Rings of Invariants and Varieties of Representations

Dr James Shank, University of Kent, June 2010

Suppose that V is a finite dimensional representation of G over \mathbb{F} .

Suppose that V is a finite dimensional representation of G over \mathbb{F} .

The action of G on V induces an action on the dual V^* , which extends to an action by degree preserving algebra automorphisms on the symmetric algebra

$$\mathbb{F}[V] := S(V^*) = \mathbb{F}[x_1, \dots, x_n]$$

where $\{x_1, \ldots, x_n\}$ is a basis for V^* .

Suppose that V is a finite dimensional representation of G over \mathbb{F} .

The action of G on V induces an action on the dual V^* , which extends to an action by degree preserving algebra automorphisms on the symmetric algebra

$$\mathbb{F}[V] := S(V^*) = \mathbb{F}[x_1, \dots, x_n]$$

where $\{x_1, \ldots, x_n\}$ is a basis for V^* .

The ring of invariants is the subring

$$\mathbb{F}[V]^G := \{ f \in \mathbb{F}[V] \mid (f)g = f \ \forall g \in G \}.$$

Suppose that V is a finite dimensional representation of G over \mathbb{F} .

The action of G on V induces an action on the dual V^* , which extends to an action by degree preserving algebra automorphisms on the symmetric algebra

$$\mathbb{F}[V] := S(V^*) = \mathbb{F}[x_1, \dots, x_n]$$

where $\{x_1, \ldots, x_n\}$ is a basis for V^* .

The ring of invariants is the subring

$$\mathbb{F}[V]^G := \{ f \in \mathbb{F}[V] \mid (f)g = f \ \forall g \in G \}.$$

If G is finite then $\mathbb{F}[V]^G$ is a finitely generated algebra.

For finite G and fixed n, if $char(\mathbb{F}) = 0$ then there are, up to isomorphism, only finitely many $\mathbb{F}G$ -modules. For finite G and fixed n, if $char(\mathbb{F}) = 0$ then there are, up to isomorphism, only finitely many $\mathbb{F}G$ -modules.

This is still true if $char(\mathbb{F}) = p$ and p does not divide |G|.

For finite G and fixed n, if $char(\mathbb{F}) = 0$ then there are, up to isomorphism, only finitely many $\mathbb{F}G$ -modules.

This is still true if $char(\mathbb{F}) = p$ and p does not divide |G|.

However, if p divides |G| (the modular case) there may be infinitely many isomorphism classes of n-dimensional $\mathbb{F}G$ -modules. Example: $\mathbb{F} = \overline{\mathbb{F}_p}, \ G = \mathbb{Z}/p \times \mathbb{Z}/p = \langle g_1, g_2 \rangle, \ n = 2.$ Define $\rho(g_1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \ \rho(g_2) = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}.$

Example:
$$\mathbb{F} = \overline{\mathbb{F}_p}, \ G = \mathbb{Z}/p \times \mathbb{Z}/p = \langle g_1, g_2 \rangle, \ n = 2.$$
 Define
 $\rho(g_1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \ \rho(g_2) = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}.$

Example:
$$\mathbb{F} = \overline{\mathbb{F}_p}, \ G = \mathbb{Z}/p \times \mathbb{Z}/p = \langle g_1, g_2 \rangle, \ n = 2.$$
 Define
 $\rho(g_1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \ \rho(g_2) = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}.$

Identify $x \leftrightarrow [0 \ 1]$ and $y \leftrightarrow [1 \ 0]$ so $x \in \mathbb{F}[x, y]^{\rho(G)}$. Define

$$Ny := \prod_{g \in G} y\rho(g) = \prod_{a,b \in \mathbb{F}_p} \left(y + (a+b\lambda)x \right) = y^{p^2} + xf(x,y,\lambda).$$

Example:
$$\mathbb{F} = \overline{\mathbb{F}_p}, \ G = \mathbb{Z}/p \times \mathbb{Z}/p = \langle g_1, g_2 \rangle, \ n = 2.$$
 Define
 $\rho(g_1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \ \rho(g_2) = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}.$

Identify $x \leftrightarrow [0 \ 1]$ and $y \leftrightarrow [1 \ 0]$ so $x \in \mathbb{F}[x, y]^{\rho(G)}$. Define

$$Ny := \prod_{g \in G} y\rho(g) = \prod_{a,b \in \mathbb{F}_p} \left(y + (a+b\lambda)x \right) = y^{p^2} + xf(x,y,\lambda).$$

If $\lambda \in \mathbb{F} \setminus \mathbb{F}_p$ then $|\rho(G)| = p^2$ and $\mathbb{F}[x, y]^{\rho(G)} = \mathbb{F}[x, Ny]$.

Example:
$$\mathbb{F} = \overline{\mathbb{F}_p}, \ G = \mathbb{Z}/p \times \mathbb{Z}/p = \langle g_1, g_2 \rangle, \ n = 2.$$
 Define
 $\rho(g_1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \ \rho(g_2) = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}.$

Identify $x \leftrightarrow [0 \ 1]$ and $y \leftrightarrow [1 \ 0]$ so $x \in \mathbb{F}[x, y]^{\rho(G)}$. Define

$$Ny := \prod_{g \in G} y\rho(g) = \prod_{a,b \in \mathbb{F}_p} \left(y + (a+b\lambda)x \right) = y^{p^2} + xf(x,y,\lambda).$$

If $\lambda \in \mathbb{F} \setminus \mathbb{F}_p$ then $|\rho(G)| = p^2$ and $\mathbb{F}[x, y]^{\rho(G)} = \mathbb{F}[x, Ny]$. Calculate over the function field $\mathbb{F}(t)$ and specialise t to λ ?

Example:
$$\mathbb{F} = \overline{\mathbb{F}_p}, \ G = \mathbb{Z}/p \times \mathbb{Z}/p = \langle g_1, g_2 \rangle, \ n = 2.$$
 Define
 $\rho(g_1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \ \rho(g_2) = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}.$

Identify $x \leftrightarrow [0 \ 1]$ and $y \leftrightarrow [1 \ 0]$ so $x \in \mathbb{F}[x, y]^{\rho(G)}$. Define

$$Ny := \prod_{g \in G} y\rho(g) = \prod_{a,b \in \mathbb{F}_p} \left(y + (a+b\lambda)x \right) = y^{p^2} + xf(x,y,\lambda).$$

If $\lambda \in \mathbb{F} \setminus \mathbb{F}_p$ then $|\rho(G)| = p^2$ and $\mathbb{F}[x, y]^{\rho(G)} = \mathbb{F}[x, Ny]$. Calculate over the function field $\mathbb{F}(t)$ and specialise t to λ ? Since $\lambda \in \mathbb{F}_p$ iff $\lambda^p = \lambda$, specialisation gives a generating set as long as we avoid roots of $t^p - t$.

Suppose $G = \langle g_1, \ldots, g_r | r_1, \ldots, r_k \rangle$ is a finite group.

Suppose $G = \langle g_1, \ldots, g_r | r_1, \ldots, r_k \rangle$ is a finite group. Since G is finite, we can choose the relations to be of the form

$$g_{i_1}g_{i_2}\cdots g_{i_m}=1.$$

Suppose $G = \langle g_1, \ldots, g_r \mid r_1, \ldots, r_k \rangle$ is a finite group. Since G is finite, we can choose the relations to be of the form

$$g_{i_1}g_{i_2}\cdots g_{i_m}=1.$$

A representation $\rho: G \to GL_n(\mathbb{F})$ is determined by matrices $\rho(g_i)$ subject to relations $\rho(r_j)$.

Suppose $G = \langle g_1, \ldots, g_r | r_1, \ldots, r_k \rangle$ is a finite group. Since G is finite, we can choose the relations to be of the form

$$g_{i_1}g_{i_2}\cdots g_{i_m}=1.$$

A representation $\rho : G \to GL_n(\mathbb{F})$ is determined by matrices $\rho(g_i)$ subject to relations $\rho(r_j)$.

Thus each *n*-dimensional $\mathbb{F}G$ -module gives a point in $GL_n(\mathbb{F})^r$.

Suppose $G = \langle g_1, \ldots, g_r \mid r_1, \ldots, r_k \rangle$ is a finite group. Since G is finite, we can choose the relations to be of the form

$$g_{i_1}g_{i_2}\cdots g_{i_m}=1.$$

A representation $\rho: G \to GL_n(\mathbb{F})$ is determined by matrices $\rho(g_i)$ subject to relations $\rho(r_j)$.

Thus each *n*-dimensional $\mathbb{F}G$ -module gives a point in $GL_n(\mathbb{F})^r$.

Let X denote the subset of $GL_n(\mathbb{F})^r$ consisting of representations.

Suppose $G = \langle g_1, \ldots, g_r | r_1, \ldots, r_k \rangle$ is a finite group. Since G is finite, we can choose the relations to be of the form

$$g_{i_1}g_{i_2}\cdots g_{i_m}=1.$$

A representation $\rho : G \to GL_n(\mathbb{F})$ is determined by matrices $\rho(g_i)$ subject to relations $\rho(r_j)$.

Thus each *n*-dimensional $\mathbb{F}G$ -module gives a point in $GL_n(\mathbb{F})^r$.

Let X denote the subset of $GL_n(\mathbb{F})^r$ consisting of representations.

Assume $\mathbb F$ is algebraically closed.

Suppose $G = \langle g_1, \ldots, g_r | r_1, \ldots, r_k \rangle$ is a finite group. Since G is finite, we can choose the relations to be of the form

$$g_{i_1}g_{i_2}\cdots g_{i_m}=1.$$

A representation $\rho : G \to GL_n(\mathbb{F})$ is determined by matrices $\rho(g_i)$ subject to relations $\rho(r_j)$.

Thus each *n*-dimensional $\mathbb{F}G$ -module gives a point in $GL_n(\mathbb{F})^r$.

Let X denote the subset of $GL_n(\mathbb{F})^r$ consisting of representations.

Assume $\mathbb F$ is algebraically closed.

Then $GL_n(\mathbb{F})$ and $GL_n(\mathbb{F})^r$ are algebraic varieties.

Suppose $G = \langle g_1, \ldots, g_r \mid r_1, \ldots, r_k \rangle$ is a finite group. Since G is finite, we can choose the relations to be of the form

$$g_{i_1}g_{i_2}\cdots g_{i_m}=1.$$

A representation $\rho : G \to GL_n(\mathbb{F})$ is determined by matrices $\rho(g_i)$ subject to relations $\rho(r_j)$.

Thus each *n*-dimensional $\mathbb{F}G$ -module gives a point in $GL_n(\mathbb{F})^r$.

Let X denote the subset of $GL_n(\mathbb{F})^r$ consisting of representations.

Assume $\mathbb F$ is algebraically closed.

Then $GL_n(\mathbb{F})$ and $GL_n(\mathbb{F})^r$ are algebraic varieties.

X is determined by the relations $\rho(r_j)$, which are polynomials in the entries of the matrices, and is thus a subvariety of $GL_n(\mathbb{F})^r$.

The action of $GL_n(\mathbb{F})$ by conjugation on $GL_n(\mathbb{F})^r$ restricts to an action on X with the orbits, $X/GL_n(\mathbb{F})$, consisting of equivalence classes of representations.

The action of $GL_n(\mathbb{F})$ by conjugation on $GL_n(\mathbb{F})^r$ restricts to an action on X with the orbits, $X/GL_n(\mathbb{F})$, consisting of equivalence classes of representations.

The automorphism group of G, Aut(G), acts on X by pre-composition.

The action of $GL_n(\mathbb{F})$ by conjugation on $GL_n(\mathbb{F})^r$ restricts to an action on X with the orbits, $X/GL_n(\mathbb{F})$, consisting of equivalence classes of representations.

The automorphism group of G, Aut(G), acts on X by pre-composition. For each element of $Aut(G) \setminus X/GL_n(\mathbb{F})$, there is a corresponding isomorphism class of subrings of $\mathbb{F}[x_1, \ldots, x_n]$, i.e., for $\varphi \in Aut(G)$ and $\sigma \in GL_n(\mathbb{F})$,

$$\mathbb{F}[x_1,\ldots,x_n]^{\rho(G)} \cong \mathbb{F}[x_1,\ldots,x_n]^{\sigma^{-1}\rho(\varphi(G))\sigma}$$

Example: $\mathbb{F} = \overline{\mathbb{F}_p}, \ G = \mathbb{Z}/p \times \mathbb{Z}/p = \langle g_1, g_2 \rangle, \ n = 3.$ Define $\rho(g_1) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \rho(g_2) = \begin{pmatrix} 1 & \lambda & \mu \\ 0 & 1 & \lambda \\ 0 & 0 & 1 \end{pmatrix}.$ Example: $\mathbb{F} = \overline{\mathbb{F}_p}, \ G = \mathbb{Z}/p \times \mathbb{Z}/p = \langle g_1, g_2 \rangle, \ n = 3.$ Define $\rho(g_1) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \rho(g_2) = \begin{pmatrix} 1 & \lambda & \mu \\ 0 & 1 & \lambda \\ 0 & 0 & 1 \end{pmatrix}.$

Can we compute $\mathbb{F}[x, y, z]^{\rho(G)}$?

Example: $\mathbb{F} = \overline{\mathbb{F}_p}$, $G = \mathbb{Z}/p \times \mathbb{Z}/p = \langle g_1, g_2 \rangle$, n = 3. Define

$$\rho(g_1) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \rho(g_2) = \begin{pmatrix} 1 & \lambda & \mu \\ 0 & 1 & \lambda \\ 0 & 0 & 1 \end{pmatrix}$$

Can we compute $\mathbb{F}[x, y, z]^{\rho(G)}$?

Note $\mathbb{F}[x, y, z]^{\rho(G)} = (\mathbb{F}[x, y, z]^{\rho(g_1)})^{\rho(g_2)}.$

Example: $\mathbb{F} = \overline{\mathbb{F}_p}, G = \mathbb{Z}/p \times \mathbb{Z}/p = \langle g_1, g_2 \rangle, n = 3$. Define

$$\rho(g_1) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \rho(g_2) = \begin{pmatrix} 1 & \lambda & \mu \\ 0 & 1 & \lambda \\ 0 & 0 & 1 \end{pmatrix}$$

Can we compute $\mathbb{F}[x, y, z]^{\rho(G)}$?

Note
$$\mathbb{F}[x, y, z]^{\rho(G)} = (\mathbb{F}[x, y, z]^{\rho(g_1)})^{\rho(g_2)}.$$

Furthermore, $\mathbb{F}[x, y, z]^{\rho(g_1)}$ is the hypersurface generated by x,

$$d = y^{2} - x(2z + y),$$

$$N_{1} = \prod_{a \in \mathbb{F}_{p}} (y + ax) = y^{p} - yx^{p-1},$$

$$N_{2} = \prod_{a \in \mathbb{F}_{p}} \left(z + ay + {a \choose 2}x\right) = z^{p} + \dots,$$

subject to a relation $d^p - N_1^2 + 2x^p N_2 + f(x, d)$.

Writing $\Delta = \rho(g_2) - 1$, we have

$$(N_1)\Delta = (\lambda^p - \lambda)x^p,$$

(d) $\Delta = (\lambda^2 - \lambda - 2\mu)x^2.$

Writing
$$\Delta = \rho(g_2) - 1$$
, we have
 $(N_1)\Delta = (\lambda^p - \lambda)x^p,$
 $(d)\Delta = (\lambda^2 - \lambda - 2\mu)x^2.$

We have four cases:

Writing $\Delta = \rho(g_2) - 1$, we have $(N_1)\Delta = (\lambda^p - \lambda)x^p,$ $(d)\Delta = (\lambda^2 - \lambda - 2\mu)x^2.$

We have four cases:

1. The generic case: Calculate over $\mathbb{F}(t,s)$ and specialise t to λ and s to μ . The ring of invariants is a hypersurface with generators in degrees $1, p, p + 2, p^2$ and a relation in degree p(p + 2). The specialisation gives the correct ring of invariants for $\lambda^p - \lambda \neq 0$ and $\lambda^2 - \lambda - 2\mu \neq 0$.

Writing $\Delta = \rho(g_2) - 1$, we have $(N_1)\Delta = (\lambda^p - \lambda)x^p$,

$$(d)\Delta = (\lambda^2 - \lambda - 2\mu)x^2.$$

We have four cases:

1. The generic case: Calculate over $\mathbb{F}(t,s)$ and specialise t to λ and s to μ . The ring of invariants is a hypersurface with generators in degrees $1, p, p + 2, p^2$ and a relation in degree p(p + 2). The specialisation gives the correct ring of invariants for $\lambda^p - \lambda \neq 0$ and $\lambda^2 - \lambda - 2\mu \neq 0$.

2. $\mu = {\lambda \choose 2}$: Then *d* is invariant. Calculate over $\mathbb{F}(t)$ and specialise *t* to λ . The ring of invariants is a hypersurface with generators in degrees $1, 2, p^2, p^2$ and a relation in degree $2p^2$. The specialisation gives the correct ring of invariants for $\lambda^p - \lambda \neq 0$.

4. $\lambda^p = \lambda$ and $\mu = {\lambda \choose 2}$: The action is not faithful. In fact

$$\mathbb{F}[x, y, z]^{\rho(G)} = \mathbb{F}[x, y, z]^{\rho(g_1)}.$$

4. $\lambda^p = \lambda$ and $\mu = {\lambda \choose 2}$: The action is not faithful. In fact

$$\mathbb{F}[x, y, z]^{\rho(G)} = \mathbb{F}[x, y, z]^{\rho(g_1)}.$$

Remarks:

4.
$$\lambda^p = \lambda$$
 and $\mu = {\lambda \choose 2}$: The action is not faithful. In fact
 $\mathbb{F}[x, y, z]^{\rho(G)} = \mathbb{F}[x, y, z]^{\rho(g_1)}.$

Remarks:

• These are *a posteriori* observations.

4.
$$\lambda^p = \lambda$$
 and $\mu = {\lambda \choose 2}$: The action is not faithful. In fact
 $\mathbb{F}[x, y, z]^{\rho(G)} = \mathbb{F}[x, y, z]^{\rho(g_1)}.$

Remarks:

- These are *a posteriori* observations.
- Can we develop a framework to identify the equations that describe the generic case without computing the ring of invariants?

In the n = 2 case, it is possible to embed the family of representations in a larger representation: $V(\lambda) \subset W$, giving $\mathbb{F}[W] \xrightarrow{\pi} \mathbb{F}[V(\lambda)]$. In the n = 2 case, it is possible to embed the family of representations in a larger representation: $V(\lambda) \subset W$, giving $\mathbb{F}[W] \xrightarrow{\pi} \mathbb{F}[V(\lambda)]$. The long exact sequence coming from group cohomology gives

$$\cdots \to \mathbb{F}[W]^G \to \mathbb{F}[V(\lambda)]^G \to H^1(G, \ker(\pi)) \to H^1(G, \mathbb{F}[W]) \to \cdots$$

In the n = 2 case, it is possible to embed the family of representations in a larger representation: $V(\lambda) \subset W$, giving $\mathbb{F}[W] \xrightarrow{\pi} \mathbb{F}[V(\lambda)]$. The long exact sequence coming from group cohomology gives $\cdots \to \mathbb{F}[W]^G \to \mathbb{F}[V(\lambda)]^G \to H^1(G, \ker(\pi)) \to H^1(G, \mathbb{F}[W]) \to \cdots$

We can take W to be the representation

$$\rho_W(g_1) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \rho_W(g_2) = \begin{pmatrix} 1 & \alpha & \alpha^p - \alpha \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

for any $\alpha \in \mathbb{F} \setminus \mathbb{F}_p$.

In the n = 2 case, it is possible to embed the family of representations in a larger representation: $V(\lambda) \subset W$, giving $\mathbb{F}[W] \xrightarrow{\pi} \mathbb{F}[V(\lambda)]$. The long exact sequence coming from group cohomology gives $\cdots \to \mathbb{F}[W]^G \to \mathbb{F}[V(\lambda)]^G \to H^1(G, \ker(\pi)) \to H^1(G, \mathbb{F}[W]) \to \cdots$

We can take W to be the representation

$$\rho_W(g_1) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \rho_W(g_2) = \begin{pmatrix} 1 & \alpha & \alpha^p - \alpha \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

for any $\alpha \in \mathbb{F} \setminus \mathbb{F}_p$.

Choose the embedding so that $\pi(x_3) = y$, $\pi(x_2) = x$ and $\pi(x_1) = cx$ where $c = (\lambda - \alpha)/(\alpha^p - \alpha)$. In the n = 2 case, it is possible to embed the family of representations in a larger representation: $V(\lambda) \subset W$, giving $\mathbb{F}[W] \xrightarrow{\pi} \mathbb{F}[V(\lambda)]$. The long exact sequence coming from group cohomology gives $\cdots \to \mathbb{F}[W]^G \to \mathbb{F}[V(\lambda)]^G \to H^1(G, \ker(\pi)) \to H^1(G, \mathbb{F}[W]) \to \cdots$

We can take W to be the representation

$$\rho_W(g_1) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \rho_W(g_2) = \begin{pmatrix} 1 & \alpha & \alpha^p - \alpha \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

for any $\alpha \in \mathbb{F} \setminus \mathbb{F}_p$.

Choose the embedding so that $\pi(x_3) = y$, $\pi(x_2) = x$ and $\pi(x_1) = cx$ where $c = (\lambda - \alpha)/(\alpha^p - \alpha)$.

To verify π is a *G*-map:

$$\pi(x_3\Delta_2) = \pi(\alpha x_2 + (\alpha^p - \alpha)x_1) = (\alpha + (\alpha^p - \alpha)c)x = \lambda x.$$

It is easy to see that $\mathbb{F}[W]^G = \mathbb{F}[x_1, x_2, N(x_3)]$ with $N(x_3) = \prod_{g \in G} x_3 g = x_3^{p^2} + \cdots$ It is easy to see that $\mathbb{F}[W]^G = \mathbb{F}[x_1, x_2, N(x_3)]$ with $N(x_3) = \prod_{g \in G} x_3 g = x_3^{p^2} + \cdots$

and that $\ker(\pi) = (x_1 - cx_2)\mathbb{F}[W].$

It is easy to see that $\mathbb{F}[W]^G = \mathbb{F}[x_1, x_2, N(x_3)]$ with $N(x_3) = \prod_{q \in G} x_3 g = x_3^{p^2} + \cdots$

and that $\ker(\pi) = (x_1 - cx_2)\mathbb{F}[W].$ Thus $I := \ker(\pi)^G = (x_1 - cx_2)\mathbb{F}[W]^G.$ It is easy to see that $\mathbb{F}[W]^G = \mathbb{F}[x_1, x_2, N(x_3)]$ with $N(x_3) = \prod_{g \in G} x_3 g = x_3^{p^2} + \cdots$

and that $\ker(\pi) = (x_1 - cx_2)\mathbb{F}[W].$ Thus $I := \ker(\pi)^G = (x_1 - cx_2)\mathbb{F}[W]^G.$ Hence $\mathbb{F}[W]^G/I \cong \mathbb{F}[x, \pi(N(x_3))].$ It is easy to see that $\mathbb{F}[W]^G = \mathbb{F}[x_1, x_2, N(x_3)]$ with $N(x_3) = \prod x_3 g = x_3^{p^2} + \cdots$

 $q \in G$

and that $\ker(\pi) = (x_1 - cx_2)\mathbb{F}[W]$. Thus $I := \ker(\pi)^G = (x_1 - cx_2)\mathbb{F}[W]^G$. Hence $\mathbb{F}[W]^G/I \cong \mathbb{F}[x, \pi(N(x_3))]$. Therefore, if $\lambda \in \mathbb{F} \setminus \mathbb{F}_p$ then π^G is surjective. It is easy to see that $\mathbb{F}[W]^G = \mathbb{F}[x_1, x_2, N(x_3)]$ with $N(x_3) = \prod x_3 g = x_3^{p^2} + \cdots$

and that $\ker(\pi) = (x_1 - cx_2)\mathbb{F}[W]$. Thus $I := \ker(\pi)^G = (x_1 - cx_2)\mathbb{F}[W]^G$. Hence $\mathbb{F}[W]^G/I \cong \mathbb{F}[x, \pi(N(x_3))]$. Therefore, if $\lambda \in \mathbb{F} \setminus \mathbb{F}_p$ then π^G is surjective. However, if $\lambda \in \mathbb{F}_p$ then $y^p - x^{p-1}y \in \mathbb{F}[V(\lambda)]^G \setminus \operatorname{im}(\pi^G)$,

 $q \in G$

It is easy to see that $\mathbb{F}[W]^G = \mathbb{F}[x_1, x_2, N(x_3)]$ with $N(x_3) = \prod x_3 q = x_2^{p^2} + \cdots$

$$N(x_3) = \prod_{g \in G} x_3 g = x_3^p + \cdots$$

and that $\ker(\pi) = (x_1 - cx_2)\mathbb{F}[W]$. Thus $I := \ker(\pi)^G = (x_1 - cx_2)\mathbb{F}[W]^G$. Hence $\mathbb{F}[W]^G/I \cong \mathbb{F}[x, \pi(N(x_3))]$. Therefore, if $\lambda \in \mathbb{F} \setminus \mathbb{F}_p$ then π^G is surjective. However, if $\lambda \in \mathbb{F}_p$ then $y^p - x^{p-1}y \in \mathbb{F}[V(\lambda)]^G \setminus \operatorname{im}(\pi^G)$, i.e., there is a class $\chi \in H^1(G, \ker(\pi))$ which is zero in $H^1(G, \mathbb{F}[W])$. It is easy to see that $\mathbb{F}[W]^G = \mathbb{F}[x_1, x_2, N(x_3)]$ with $N(x_3) = \prod x_3 q = x_2^{p^2} + \cdots$

$$N(x_3) = \prod_{g \in G} x_3 g = x_3^p + \cdots$$

and that $\ker(\pi) = (x_1 - cx_2)\mathbb{F}[W]$. Thus $I := \ker(\pi)^G = (x_1 - cx_2)\mathbb{F}[W]^G$. Hence $\mathbb{F}[W]^G/I \cong \mathbb{F}[x, \pi(N(x_3))]$. Therefore, if $\lambda \in \mathbb{F} \setminus \mathbb{F}_p$ then π^G is surjective. However, if $\lambda \in \mathbb{F}_p$ then $y^p - x^{p-1}y \in \mathbb{F}[V(\lambda)]^G \setminus \operatorname{im}(\pi^G)$, i.e., there is a class $\chi \in H^1(G, \ker(\pi))$ which is zero in $H^1(G, \mathbb{F}[W])$. I am still looking for the analog of W for the three variable case.