Modular Invariant Theory of the Cyclic Group via Classical Invariant Theory

David Wehlau

June 5, 2010

Fredericton, New Brunswick, 5 June 2010

Outline

Modular Representation
Theory of $C_{\mathcal{P}}$
Representation Theory of $SL_2(\mathbb{C})$
The Connection
Shank's Conjecture

Proof of the conjecture

Some Consequences

- Modular RepresentationTheory of C_p .
- Representation Theory of $SL_2(\mathbb{C})$
- The Connection
- Shank's Conjecture
- Proof of the Conjecture
- Some Consequences

Modular Representation	
Theory of ${C}_{\mathcal{P}}$	

The Modular Group of Prime Order

 V_n

Known Modular Invariants of C_p

Representation Theory of $\operatorname{SL}_2(\mathbb{C})$

The Connection

Shank's Conjecture

Proof of the conjecture

Some Consequences

Modular Representation Theory

of C_p

Fredericton, New Brunswick, 5 June 2010

The Modular Group of Prime Order

Modular Representation Theory of C_p

The Modular Group of Prime Order

 V_n

Known Modular Invariants of C_p

Representation Theory of $\operatorname{SL}_2(\mathbb{C})$

The Connection

Shank's Conjecture

Proof of the conjecture

Some Consequences

Let \mathbb{F} be any field of characteristic p > 0 and let C_p denote the cyclic group of order p. We fix a generator σ of C_p .

Suppose V is an indecomposable representation of C_p defined over \mathbb{F} . Consider the Jordan Normal Form of the matrix of σ in GL(V). This is the matrix:

$$\begin{pmatrix} 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \ddots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}_{n \times n}$$

where $1 \le n \le p$.

- 1. We get p inequivalent indecomposable representations: $V_1 \subsetneq V_2 \subsetneq \cdots \subsetneq V_p$
- 2. $V_n^{C_p} \cong V_1$ for all n.
- $3. \Delta := \sigma 1$
- 4. $\operatorname{Tr}(f) = \sum_{i=0}^{p-1} \sigma^i \cdot f = (\sigma 1)^{p-1} \cdot f = \Delta^{p-1}(f)$ where $\Delta = \sigma 1$. Thus a non-zero invariant h is a transfer if and only if $h \in V_p^{C_p}$.
- 5. Norm $(f) = \prod_{i=0}^{p-1} \sigma^{i} \cdot f$.

Known Modular Invariants of C_p

Modular Representation Theory of ${\cal C}_{\mathcal{P}}$	1.	$\mathbb{F}_p[\oplus^m V_2]^{C_p}$
The Modular Group of Prime Order	2.	$\mathbb{F}_{p}[V_{3}]^{C_{p}}$
Vn Known Modulor		
Invariants of C_p	3.	$\mathbb{F}_p[V_4]^{\bigcirc p}$
Representation Theory of $\operatorname{SL}_2(\mathbb{C})$	4.	$\mathbb{F}_p[V_5]^{C_p}$
The Connection	5.	$\mathbb{F}_p[V_2 \oplus V_3]^{C_p}$
Shank's Conjecture		
Proof of the conjecture	6.	$\mathbb{F}_p[V_3 \oplus V_3]^{\odot p}$
Some Consequences	7.	$\mathbb{F}_p[V_2 \oplus V_2 \oplus V_3]^{C_p}$

Modular Representation Theory of $C_{\mathcal{P}}$

Representation Theory of $\operatorname{SL}_2(\mathbb{C})$

Representations of $\operatorname{SL}_2(\mathbb{C})$

The Connection

Shank's Conjecture

Proof of the conjecture

Some Consequences

Representation Theory of $SL_2(\mathbb{C})$

Representations of $\mathrm{SL}_2(\mathbb{C})$

Modular Representation Theory of C_p

```
Representation Theory of \operatorname{SL}_2(\mathbb{C})
```

Representations of $\mathrm{SL}_2(\mathbb{C})$

The Connection

Shank's Conjecture

Proof of the conjecture

Some Consequences

1. R_1 denotes the defining two dimensional representation of $SL_2(\mathbb{C})$ with fixed basis $\{X, Y\}$.

2.
$$R_d := S^d(R_1) = span\{X^d, X^{d-1}Y, \dots, Y^d\}.$$

3. Every irreducible $SL_2(\mathbb{C})$ representation is isomorphic to R_d for some d.

4. Classical invariant theorists studied not just the ring of invariants $\mathbb{C}[W]^{\mathrm{SL}_2(\mathbb{C})}$ of a representation Wbut also $\mathbb{C}[R_1 \oplus W]^{\mathrm{SL}_2(\mathbb{C})}$, the *ring of covariants of* W.

Modular Representation
Theory of $C_{\mathcal{P}}$

Representation Theory of $\mathrm{SL}_2(\mathbb{C})$

The Connection

Robert's Isomorphism (1861)

The Integers

Notation

From $\mathrm{SL}_2(\mathbb{C})$ to C_p

Shank's Conjecture

Proof of the conjecture

Some Consequences

The Connection

Robert's Isomorphism (1861)

Modular Representation Theory of ${\cal C}_p$

Representation Theory of $\mathrm{SL}_2(\mathbb{C})$

The Connection

Robert's Isomorphism (1861)

The Integers

Notation

From $\mathrm{SL}_2(\mathbb{C})$ to C_p

Shank's Conjecture

Proof of the conjecture

Some Consequences

$$\mathbb{C}[R_1 \oplus W]^{\mathrm{SL}_2(\mathbb{C})} \longrightarrow \mathbb{C}[W]^U$$

$$f(\cdot, \cdot) \longmapsto f(X, \cdot)$$

where

$$U = \{ \tau \in \mathrm{SL}_2(\mathbb{C}) \mid \tau \cdot X = X \}$$
$$= \left\{ \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \mid u \in \mathbb{C} \right\}.$$

Robert's Isomorphism (1861)

Modular Representation Theory of $C_{\mathcal{P}}$

Representation Theory of $\mathrm{SL}_2(\mathbb{C})$

The Connection

Robert's Isomorphism (1861)

The Integers

Notation

From $\mathrm{SL}_2(\mathbb{C})$ to C_p

Shank's Conjecture

Proof of the conjecture

Some Consequences

$$\mathbb{C}[R_1 \oplus W]^{\mathrm{SL}_2(\mathbb{C})} \xrightarrow{\sim} \mathbb{C}[W]^U$$
$$f(\cdot, \cdot) \mapsto f(X, \cdot)$$

where

$$U = \{ \tau \in \mathrm{SL}_2(\mathbb{C}) \mid \tau \cdot X = X \}$$
$$= \left\{ \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \mid u \in \mathbb{C} \right\}.$$

The Integers

Modular	Representation
Theory of	of ${C}_{\mathcal{D}}$

Representation Theory of $\operatorname{SL}_2(\mathbb{C})$

The Connection

Robert's Isomorphism (1861)

The Integers

Notation

From $\operatorname{SL}_2(\mathbb{C})$ to C_p

Shank's Conjecture

Proof of the conjecture

Some Consequences

\boldsymbol{U} contains the subgroup

 $U \supset \left\{ \left(\begin{array}{cc} 1 & k \\ 0 & 1 \end{array} \right) \mid k \in \mathbb{Z} \right\}$

The Integers

Modular Representation Theory of $C_{\mathcal{P}}$

Representation Theory of $\operatorname{SL}_2(\mathbb{C})$

The Connection

Robert's Isomorphism (1861)

The Integers

Notation

From $\operatorname{SL}_2(\mathbb{C})$ to C_p

Shank's Conjecture

Proof of the conjecture

Some Consequences

\boldsymbol{U} contains the subgroup

$$U \supset \left\{ \left(\begin{array}{cc} 1 & k \\ 0 & 1 \end{array} \right) \mid k \in \mathbb{Z} \right\} = \mathbb{Z}$$

The fact that \mathbb{Z} is a dense subgroup of U in the Zariski topology implies $\mathbb{C}[W]^U = \mathbb{C}[W]^Z.$

Note that the action of \mathbb{Z} is generated by the element $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

Fredericton, New Brunswick, 5 June 2010

Notation

Modular Representation Theory of $C_{\mathcal{D}}$

Representation Theory of $\operatorname{SL}_2(\mathbb{C})$

The Connection

Robert's Isomorphism (1861)

The Integers

Notation

From $\mathrm{SL}_2(\mathbb{C})$ to C_p

Shank's Conjecture

Proof of the conjecture

Some Consequences

Define

- $M_n := R_{n-1}(\mathbb{Q})$
- $L_n := R_{n-1}(\mathbb{Z}) = M_n(\mathbb{Z})$
- If W is an $SL_2(\mathbb{C})$ -representation, $M = W(\mathbb{Q})$ and $L = W(\mathbb{Z})$ If $W = \bigoplus_{i=1}^t R_{n_i-1}$ then $M = \bigoplus_{i=1}^t M_{n_i}$ and $L = \bigoplus_{i=1}^t L_{n_i}$.

The element $1 \in \mathbb{Z} \subset U$ acts on R_{n-1}, M_n and L_n via the matrix

$$\begin{pmatrix} 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \ddots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}_{n \times n}$$

From $\operatorname{SL}_2(\mathbb{C})$ to C_p

Modular Representation Theory of ${\cal C}_{\mathcal{D}}$

```
Representation Theory of \mathrm{SL}_2(\mathbb{C})
```

The Connection

Robert's Isomorphism (1861)

The Integers

Notation

From $\mathrm{SL}_2(\mathbb{C})$ to C_p

Shank's Conjecture

Proof of the conjecture

Some Consequences

$$\mathbb{C}[R_1 \oplus W]^{\mathrm{SL}_2(\mathbb{C})} \cong \mathbb{C}[W]^U = \mathbb{C}[W]^{\mathbb{Z}}$$
$$\cong \mathbb{Q}[M]^{\mathbb{Z}} \otimes_{\mathbb{Q}} \mathbb{C}$$
$$\cong (\mathbb{Z}[L]^{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C}$$
$$\cong \mathbb{Z}[L]^{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C}$$
$$S^{\bullet}(L^*) = \mathbb{Z}[L] \supset \mathbb{Z}[L]^{\mathbb{Z}}$$

 $\downarrow \pmod{p} \qquad \qquad \downarrow \pmod{p}$

 $S^{\bullet}(V^*) = \mathbb{F}_p[V] \qquad \supset \qquad \mathbb{F}_p[V]^{C_p}$

Elements of $\mathbb{F}_p[V]^{C_p}$ which lie in the image of $\mathbb{Z}[L]^{\mathbb{Z}}$ under reduction modulo p are called *integral* invariants.

Fredericton, New Brunswick, 5 June 2010

Modular Representation Theory of $C_{\mathcal{D}}$

Representation Theory of $\operatorname{SL}_2(\mathbb{C})$

The Connection

Shank's Conjecture

Shank's Conjecture (1996)

Proof of the conjecture

Some Consequences

Shank's Conjecture

Fredericton, New Brunswick, 5 June 2010

Shank's Conjecture (1996)

Modular Representation	•
Theory of ${C}_{\mathcal{P}}$	
Representation Theory of $\operatorname{SL}_2(\mathbb{C})$	•
The Connection	•
Shank's Conjecture	•
Shank's Conjecture (1996)	•

Some Consequences

Proof of the conjecture

 $\mathbb{F}[V]^{C_p}$ is generated by

- 1. Certain specific norms (one for each summand of V).
- 2. Certain transfers (finitely many).
- 3. A finite set of integral invariants.

Modular Representation Theory of C_p

Representation Theory of $\operatorname{SL}_2(\mathbb{C})$

The Connection

Shank's Conjecture

Proof of the conjecture

The Tensor Algebra

Example (p = 7)

Three Representation Rings

Clebsch-Gordan Rule

Jordan Normal Form Representation ring of C_p

Explicit Decompositions

Some Consequences

Proof of the conjecture

The Tensor Algebra

 $\mathbb{F}_p[V_n]_d = S^d(V_n^*)$ is a summand of $\otimes^d V^*$. We consider $\otimes^d V_n$. $S^d(M_n) \subset (\otimes^d M_n) \cong M_{n_1} \oplus M_{n_2} \oplus \cdots \oplus M_{n_s}$ UU $S^d(L_n) \subset (\otimes^d L_n) \qquad L_{n_1} \oplus L_{n_2} \oplus \cdots \oplus L_{n_s}$ $\downarrow \pmod{p} \quad \downarrow \pmod{p} \quad \downarrow \pmod{p} \quad \downarrow \pmod{p}$ $S^d(V_n) \subset (\otimes^d V_n) \cong V_{n_1} \oplus V_{n_2} \oplus \cdots \oplus V_{n_n}$

We need to show that the co-kernel of the map on invariants is spanned by transfers for d < p.

Example (p = 7)

$S^4(M_5)$	\subset	$\otimes^4 M_5$	2	$5M_1 \oplus 12M_3 \oplus 16M_5 \oplus 17M_7$ $\oplus 15M_9 \oplus 10M_{11} \oplus 6M_{13} \oplus 3M_{15} \oplus M_{17}$
\cup		\cup		\cup
$S^4(L_5)$	C	$\otimes^4 L_5$		$5L_1 \oplus 12L_3 \oplus 16L_5 \oplus 17L_7 \\ \oplus 15L_9 \oplus 10L_{11} \oplus 6L_{13} \oplus 3L_{15} \oplus L_{17}$
$\downarrow (mod$	p)	\downarrow (mod	p)	$\downarrow (\mathrm{mod}\ p)$
$S^{4}(V_{5})$	\subset	$\otimes^4 V_5$	\simeq	$2V_1 \oplus 3V_3 \oplus V_5 \oplus 87V_7$

Three Representation Rings

Modular Representation Theory of C_p Representation Theory of $SL_2(\mathbb{C})$ The Connection Shank's Conjecture Proof of the conjecture The Tensor Algebra Example (p = 7)Three Representation Rings Clebsch-Gordan Rule Jordan Normal Form Representation ring of C_p Explicit Decompositions Some Consequences

Let $m \leq n$. We compare:

- $R_{m-1} \otimes R_{n-1}$
- $\blacksquare M_m \otimes M_n$

 $V_m \otimes V_n$

Clebsch-Gordan Rule

Modular Representation Theory of C_p Representation Theory of $\mathrm{SL}_2(\mathbb{C})$ The Connection Shank's Conjecture Proof of the conjecture The Tensor Algebra Example (p = 7)Three Representation Rings Clebsch-Gordan Rule Jordan Normal Form Representation ring of C_p Explicit Decompositions Some Consequences

$$R_m \otimes R_n \cong R_{n-m} \oplus R_{n-m+2} \oplus \cdots \oplus R_{m+n}$$

$$R_{m-1} \otimes R_{n-1} \cong R_{n-m+1} \oplus R_{n-m+3} \oplus \cdots \oplus R_{m+n-1}$$

Jordan Normal Form

```
Modular Representation
Theory of C_n
                                  1
Representation Theory of
SL_2(\mathbb{C})
The Connection
Shank's Conjecture
Proof of the conjecture
 The Tensor Algebra
 Example (p = 7)
 Three Representation
 Rings
 Clebsch-Gordan Rule
 Jordan Normal Form
 Representation ring of
 C_p
 Explicit Decompositions
Some Consequences
```

$$M_m \otimes M_n \cong M_{n-m+1} \oplus M_{n-m+3} \oplus \cdots \oplus M_{m+n-1}$$

Roth (1934) Aiken (1934) (Littelwood 1936)

Markus and Robinson (1975) Brualdi (1985)

Representation ring of C_p

If $1 \le m \le n \le p$,

 $V_m \otimes V_n \cong$

$$\begin{cases} V_{n-m+1} \oplus V_{n-m+3} \oplus \cdots \oplus V_{m+n-1}, & \text{if } m+n \leq p+1; \\ V_{n-m+1} \oplus V_{n-m+3} \oplus \cdots \oplus V_{2p-m-n-1} \oplus (\oplus^{m+n-p}V_p), & \text{if } m+n \geq p. \end{cases}$$

Fredericton, New Brunswick, 5 June 2010

 $\quad \text{if} \ m + \\$

 $M_m \otimes M_n \cong$ $M_{n-m+1} \oplus M_{n-m+3} \oplus \cdots \oplus M_{m+n-1}$ IJ IJ $L_m \otimes L_n$ $L_{n-m+1} \oplus L_{n-m+3} \oplus \cdots \oplus L_{m+n-1}$ $\downarrow \pmod{p}$ $\downarrow \pmod{p}$ $V_m \otimes V_n \cong V_{n-m+1} \oplus V_{n-m+3} \oplus \cdots \oplus V_{2p-m-n-1} \oplus (\oplus^{m+n-p}V_p)$ if $m + n \ge p$.

> It suffices to prove that L_r surjects onto V_r here for all $r \le 2p - m - n - 1$ when $m \le n \le p$.

Fredericton, New Brunswick, 5 June 2010

Modular Representation Theory of $C_{\mathcal{P}}$	Conside
Representation Theory of $\operatorname{SL}_2(\mathbb{C})$	
The Connection	
Shank's Conjecture	
Proof of the conjecture	
The Tensor Algebra	
Example ($p=7$)	
Three Representation Rings	
Clebsch-Gordan Rule	
Jordan Normal Form	
Representation ring of C_p	
Explicit Decompositions	
Some Consequences	

•

er m = 3 and n = 4.		
$M_3 \otimes M_4$	\geq	$M_2 \oplus M_4 \oplus M_6$
\cup		\cup
$L_3 \otimes L_4$		$L_2 \oplus L_4 \oplus L_6$
↓ (mo	d p)	$\downarrow \pmod{p}$
$V_3 \otimes V_4$	\geq	$V_2 \oplus V_4 \oplus V_6$

 $\text{ if }p\geq 7.$

Modular Representation Theory of C_p	If $m =$
Representation Theory of $\mathrm{SL}_2(\mathbb{C})$	
The Connection	
Shank's Conjecture	
Proof of the conjecture	
The Tensor Algebra	
Example ($p=7$)	
Three Representation Rings	
Clebsch-Gordan Rule)
Jordan Normal Form	
Representation ring of C_p	
Explicit Decompositions	
Some Consequences	

3, $n = 4$ and $p = 5$.	
$M_3 \otimes M_4$	\cong $M_2 \oplus M_4 \oplus M_6$
\bigcup	\cup
$L_3 \otimes L_4$	$L_2 \oplus L_4 \oplus L_6$
$\downarrow \pmod{1}$	$\downarrow p) \qquad \downarrow \pmod{p}$
$V_3 \otimes V_4$	$\cong V_2 \oplus V_5 \oplus V_5$

```
Modular Representation
                                  M
Theory of C_{\mathcal{D}}
                                  M
Representation Theory of
SL_2(\mathbb{C})
                                   \Delta
The Connection
Shank's Conjecture
Proof of the conjecture
 The Tensor Algebra
 Example (p = 7)
 Three Representation
 Rings
 Clebsch-Gordan Rule
 Jordan Normal Form
 Representation ring of
 C_p
 Explicit Decompositions
Some Consequences
```

```
Modular Representation
                                  M
Theory of C_{\mathcal{D}}
                                  M
Representation Theory of
SL_2(\mathbb{C})
                                   \Delta
The Connection
Shank's Conjecture
Proof of the conjecture
 The Tensor Algebra
 Example (p = 7)
 Three Representation
 Rings
 Clebsch-Gordan Rule
 Jordan Normal Form
 Representation ring of
 C_p
 Explicit Decompositions
Some Consequences
```

$$\begin{split} & M_3 \otimes M_4 \cong \mathbb{Q}[s]/(s^3) \otimes \mathbb{Q}[t]/t^4 \cong \mathbb{Q}[s,t]/(s^3,t^4). \\ & M_3 \otimes M_4 \cong M_2 \oplus M_4 \oplus M_6. \\ & \text{acts via multiplication by } (1+s)(1+t) - 1 = s+t+st. \\ & 0 \qquad 1 \\ & 1 \qquad s \qquad t \\ & 2 \qquad s^2 \quad st \qquad t^2 \\ & 3 \qquad s^2t \quad st^2 \quad t^3 \\ & 4 \qquad s^2t^2 \quad st^3 \\ & 5 \qquad s^2t^3 \\ & 0 \qquad \bullet \\ & 1 \qquad \bullet \\ & 2 \qquad \bullet \qquad \bullet \\ & 3 \qquad \bullet \qquad \bullet \\ & 4 \qquad \bullet \qquad \bullet \\ & 5 \qquad \bullet \end{aligned}$$

```
Modular Representation
                                  M_3
M_3
Theory of C_{\mathcal{D}}
Representation Theory of
SL_2(\mathbb{C})
                                   \Delta
The Connection
Shank's Conjecture
Proof of the conjecture
 The Tensor Algebra
 Example (p = 7)
 Three Representation
 Rings
 Clebsch-Gordan Rule
 Jordan Normal Form
 Representation ring of
 C_p
 Explicit Decompositions
Some Consequences
```

$$\begin{array}{l} & 3 \otimes M_4 \cong \mathbb{Q}[s]/(s^3) \otimes \mathbb{Q}[t]/t^4 \cong \mathbb{Q}[s,t]/(s^3,t^4). \\ & 3 \otimes M_4 \cong M_2 \oplus M_4 \oplus M_6. \\ & \text{acts via multiplication by } (1+s)(1+t)-1 = s+t+st. \\ & 0 \qquad 1 \\ & 1 \qquad s \qquad t \\ & 2 \qquad s^2 \quad st \qquad t^2 \\ & 3 \qquad s^2t \quad st^2 \quad t^3 \\ & 4 \qquad s^2t^2 \quad st^3 \\ & 5 \qquad s^2t^3 \\ & 0 \qquad \bullet \\ & 1 \qquad \bullet \\ & 2 \qquad \bullet \qquad \bullet \\ & 3 \qquad \bullet \qquad \bullet \\ & 4 \qquad \bullet \\ & 5 \qquad \bullet \end{array}$$

```
Modular Representation
Theory of C_n
Representation Theory of
SL_2(\mathbb{C})
The Connection
Shank's Conjecture
Proof of the conjecture
 The Tensor Algebra
 Example (p = 7)
 Three Representation
 Rings
 Clebsch-Gordan Rule
 Jordan Normal Form
 Representation ring of
 C_p
 Explicit Decompositions
Some Consequences
```

 $M_3 \otimes M_4 \cong \mathbb{Q}[s]/(s^3) \otimes \mathbb{Q}[t]/t^4 \cong \mathbb{Q}[s,t]/(s^3,t^4).$ $M_3 \otimes M_4 \cong M_2 \oplus M_4 \oplus M_6.$ Δ acts via multiplication by (1+s)(1+t) - 1 = s + t + st. ()1 S s^2 2st t^2 s^2t st^2 t^3 3 s^2t^2 st^3 4 $s^{2}t^{3}$ 5 () 23 4 5

Modular Representation Theory of $C_{\mathcal{D}}$	M_3
Representation Theory of $SL_2(\mathbb{C})$	
The Connection	If p
Shank's Conjecture	V_3
Proof of the conjecture	
The Tensor Algebra	
Example ($p=7$)	
Three Representation Rings	
Clebsch-Gordan Rule	
Jordan Normal Form Representation ring of C_p Explicit Decompositions Some Consequences	

$$M_3 \otimes M_4 \cong \mathbb{Q}[s,t]/(s^3,t^4) \cong M_2 \oplus M_4 \oplus M_6.$$

If
$$p \ge 7$$
:
 $V_3 \otimes V_4 \cong \mathbb{F}_p[s,t]/(s^3,t^4) \cong V_2 \oplus V_4 \oplus V_6$.

Modular Representation Theory of C_p	M_3 (
Representation Theory of $SL_2(\mathbb{C})$	_
The Connection	If p =
Shank's Conjecture	$V_2 \otimes$
Proof of the conjecture	, , , (
The Tensor Algebra	
Example ($p=7$)	
Three Representation Rings	
Clebsch-Gordan Rule	
Jordan Normal Form Representation ring of C_p	
Explicit Decompositions	
Some Consequences	

$$M_3 \otimes M_4 \cong \mathbb{Q}[s,t]/(s^3,t^4) \cong M_2 \oplus M_4 \oplus M_6.$$

If
$$p = 5$$
:
 $V_3 \otimes V_4 \cong \mathbb{F}_p[s, t]/(s^3, t^4) \cong V_2 \oplus V_5 \oplus V_5$.

Modular Representation Theory of $C_{\mathcal{P}}$	M
Representation Theory of $\operatorname{SL}_2(\mathbb{C})$	•
The Connection	lf χ
Shank's Conjecture	V_2
Proof of the conjecture	ເ ເ
The Tensor Algebra	•
Example ($p=7$)	•
Three Representation Rings	•
Clebsch-Gordan Rule	•
Jordan Normal Form Representation ring of C_p Explicit Decompositions Some Consequences	•

$$M_3 \otimes M_4 \cong \mathbb{Q}[s,t]/(s^3,t^4) \cong M_2 \oplus M_4 \oplus M_6.$$

If p = 5: $V_3 \otimes V_4 \cong \mathbb{F}_p[s, t]/(s^3, t^4) \cong V_2 \oplus V_5 \oplus V_5$.

Modular Representation Theory of $C_{\mathcal{P}}$	M_{i}
Representation Theory of $\operatorname{SL}_2(\mathbb{C})$	0 0 0 0
The Connection	If χ
Shank's Conjecture	V_2
Proof of the conjecture	6 1
The Tensor Algebra	•
Example ($p=7$)	•
Three Representation Rings	
Clebsch-Gordan Rule	•
Jordan Normal Form Representation ring of C_p Explicit Decompositions Some Consequences	

$$M_3 \otimes M_4 \cong \mathbb{Q}[s,t]/(s^3,t^4) \cong M_2 \oplus M_4 \oplus M_6.$$

If
$$p = 5$$
:
 $V_3 \otimes V_4 \cong \mathbb{F}_p[s, t]/(s^3, t^4) \cong V_2 \oplus V_5 \oplus V_5$.

M
If <i>y</i>
V_3
•
•
•
•

$$M_3 \otimes M_4 \cong \mathbb{Q}[s,t]/(s^3,t^4) \cong M_2 \oplus M_4 \oplus M_6.$$

If
$$p = 5$$
:
 $V_3 \otimes V_4 \cong \mathbb{F}_p[s, t]/(s^3, t^4) \cong V_2 \oplus V_5 \oplus V_5$.

Explicit Decompositions

If $p \ge 7$

	M_{6}	$1 \mapsto s + t + st \mapsto s^2 + 2st + t^2 + 2s^2t + 2st^2 + s^2t^2$
	0	$\mapsto 3s^{2}t + 3st^{2} + t^{3} + 6s^{2}t^{2} + 3st^{3} + 3s^{2}t^{3}$
		$\mapsto 6s^2t^2 + 4st^3 + 12s^2t^3 \mapsto 10s^2t^3 \mapsto 0$
$M_3 \otimes M_4$	M_4	$3s - 2t \mapsto 3s^2 + st - 2t^2 + 3s^2t - 2st^2$
		$\mapsto 4s^{2}t - st^{2} - 2t^{3} + 2s^{2}t^{2} - 4st^{3} - 2s^{2}t^{3}$
		$\mapsto 3s^2t^2 - 3st^3 - 3s^2t^3 \mapsto 0$
	M_2	$3s^2 - 2st + t^2 + 2t^3 \mapsto s^2t - st^2 + t^3 - 2s^2t^2 + 3st^3 \mapsto 0$
	V_6	$1 \mapsto s + t + st \mapsto s^2 + 2st + t^2 + 2s^2t + 2st^2 + s^2t^2$
	0	$\mapsto 3s^{2}t + 3st^{2} + t^{3} + 6s^{2}t^{2} + 3st^{3} + 3s^{2}t^{3}$
		$\mapsto 6s^2t^2 + 4st^3 + 12s^2t^3 \mapsto 10s^2t^3 \mapsto 0$
$V_3 \otimes V_4$	V_4	$3s - 2t \mapsto 3s^2 + st - 2t^2 + 3s^2t - 2st^2$
		$\mapsto 4s^{2}t - st^{2} - 2t^{3} + 2s^{2}t^{2} - 4st^{3} - 2s^{2}t^{3}$
		$\mapsto 3s^2t^2 - 3st^3 - 3s^2t^3 \mapsto 0$
	V_2	$3s^2 - 2st + t^2 + 2t^3 \mapsto s^2t - st^2 + t^3 - 2s^2t^2 + 3st^3 \mapsto 0$

Explicit Decompositions

$$\begin{array}{c|c} \mathrm{If} \ p=5 \\ \hline \\ M_{6} & 1 \mapsto s+t+st \mapsto s^{2}+2st+t^{2}+2s^{2}t+2st^{2}+s^{2}t^{2} \\ & \mapsto 3s^{2}t+3st^{2}+t^{3}+6s^{2}t^{2}+3st^{3}+3s^{2}t^{3} \\ & \mapsto 6s^{2}t^{2}+4st^{3}+12s^{2}t^{3}\mapsto 10s^{2}t^{3}\mapsto 0 \\ \hline \\ M_{3}\otimes M_{4} & M_{4} & 3s-2t\mapsto 3s^{2}+st-2t^{2}+3s^{2}t-2st^{2} \\ & \mapsto 4s^{2}t-st^{2}-2t^{3}+2s^{2}t^{2}-4st^{3}-2s^{2}t^{3} \\ & \mapsto 3s^{2}t^{2}-3st^{3}-3s^{2}t^{3}\mapsto 0 \\ \hline \\ M_{2} & 3s^{2}-2st+t^{2}+2t^{3}\mapsto s^{2}t-st^{2}+t^{3}-2s^{2}t^{2}+3st^{3}\mapsto 0 \\ \hline \\ M_{2} & 3s^{2}t-3st^{2}+3st^{2}+t^{3}+6s^{2}t^{2}+3st^{3}+3s^{2}t^{3} \\ & \mapsto 3s^{2}t+3st^{2}+t^{3}+6s^{2}t^{2}+3st^{3}+3s^{2}t^{3} \\ & \mapsto 6s^{2}t^{2}+4st^{3}+12s^{2}t^{3}\mapsto 0=10s^{2}t^{3} \\ \hline \\ V_{3}\otimes V_{4} & V_{5} & s\mapsto s^{2}+st+s^{2}t\mapsto 2s^{2}t+st^{2}+2s^{2}t^{2} \\ & \mapsto 3s^{2}t^{2}+st^{3}+3s^{2}t^{3}\mapsto 4s^{2}t^{3}\mapsto 0 \\ \hline \\ V_{2} & 3s^{2}-2st+t^{2}+2t^{3}\mapsto s^{2}t-st^{2}+t^{3}-2st^{3}+3s^{2}t^{2}\mapsto 0 \\ \hline \end{array}$$

Modular Representation Theory of C_p

Representation Theory of $\operatorname{SL}_2(\mathbb{C})$

The Connection

Shank's Conjecture

Proof of the conjecture

Some Consequences

Some New Modular Invariants

Selected Bibliography

Some Consequences

Fredericton, New Brunswick, 5 June 2010

Some New Modular Invariants

1.	$\mathbb{F}[V_2 \oplus V_4]^C$	C_p Covariants of $R_1\oplus R_3$ were computed classically.
2.	$\mathbb{F}[V_3 \oplus V_4]^{\mathcal{C}}$	C_p Covariants of $R_2\oplus R_3$ were computed classically.
3.	$\mathbb{F}[\oplus^m V_3]^{C_p}$	Covariants of $\oplus^m R_2$ were computed classically.
4.	$\mathbb{F}[\oplus^m V_4]^{C_p}$	Covariants of $\oplus^m R_3$ were computed by Schwarz(1987).
5.	$\mathbb{F}[V_6]^{C_p}$	Covariants of the quintic were computed by Gordan in 1869.
6.	$\mathbb{F}[V_7]^{C_p}$	Covariants of the sextic were computed by Gordan in 1869.
7.	$\mathbb{F}[V_8]^{C_p}$	Covariants of the septic were computed by Bedratyuk(2009).
8.	$\mathbb{F}[V_9]^{C_p}$	Covariants of the octic were computed by von Gall in 1880.

Selected Bibliography

Modular Representation Theory of C_n Representation Theory of $SL_2(\mathbb{C})$ The Connection Shank's Conjecture Proof of the conjecture Some Consequences Some New Modular Invariants Selected Bibliography [4]

 Gert Almkvist, Representations of Z/pZ in characteristic p and reciprocity theorems, J. Algebra 68 (1981), no. 1, 1–27.
 G. Almkvist and R. Fossum, Decompositions of exterior and symmetric powers of indecomposable Z/pZ-modules in characteristic p, Lecture Notes in Math. 641, 1–114, Springer-Verlag, 1978.

- [3] Marvin Marcus and Herbert Robinson, *Elementary divisors of tensor products*, Comm. ACM **18** (1975) 36–39.
- [4] Michael Roberts, On the Covariants of a Binary Quantic of the nth Degree, The Quarterly Journal of Pure and Applied Mathematics 4 (1861) 168178.
- [5] R.J. Shank, S.A.G.B.I. bases for rings of formal modular seminvariants, Commentarii Mathematici Helvetici, 73 (1998) no. 4, 548–565.