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Let F be any field of characteristic p > 0 and let Cp denote the cyclic

group of order p. We fix a generator σ of Cp.

Suppose V is an indecomposable representation of Cp defined over F.

Consider the Jordan Normal Form of the matrix of σ in GL(V ). This is

the matrix:



















1 1 0 · · · 0 0
0 1 1 · · · 0 0

0 0 1
. . . 0 0

...
...

...
. . .

. . .
...

0 0 0 · · · 1 1
0 0 0 · · · 0 1



















n×n

where 1 ≤ n ≤ p.
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1. We get p inequivalent indecomposable representations: V1 ( V2 ( · · · ( Vp

2. V
Cp
n

∼= V1 for all n.

3. ∆ := σ − 1

4. Tr(f) =
∑p−1

i=0 σi · f = (σ − 1)p−1 · f = ∆p−1(f) where ∆ = σ − 1.

Thus a non-zero invariant h is a transfer if and only if h ∈ V
Cp
p .

5. Norm(f) =
∏p−1

i=0 σi · f .
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1. Fp[⊕
mV2]

Cp

2. Fp[V3]
Cp

3. Fp[V4]
Cp

4. Fp[V5]
Cp

5. Fp[V2 ⊕ V3]
Cp

6. Fp[V3 ⊕ V3]
Cp

7. Fp[V2 ⊕ V2 ⊕ V3]
Cp
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1. R1 denotes the defining two dimensional representation of SL2(C)
with fixed basis {X,Y }.

2. Rd := Sd(R1) = span{Xd, Xd−1Y, . . . , Y d}.

3. Every irreducible SL2(C) representation is isomorphic to Rd for

some d.

4. Classical invariant theorists studied not just

the ring of invariants C[W ]SL2(C) of a representation W
but also C[R1 ⊕ W ]SL2(C), the ring of covariants of W .
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C[R1 ⊕ W ]SL2(C) −→ C[W ]U

f(·, ·) 7→ f(X, ·)

where

U = {τ ∈ SL2(C) | τ · X = X}

=

{(

1 u
0 1

)

| u ∈ C

}

.
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C[R1 ⊕ W ]SL2(C) ∼

−→ C[W ]U

f(·, ·) 7→ f(X, ·)

where

U = {τ ∈ SL2(C) | τ · X = X}

=

{(

1 u
0 1

)

| u ∈ C

}

.
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U contains the subgroup

U ⊃

{(

1 k
0 1

)

| k ∈ Z

}
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U contains the subgroup

U ⊃

{(

1 k
0 1

)

| k ∈ Z

}

= Z

The fact that Z is a dense subgroup of U in the Zariski topology implies

C[W ]U = C[W ]Z .

Note that the action of Z is generated by the element

(

1 1
0 1

)
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Define

• Mn := Rn−1(Q)
• Ln := Rn−1(Z) = Mn(Z)
• If W is an SL2(C)-representation, M = W (Q) and L = W (Z)
If W = ⊕t

i=1Rni−1 then M = ⊕t
i=1Mni

and L = ⊕t
i=1Lni

.

The element 1 ∈ Z ⊂ U acts on Rn−1,Mn and Ln via the matrix



















1 1 0 · · · 0 0
0 1 1 · · · 0 0

0 0 1
. . . 0 0

...
...

...
. . .

. . .
...

0 0 0 · · · 1 1
0 0 0 · · · 0 1



















n×n
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C[R1 ⊕ W ]SL2(C) ∼= C[W ]U = C[W ]Z

∼= Q[M ]Z ⊗Q C

∼= (Z[L]Z ⊗Z Q) ⊗Q C

∼= Z[L]Z ⊗Z C

S•(L∗) = Z[L] ⊃ Z[L]Z

↓ (mod p) ↓ (mod p)

S•(V ∗) = Fp[V ] ⊃ Fp[V ]Cp

Elements of Fp[V ]Cp which lie in the image of Z[L]Z under reduction

modulo p are called integral invariants.
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F[V ]Cp is generated by

1. Certain specific norms (one for each summand of V ).

2. Certain transfers (finitely many).

3. A finite set of integral invariants.
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Fp[Vn]d = Sd(V ∗

n ) is a summand of ⊗dV ∗. We consider ⊗dVn.

Sd(Mn) ⊂ (⊗dMn) ∼= Mn1 ⊕ Mn2 ⊕ · · · ⊕ Mns
⊂ ⊂ ⊂

Sd(Ln) ⊂ (⊗dLn) Ln1 ⊕ Ln2 ⊕ · · · ⊕ Lns

↓ (mod p) ↓ (mod p) ↓ (mod p)

Sd(Vn) ⊂ (⊗dVn) ∼= Vn1 ⊕ Vn2 ⊕ · · · ⊕ Vns

We need to show that the co-kernel of the map on invariants is spanned by transfers for

d < p.
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S4(M5) ⊂ ⊗4M5
∼=

5M1 ⊕ 12M3 ⊕ 16M5 ⊕ 17M7

⊕15M9 ⊕ 10M11 ⊕ 6M13 ⊕ 3M15 ⊕ M17

⊂ ⊂ ⊂

S4(L5) ⊂ ⊗4L5
5L1 ⊕ 12L3 ⊕ 16L5 ⊕ 17L7

⊕15L9 ⊕ 10L11 ⊕ 6L13 ⊕ 3L15 ⊕ L17

↓(mod p) ↓(mod p) ↓(mod p)

S4(V5) ⊂ ⊗4V5
∼= 2V1 ⊕ 3V3 ⊕ V5 ⊕ 87V7
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Let m ≤ n. We compare:

� Rm−1 ⊗ Rn−1

� Mm ⊗ Mn

� Vm ⊗ Vn
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Rm ⊗ Rn
∼= Rn−m ⊕ Rn−m+2 ⊕ · · · ⊕ Rm+n

Rm−1 ⊗ Rn−1
∼= Rn−m+1 ⊕ Rn−m+3 ⊕ · · · ⊕ Rm+n−1
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Mm ⊗ Mn
∼= Mn−m+1 ⊕ Mn−m+3 ⊕ · · · ⊕ Mm+n−1

Roth (1934)

Aiken (1934) (Littelwood 1936)

Markus and Robinson (1975)

Brualdi (1985)
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If 1 ≤ m ≤ n ≤ p,

Vm ⊗ Vn
∼=

{

Vn−m+1 ⊕ Vn−m+3 ⊕ · · · ⊕ Vm+n−1, if m + n ≤ p + 1;

Vn−m+1 ⊕ Vn−m+3 ⊕ · · · ⊕ V2p−m−n−1 ⊕ (⊕m+n−pVp), if m + n ≥ p.
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Mm ⊗ Mn
∼= Mn−m+1 ⊕ Mn−m+3 ⊕ · · · ⊕ Mm+n−1

⊂ ⊂

Lm ⊗ Ln Ln−m+1 ⊕ Ln−m+3 ⊕ · · · ⊕ Lm+n−1

↓ (mod p) ↓ (mod p)

Vm ⊗ Vn
∼= Vn−m+1 ⊕ Vn−m+3 ⊕ · · · ⊕ Vn+m−1

if m + n ≤ p + 1.
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Mm ⊗ Mn
∼= Mn−m+1 ⊕ Mn−m+3 ⊕ · · · ⊕ Mm+n−1

⊂ ⊂

Lm ⊗ Ln Ln−m+1 ⊕ Ln−m+3 ⊕ · · · ⊕ Lm+n−1

↓ (mod p) ↓ (mod p)

Vm ⊗ Vn
∼= Vn−m+1 ⊕ Vn−m+3 ⊕ · · · ⊕ V2p−m−n−1 ⊕ (⊕m+n−pVp)

if m + n ≥ p.

It suffices to prove that Lr surjects onto Vr here

for all r ≤ 2p − m − n − 1 when m ≤ n ≤ p.
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Consider m = 3 and n = 4.

M3 ⊗ M4
∼= M2 ⊕ M4 ⊕ M6

⊂ ⊂

L3 ⊗ L4 L2 ⊕ L4 ⊕ L6

↓ (mod p) ↓ (mod p)

V3 ⊗ V4
∼= V2 ⊕ V4 ⊕ V6

if p ≥ 7.
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If m = 3, n = 4 and p = 5.

M3 ⊗ M4
∼= M2 ⊕ M4 ⊕ M6

⊂ ⊂

L3 ⊗ L4 L2 ⊕ L4 ⊕ L6

↓ (mod p) ↓ (mod p)

V3 ⊗ V4
∼= V2 ⊕ V5 ⊕ V5
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M3 ⊗ M4
∼= Q[s]/(s3) ⊗ Q[t]/t4 ∼= Q[s, t]/(s3, t4).

M3 ⊗ M4
∼= M2 ⊕ M4 ⊕ M6.

∆ acts via multiplication by (1 + s)(1 + t) − 1 = s + t + st.
0 1
1 s t
2 s2 st t2

3 s2t st2 t3

4 s2t2 st3

5 s2t3

0 •
1 • •
2 • • •
3 • • •
4 • •
5 •
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M3 ⊗ M4
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∆ acts via multiplication by (1 + s)(1 + t) − 1 = s + t + st.
0 1
1 s t
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M3 ⊗ M4
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M3 ⊗ M4
∼= Q[s]/(s3) ⊗ Q[t]/t4 ∼= Q[s, t]/(s3, t4).

M3 ⊗ M4
∼= M2 ⊕ M4 ⊕ M6.

∆ acts via multiplication by (1 + s)(1 + t) − 1 = s + t + st.
0 1
1 s t
2 s2 st t2

3 s2t st2 t3

4 s2t2 st3

5 s2t3
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M3 ⊗ M4
∼= Q[s, t]/(s3, t4) ∼= M2 ⊕ M4 ⊕ M6.

If p ≥ 7:

V3 ⊗ V4
∼= Fp[s, t]/(s3, t4) ∼= V2 ⊕ V4 ⊕ V6.

Deg M3 ⊗ M4 V3 ⊗ V4

0 • •
1 • • • •
2 • • • • • •
3 • • • • • •
4 • • • •
5 • •
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M3 ⊗ M4
∼= Q[s, t]/(s3, t4) ∼= M2 ⊕ M4 ⊕ M6.

If p = 5:

V3 ⊗ V4
∼= Fp[s, t]/(s3, t4) ∼= V2 ⊕ V5 ⊕ V5.

Deg M3 ⊗ M4

0 •
1 • •
2 • • •
3 • • •
4 • •
5 •
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M3 ⊗ M4
∼= Q[s, t]/(s3, t4) ∼= M2 ⊕ M4 ⊕ M6.

If p = 5:

V3 ⊗ V4
∼= Fp[s, t]/(s3, t4) ∼= V2 ⊕ V5 ⊕ V5.

Deg M3 ⊗ M4 V3 ⊗ V4

0 • •
1 • • • •
2 • • • • • •
3 • • • • • •
4 • • • •
5 • •
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M3 ⊗ M4
∼= Q[s, t]/(s3, t4) ∼= M2 ⊕ M4 ⊕ M6.

If p = 5:

V3 ⊗ V4
∼= Fp[s, t]/(s3, t4) ∼= V2 ⊕ V5 ⊕ V5.

Deg M3 ⊗ M4 V3 ⊗ V4

0 • •
1 • • • •
2 • • • • • •
3 • • • • • •
4 • • • •
5 • •



Modular Representation

Theory of Cp

Representation Theory of

SL2(C)

The Connection

Shank’s Conjecture

Proof of the conjecture

The Tensor Algebra

Example (p = 7)

Three Representation

Rings

Clebsch-Gordan Rule

Jordan Normal Form

Representation ring of

Cp

Explicit Decompositions

Some Consequences

Fredericton, New Brunswick, 5 June 2010 CMS Summer Meeting – slide 37

M3 ⊗ M4
∼= Q[s, t]/(s3, t4) ∼= M2 ⊕ M4 ⊕ M6.

If p = 5:

V3 ⊗ V4
∼= Fp[s, t]/(s3, t4) ∼= V2 ⊕ V5 ⊕ V5.

Deg M3 ⊗ M4 V3 ⊗ V4

0 • •
1 • • • •
2 • • • • • •
3 • • • • • •
4 • • • •
5 • •
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If p ≥ 7

M6 1 7→ s + t + st 7→ s2 + 2st + t2 + 2s2t + 2st2 + s2t2

7→ 3s2t + 3st2 + t3 + 6s2t2 + 3st3 + 3s2t3

7→ 6s2t2 + 4st3 + 12s2t3 7→ 10s2t3 7→ 0

M3 ⊗ M4 M4 3s − 2t 7→ 3s2 + st − 2t2 + 3s2t − 2st2

7→ 4s2t − st2 − 2t3 + 2s2t2 − 4st3 − 2s2t3

7→ 3s2t2 − 3st3 − 3s2t3 7→ 0

M2 3s2 − 2st + t2 + 2t3 7→ s2t − st2 + t3 − 2s2t2 + 3st3 7→ 0

V6 1 7→ s + t + st 7→ s2 + 2st + t2 + 2s2t + 2st2 + s2t2

7→ 3s2t + 3st2 + t3 + 6s2t2 + 3st3 + 3s2t3

7→ 6s2t2 + 4st3 + 12s2t3 7→ 10s2t3 7→ 0

V3 ⊗ V4 V4 3s − 2t 7→ 3s2 + st − 2t2 + 3s2t − 2st2

7→ 4s2t − st2 − 2t3 + 2s2t2 − 4st3 − 2s2t3

7→ 3s2t2 − 3st3 − 3s2t3 7→ 0

V2 3s2 − 2st + t2 + 2t3 7→ s2t − st2 + t3 − 2s2t2 + 3st3 7→ 0
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If p = 5

M6 1 7→ s + t + st 7→ s2 + 2st + t2 + 2s2t + 2st2 + s2t2

7→ 3s2t + 3st2 + t3 + 6s2t2 + 3st3 + 3s2t3

7→ 6s2t2 + 4st3 + 12s2t3 7→ 10s2t3 7→ 0

M3 ⊗ M4 M4 3s − 2t 7→ 3s2 + st − 2t2 + 3s2t − 2st2

7→ 4s2t − st2 − 2t3 + 2s2t2 − 4st3 − 2s2t3

7→ 3s2t2 − 3st3 − 3s2t3 7→ 0

M2 3s2 − 2st + t2 + 2t3 7→ s2t − st2 + t3 − 2s2t2 + 3st3 7→ 0

V5 1 7→ s + t + st 7→ s2 + 2st + t2 + 2s2t + 2st2 + s2t2

7→ 3s2t + 3st2 + t3 + 6s2t2 + 3st3 + 3s2t3

7→ 6s2t2 + 4st3 + 12s2t3 7→ 0= 10s2t3

V3 ⊗ V4 V5 s 7→ s2 + st + s2t 7→ 2s2t + st2 + 2s2t2

7→ 3s2t2 + st3 + 3s2t3 7→ 4s2t3 7→ 0

V2 3s2 − 2st + t2 + 2t3 7→ s2t − st2 + t3 − 2st3 + 3s2t2 7→ 0
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1. F[V2 ⊕ V4]
Cp Covariants of R1 ⊕ R3 were computed classically.

2. F[V3 ⊕ V4]
Cp Covariants of R2 ⊕ R3 were computed classically.

3. F[⊕mV3]
Cp Covariants of ⊕mR2 were computed classically.

4. F[⊕mV4]
Cp Covariants of ⊕mR3 were computed by Schwarz(1987).

5. F[V6]
Cp Covariants of the quintic were computed by Gordan in 1869.

6. F[V7]
Cp Covariants of the sextic were computed by Gordan in 1869.

7. F[V8]
Cp Covariants of the septic were computed by Bedratyuk(2009).

8. F[V9]
Cp Covariants of the octic were computed by von Gall in 1880.
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