Locally Nilpotent Derivations of Rings with Roots Adjoined

Gene Freudenburg

Western Michigan University

6 June 2010

-

k is a field of characteristic 0, and *R* is a commutative **k**-algebra. For a ring *B*, LND(B) is the set of locally nilpotent derivations *D* of *B*. These correspond to the \mathbb{G}_{a} -actions on Spec(B).

Main Idea. Study LND(B) when B = R[z] is a domain, and $z^n \in R$ for $n \ge 2$.

In this case, B is a free R-module:

$$B = R + Rz + \dots + Rz^{n-1}$$

This becomes a \mathbb{Z}_n -grading of B over R when deg $z \in \mathbb{Z}_n^*$. It is natural to consider LNDs of B which are *homogeneous* relative to this grading.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let $f \in R$ be such that $B = R[z]/(f + z^n)$

Theorem 1. Let $D \in \text{LND}(B)$ be \mathbb{Z}_n -homogeneous.

(a) $D|_R = z^\lambda \delta$ for some $\delta \in \text{LND}(R)$ and $0 \le \lambda \le n-1$

(b)
$$Dz, \delta f \in \ker \delta = R \cap \ker D$$

(c) If $Dz \neq 0$, then $\lambda = n - 1$ and ker $D = \ker \delta$

Definition. Given non-zero $D \in \text{LND}(R)$, if $K = \text{frac}(\ker D)$ and $t \in R$ is a local slice, then $R \subset K[t] = K^{[1]}$. Therefore, D defines a degree function on R. The **absolute degree** of $f \in R$ is the minimal degree of f over all such D, denoted $|f|_R$. In case $\text{LND}(R) = \{0\}$ (R is **rigid**), set $|f|_R = \infty$ for $f \neq 0$.

Note. Part (b) of the theorem says $|f|_R \leq 1$. We therefore obtain:

Corollary 1. R is \mathbb{Z} -graded and affine, $f \in R$ is homogeneous $(f \neq 0), n \ge 2$ and $gcd(n, \deg f) = 1$. TFAE: (a) $|f|_R \ge 2$ (b) $B = R[z]/(f + z^n)$ is rigid

Corollary 2. *R* is a rigid affine **k**-domain and $f \in R$ is non-zero. Given relatively prime $m, n \ge 1$, the ring

$$B = R[x, y]/(f + x^m y^n) .$$

is rigid.

In order to apply these results, we first need to calculate some absolute degrees, which is generally difficult if R is not rigid.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Proposition 1. If $R = \mathbf{k}[x, y] = \mathbf{k}^{[2]}$ and $a, b \ge 2$, then

$$|x^{a}+y^{b}|_{R} \geq \begin{cases} \min\{a,b\} & a \neq b \\ a-1 & a=b \end{cases},$$

with equality when \mathbf{k} is algebraically closed.

Proposition 2. (due to Daigle) If $R = \mathbf{k}[x, y, z] = \mathbf{k}^{[3]}$ and $a, b, c \ge 2$, where at most one of a, b, c equals 2, then

$$|x^a + y^b + z^c|_R \ge 2$$

向下 イヨト イヨト

The Pham-Brieskorn surfaces are defined by S = Spec(B) for

$$B = \mathbf{k}[x, y, z]/(x^a + y^b + z^c) ,$$

where $a, b, c \geq 2$.

Theorem 2. If at most one of *a*, *b*, *c* equals 2, then *B* is rigid.

回 と く ヨ と く ヨ と

Proof. If $LND(B) \neq \{0\}$, then $B \subset K[t]$ as above, and

$$x(t)^{a} + y(t)^{b} + z(t)^{c} = 0$$
 in $K[t]$.

By Mason's Theorem, 1/a + 1/b + 1/c > 1, meaning (a, b, c) equals

 $(2,3,3) \ , \ (2,3,4) \ , \ {\rm or} \ (2,3,5)$

in some order. We may thus assume gcd(ab, c) = 1. Set

$$R = \mathbf{k}[x, y]$$
 and $f = x^a + y^b$.

Then *R* is \mathbb{Z} -graded with deg x = b, deg y = a, and deg f = ab. Since $|f|_R \ge 2$, the ring $B = R[z]/(f + z^c)$ is rigid by Cor.2, a contradiction. Therefore, $\text{LND}(B) = \{0\}$. \Box

- イボト イヨト - ヨ

Suppose *a*, *b*, *c* \geq 2 and at most one of these integers equals 2. If $R = \mathbf{k}[x, y, z]$, then by Daigle's result, $|x^a + y^b + z^c|_R \geq 2$. It follows from Cor. 1 that, for any $d \geq 2$ with gcd(*abc*, *d*) = 1, the ring

$$B = \mathbf{k}[x, y, z, t] / (x^a + y^b + z^c + t^d)$$

is rigid.

Open Question. Is the affine Fermat cubic threefold

$$x^3 + y^3 + z^3 + t^3 = 0$$

rigid?

伺 とう ヨン うちょう

Definition. If A is an affine k-domain, then A is stably rigid if, for all $n \ge 0$, $\operatorname{LND}(A^{[n]}) = \operatorname{LND}_{4}(A^{[n]})$.

If A is stably rigid, then it is rigid, but it is an open question whether the converse holds.

Makar-Limanov has shown:

- If A is rigid, then $LND(A^{[1]}) = LND_A(A^{[1]})$.
- If A is rigid and dim A = 1, then A is stably rigid.

・ 同 ト ・ ヨ ト ・ ヨ ト

What about the Pham-Brieskorn surfaces? When

$$1/a + 1/b + 1/c \le 1$$
,

the proof above shows $B = \mathbf{k}[x, y, z]/(x^a + y^b + z^c)$ is stably rigid.

Question. Let

$$B = \mathbf{k}[x, y, z] / (x^2 + y^3 + z^5)$$

which is a UFD, and let $D \in \text{LND}(B[X, Y])$. Does DB = 0?

コン・ヘリン・ヘリン

Note that for any $a, b, c \ge 2$, the ring

$$B = \mathbf{k}[t, x, y, z]/(tx^a + y^b + z^c)$$

is non-rigid. However, we have:

Theorem 3. Given $a, b, c, d \ge 2$, let e = gcd(a, d), and

$$B = \mathbf{k}[t, x, y, z]/(t^d x^a + y^b + z^c) .$$

If at most one of e, b, c equals 2, then B is rigid.

Proof. By Thm. 2, the ring $R = \mathbf{k}[y, z, v]/(v^e + y^b + z^c)$ is rigid. Therefore, if a = em and d = en, then Cor. 2 implies that

$$B = R[t,x]/(v-t^n x^m)$$

is rigid. 🗆

Note. We have similar results for

$$B = \mathbf{k}[t, x, y, z] / (t^d x^a + t^e y^b + z^c)$$
.

These threefolds have been studied by Kaliman and Makar-Limanov.

向下 イヨト イヨト

•
$$f \in R$$
 and $m, n \ge 2$ are relatively prime

$$\bullet B = R[y,z]/(f+y^m+z^n)$$

► $S = R[y] \cap R[z]$

Then B is a free S-module:

$$B = \oplus Sy^i z^j \quad (0 \le i \le m-1, \, 0 \le j \le n-1) \; .$$

This yields a \mathbb{Z}_{mn} -grading of B over S when

$$\deg y = un \ (u \in \mathbb{Z}_m^*) \quad \text{and} \quad \deg z = vm \ (v \in \mathbb{Z}_n^*) \ .$$

向下 イヨト イヨト

Theorem 4. Let $D \in \text{LND}(B)$ be \mathbb{Z}_{mn} -homogeneous. (a) $D^2y = D^2z = 0$ (b) Dy = 0 or Dz = 0

Application. Let *A* be a commutative **k**-domain and $B = A[x_1, ..., x_n] = A^{[n]}$. Suppose *B* is \mathbb{Z} -graded over *A*, where deg $x_i = a_i$ and gcd $(a_1, ..., a_n) = 1$.

Theorem 5. Suppose $D \in \text{LND}(B)$ is \mathbb{Z} -homogeneous. (a) If $gcd(a_1, ..., \hat{a}_i, ..., a_n) \neq 1$, then $D^2x_i = 0$. (b) If $gcd(a_1, ..., \hat{a}_i, ..., a_n) \neq 1$ and $gcd(a_1, ..., \hat{a}_j, ..., a_n) \neq 1$ for $i \neq j$, then $Dx_i = 0$ or $Dx_j = 0$.

In other words, we get information about *all* homogeneous LNDs just from numerical data! Note that we do not assume DA = 0.

Concluding Remarks.

1. Fields are rigid, and in this sense, rigid rings are generalizations of fields.

2. We have focused on rings R[z] such that $z^n \in R$. There are 3 related classes of rings which naturally suggest themselves for similar investigation.

- Rings of the form R[z] where z is integral over R
- Rings of the form R[z] where $z \in frac(R)$
- Rings of the form R[x, y] where $xy \in R$.

Two basic results:

If a, b ∈ R are non-zero, and |a|_R = 0, then R[z]/(az + b) is not rigid.

▶ (from Cor. 2) If R is rigid and $f \in R$ is non-zero, then R[x, y]/(f + xy) is rigid.

イロン スポン イヨン イヨン