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Briefing on Separating Orbits

Let G be an algebraic group acting rationally on a variety V .

Definition
The orbit of a point x ∈ V is the set

G · x = {g · x | g ∈ G}.

1 If x , y ∈ V , can we find out if x and y lie in the same orbit?
2 How easily can we find out?

Question (1) is asked and answered:
Applications include structural chemistry, computer vision,
and dynamical systems.
Potentially answered by the invariant subring,

k [V ]G = {f (p) ∈ k [V ] | f (g−1 · p) = f (p) ∀ g ∈ G}
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Briefing on Separating Orbits

Definition
A set S of invariant functions on V separates orbits if
whenever x 6∈ G · y, then ∃ f ∈ S such that f (x) 6= f (y).

If G is reductive,
k [V ]G is finitely generated, so generators may separate
orbits.
Can compute generators using Gröbner bases.

If G not reductive, still ∃ finite S ⊂ k [V ]G such that for each
x , y ∈ V ,
If ∃ h ∈ k [V ]G such that h(x) 6= h(y),

Then ∃ f ∈ S such that f (x) 6= f (y).

So S separates orbits as precisely as k [V ]G.
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Limitations of k [V ]G, Part 1

Limitations of theory: regular functions may fail to separate
orbits.

Let Gm = k∗ act on A2 by

g · (x , y) = (gx ,gy).

Then k [x , y ]Gm = k .
In general, failure when ∃ z ∈ G · x ∩G · y 6= ∅:
For if f ∈ k [V ]G, then f (G · x) = f (z) = f (G · y).
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Limitations of k [V ]G, Part 2

Limitations of practice:
Gröbner basis calculations are costly in principle.
Only have algorithms for S or k [V ]G generators if G
reductive.
For general G, can’t predict number of separating or
generating invariants.
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A New Breed of Function

Extend the regular functions on V with a quasi-inverse:

{f}(p) =

{
1/f (p) f (p) 6= 0
0 f (p) = 0

Definition

For R = k [V ], let R̂ denote the ring of functions V → k
obtained by applying the quasi-inverse iteratively on elements
of R. Call these functions constructible.

E.g., if f ,g ∈ R, then {f + {g}} ∈ R̂.
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A New Algorithm for Separating Orbits

Over k = k , let G ↪→ A` be an m-dimensional algebraic
group.
Let G act rationally on An via the representation
ρ : G ↪→ GLn.
Let N = max{deg(ρij)}.
Let r be the maximal dimension of an orbit.

Theorem

There is an algorithm to produce a finite set C ⊂ R̂ of invariant,
constructible functions with the following properties:

1 The set C separates orbits.
2 The size of C grows as O(n2N(`+m+1)(r+1)).
3 The f ∈ C can be written as straight line programs, such

that the sum of their lengths is O(n3N3`(r+1)+r ).
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Example

Let Gm = k∗ act on A2 by

g · (x , y) = (gx ,gy), so k [x , y ]Gm = k .

The functions in C simplify to

x{x} and y{y} · (1− x{x}+ y{x}).

Recall {f}(p) =

(
1/f (p) f (p) 6= 0
0 f (p) = 0

If x 6= 0, then x{x} = x/x = 1 and y{x} = y/x .
Invariance: x 6= 0 =⇒ (gx){gx} = 1, gy{gx} = y/x ,
Separation:

x , y 6= 0 =⇒ y{y}·(1−x{x}+y{x}) = 1·(1−1+y/x) = y/x .
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What Will It Cost Me?

The theorem says more than the existence of C:

|C| = O
(

n2N(`+m+1)(r+1)
)

Still, how practical is it to use C?
How long does it take to write down the functions?
How complicated is the evaluation of the functions?

Harlan Kadish 2010 CMS Summer Meeting



What Will It Cost Me?

The theorem says more than the existence of C:

|C| = O
(

n2N(`+m+1)(r+1)
)

Still, how practical is it to use C?
How long does it take to write down the functions?
How complicated is the evaluation of the functions?

Harlan Kadish 2010 CMS Summer Meeting



Straight Line Programs

Definition
An SLP is a finite list of ring operations (and the quasi-inverse)
to perform on a finite input sequence of ring elements.

E.g., write x{y}+ {z} as an SLP:
1 Input (x , y , z).
2 Compute {y}.
3 Multiply x and {y}.
4 Compute {z}.
5 Add x{y} to {z}.

Output is a sequence: (x , y , z, {y}, x{y}, {z}, x{y}+ {z}).

Definition
The complexity of an SLP is the non-input length of its output.
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Separating Orbits Cheaply

Theorem

There is an algorithm to produce a finite set C ⊂ R̂ of invariant,
constructible functions with the following properties:

1 The set C separates orbits.
2 The size of C grows as O(n2N(`+m+1)(r+1)).
3 The f ∈ C can be written as straight line programs, such

that the sum of their lengths is O(n3N3`(r+1)+r ).

Can write down C for any algebraic group.
Have a polynomial bound on |C|.
Number of steps to write down C has a polynomial bound.
Or, can evaluate all of C at p ∈ An in polynomial time.
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The Algorithm: The Ideal of G · p

Fix p ∈ An. To compute defining equations for the closure G · p,

1 From ρ : G→ GLn, write down the orbit map

σp : G→ An defined by σp : g 7→ ρ(g) · p.

2 Write down the ring map σ∗p : k [x1, . . . , xn]→ k [G].
3 Then kerσ∗p is the ideal vanishing on G · p.
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The Algorithm: Computing ker σ∗p

Lemma
For fixed G, there exists an integer d = d(N), polynomial in N,
such that G · p can be defined by polynomials of degree ≤ d.

1 Let (σ∗p)≤d denote a matrix for the k -vector space map

k [x1, . . . , xn]≤d → k [G],

k [x ]≤d = {f ∈ k [x ] | deg(f ) ≤ d}

where the basis on the left is x1, . . . , xn, x2
1 , x1x2, . . . , xd

n .
2 Basis vectors in the kernel give relations on the monomials

of k [x1, . . . , xn].
3 These polynomials would define G · p.
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The Algorithm: Controlling Monomials

A problem arises:
The dimension of the k -basis

x1, . . . , xn, x2
1 , x1x2, x1x3, . . . , xd

n

grows exponentially in n.
Instead, for every degree i = 1, . . . ,d ,

1 Compute the reduced row echelon form of (σ∗p)≤i .
2 Compute the kernel of (σ∗p)≤i .
3 Find a maximal set of monomials Mi ⊂ k [x1, . . . xn]≤i with

linearly independent images in k [G].
4 Write (σ∗p)≤(i+1) in terms of Mi and

{m · xj | m ∈ Mi , j = 1 . . . ,n}.

From Hilbert polynomial of G, know |Mi | is polynomial in i .
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The Algorithm: Enter Constructible Functions

1 Now, the degree bound d determines the dimensions of
the matrices (σ∗p)≤i .

2 For fixed G, the degree bound d = d(N) is polynomial in
N = max{deg(ρij)}.

3 Hence the dimensions of the (σ∗p)≤i have polynomial
bounds in n and N.

Proposition
If A is an s × t matrix, then there exists an SLP (involving the
quasi-inverse) for the reduced row echelon form and kernel of
A, with complexity O(st2 + t3).

4 So we can compute the ker(σ∗p)≤i in polynomial time.
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The Algorithm: Output!

1 For p ∈ An, write down the orbit map σp : G→ An.
2 Write down matrices for σ∗p : k [x1, . . . , xn]≤i → k [G] up to

degree d .
3 Now, the matrix entries are regular functions of p.
4 So the entries of the ker(σ∗p)≤i vectors are constructible

functions of p.
5 Collect the kernel vectors’ entries into the set C.
6 As functions of p, they are G-invariant and separate orbits.
7 Their number and complexity are polynomial in n and N.
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