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Briefing on Separating Orbits

Let G be an algebraic group acting rationally on a variety V.

Definition

The orbit of a point x € V is the set

G-x={g-x|ge G}

@ If x,y € V, can we find out if x and y lie in the same orbit?
@ How easily can we find out?
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Briefing on Separating Orbits

Let G be an algebraic group acting rationally on a variety V.

Definition

The orbit of a point x € V is the set

G-x={g-x|ge G}

@ If x,y € V, can we find out if x and y lie in the same orbit?
@ How easily can we find out?
Question (1) is asked and answered:

@ Applications include structural chemistry, computer vision,
and dynamical systems.

@ Potentially answered by the invariant subring,
K[V]® = {f(p) € k[V] | f(g"' - p) = f(p) V g € G}
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Briefing on Separating Orbits

Definition

A set S of invariant functions on V separates orbits if
whenever x ¢ G-y, then 3 f € S such that f(x) # f(y).
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Briefing on Separating Orbits

Definition

A set S of invariant functions on V separates orbits if
whenever x ¢ G-y, then 3 f € S such that f(x) # f(y).

@ If Gis reductive,

e k[V]%is finitely generated, so generators may separate
orbits.
e Can compute generators using Grébner bases.
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Briefing on Separating Orbits

Definition

A set S of invariant functions on V separates orbits if
whenever x ¢ G-y, then 3 f € S such that f(x) # f(y).

@ If Gis reductive,
e k[V]%is finitely generated, so generators may separate
orbits.
e Can compute generators using Grébner bases.
@ If G not reductive, still 3 finite S ¢ k[V]¢ such that for each
X,y eV,
If 3 he k[V]% such that h(x) # h(y),
Then 3 f € S such that f(x) # f(y).

@ So S separates orbits as precisely as k[V]C.
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Limitations of k[V]€, Part 1

Limitations of theory: regular functions may fail to separate
orbits.

@ Let G, = k* act on A? by
g-(x,y)=(gx,9y).

@ Then K[x, y]°m = k.
@ Ingeneral, failurewhen3ze G- xN G-y # 0:
@ Forif f € k[V]C, then (G- x) = f(2) = f(G- y).
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Limitations of k[V]€, Part 2

Limitations of practice:
@ Groébner basis calculations are costly in principle.

@ Only have algorithms for S or k[V]€ generators if G
reductive.

@ For general G, can’t predict number of separating or
generating invariants.

Harlan Kadish 2010 CMS Summer Meeting



A New Breed of Function

Extend the regular functions on V with a quasi-inverse:

1/f(p) f(p) #0

GIOE {0 o

Definition

For R = k[V], let R denote the ring of functions V — k
obtained by applying the quasi-inverse iteratively on elements
of R. Call these functions constructible.

E.g.if f,g € R, then {f+ {g}} € R.
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A New Algorithm for Separating Orbits

@ Over k = k, let G — A’ be an m-dimensional algebraic
group.

@ Let G act rationally on A" via the representation
p: G— GLp.

@ Let N = max{deg(pj)}-

@ Let r be the maximal dimension of an orbit.
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A New Algorithm for Separating Orbits

@ Over k = k, let G — A’ be an m-dimensional algebraic
group.

@ Let G act rationally on A" via the representation
p: G— GLp.

@ Let N = max{deg(pj)}-

@ Let r be the maximal dimension of an orbit.

There is an algorithm to produce a finite set C C R of invariant,
constructible functions with the following properties:

@ The setC separates orbits.
@ The size of C grows as O(n? NUAHM+1)(r+1))

© The f € C can be written as straight line programs, such
that the sum of their lengths is O(n N3{r+1)+r),
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Let Gy = k* act on A2 by
g (x.y)=(gx.9y), so klx.y]° =k
The functions in C simplify to
x{x} and y{y}-(1—x{x}+y{x}).

1/f(p) f(p) #0

@ If x # 0, then x{x} = x/x =1 and y{x} = y/x.

@ Invariance: x # 0 = (gx){gx} =1, gy{gx} = y/x,
@ Separation:

X,y #0 = y{y+-(—x{x}+y{x}) =1-(1-1+y/x) = y/x.
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What Will It Cost Me?

@ The theorem says more than the existence of C:

c|=0 (nZN(£+m+1)(r+1))
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What Will It Cost Me?

@ The theorem says more than the existence of C:

| =0 (nZN(£+m+1)(r+1))

@ Still, how practical is it to use C?

e How long does it take to write down the functions?
e How complicated is the evaluation of the functions?
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Straight Line Programs

Definition

An SLP is a finite list of ring operations (and the quasi-inverse)
to perform on a finite input sequence of ring elements.

@ E.g., write x{y} + {z} as an SLP:

@ Input (x,y, 2).

@ Compute {y}.

© Multiply x and {y}.
© Compute {z}.

@ Add x{y} to {z}.

e Output is a sequence: (x,y,z, {y}, x{y},{z}, x{y} + {z}).
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Straight Line Programs

Definition

An SLP is a finite list of ring operations (and the quasi-inverse)
to perform on a finite input sequence of ring elements.

@ E.g., write x{y} + {z} as an SLP:

@ Input (x,y, 2).

@ Compute {y}.

© Multiply x and {y}.
© Compute {z}.

@ Add x{y} to {z}.

e Output is a sequence: (x,y,z, {y}, x{y},{z}, x{y} + {z}).

Definition
The complexity of an SLP is the non-input length of its output.
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Separating Orbits Cheaply

There is an algorithm to produce a finite set C C R of invariant,
constructible functions with the following properties:

@ The setC separates orbits.
@ The size of C grows as O(n? NUHM+1)(r+1))

© The f € C can be written as straight line programs, such
that the sum of their lengths is O(n® N3/ +1)+7),

@ Can write down C for any algebraic group.

@ Have a polynomial bound on |C]|.

@ Number of steps to write down C has a polynomial bound.
@ Or, can evaluate all of C at p € A in polynomial time.
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The Algorithm: The Ideal of G- p

Fix p € A". To compute defining equations for the closure G - p,
@ From p: G — GLp, write down the orbit map
op: G— A" definedby op: g— p(9) - p.

@ Write down the ring map oj: k[x1, ..., xp] — K[G].
© Then ker oy, is the ideal vanishing on G - p.
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The Algorithm: Computing ker o,

For fixed G, there exists an integer d = d(N), polynomial in N,

such that G - p can be defined by polynomials of degree < d.

@ Let (05)<q denote a matrix for the k-vector space map

Klx1,...,Xnl<g — K[G],

k[xl<a = {f € k[x] | deg(f) < d}

where the basis on the leftis x1, ..., Xn, X2, X1 X2, . . ., 2.
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The Algorithm: Computing ker o,

For fixed G, there exists an integer d = d(N), polynomial in N,

such that G - p can be defined by polynomials of degree < d.

@ Let (05)<q denote a matrix for the k-vector space map

Klx1,...,Xnl<g — K[G],

k[xl<a = {f € k[x] | deg(f) < d}

where the basis on the leftis x1, ..., Xn, X2, X1 X2, . . ., 2.

@ Basis vectors in the kernel give relations on the monomials
of k[xq,..., Xn].

© These polynomials would define G - p.
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The Algorithm: Controlling Monomials

A problem arises:
@ The dimension of the k-basis

2 d
X1y..,Xn, Xy, Xq1X2, X1X3,...,X,

grows exponentially in n.
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The Algorithm: Controlling Monomials

A problem arises:
@ The dimension of the k-basis

2 d
X1y..,Xn, Xy, Xq1X2, X1X3,...,X,

grows exponentially in n.
@ Instead, for every degree i =1,...,d,
@ Compute the reduced row echelon form of (o})<;.
@ Compute the kernel of (d})<;.
© Find a maximal set of monomials M; C k[xi, ... Xp]<; with

linearly independent images in k[G].
© Write (6)< (11 in terms of M; and
p/<(i+1)
{m-x;|meM, j=1...,n}.

@ From Hilbert polynomial of G, know |M;| is polynomial in i.
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The Algorithm: Enter Constructible Functions

@ Now, the degree bound d determines the dimensions of
the matrices (o7)<;.

@ For fixed G, the degree bound d = d(N) is polynomial in
N = max{deg(pj)}.

© Hence the dimensions of the (o5)<; have polynomial
bounds in nand N.
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The Algorithm: Enter Constructible Functions

@ Now, the degree bound d determines the dimensions of
the matrices (o7)<;.

@ For fixed G, the degree bound d = d(N) is polynomial in
N = max{deg(pj)}.

© Hence the dimensions of the (o5)<; have polynomial
bounds in nand N.

Proposition

If Ais an s x t matrix, then there exists an SLP (involving the
quasi-inverse) for the reduced row echelon form and kernel of
A, with complexity O(st? + t3).

© So we can compute the ker(o})<; in polynomial time.
p/<
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The Algorithm: Output!

@ For p € A", write down the orbit map op : G — A".

@ Write down matrices for o k[x, ..., Xa]<; — k[G] up to
degree d.

© Now, the matrix entries are regular functions of p.

Q So the entries of the ker(o})<; vectors are constructible
functions of p.
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The Algorithm: Output!

@ For p € A", write down the orbit map op : G — A".

@ Write down matrices for o k[x, ..., Xa]<; — k[G] up to
degree d.

© Now, the matrix entries are regular functions of p.

Q So the entries of the ker(o})<; vectors are constructible
functions of p.

@ Collect the kernel vectors’ entries into the set C.
Q@ As functions of p, they are G-invariant and separate orbits.
@ Their number and complexity are polynomial in nand N.
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