Cor. 2) If R is rigid and f ∈ R is non-zero, then
R[x , y ]/(f + xy) is rigid.
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