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Abstract— Q learning algorithm is a popular reinforcement
learning method for finite state/action fully observed Markov
decision processes (MDPs). In this paper, we make two con-
tributions: (i) we establish the convergence of a Q learning
algorithm for partially observed Markov decision processes
(POMDPs) using a finite history of past observations and
control actions and show that the limit fixed point equation
gives an optimal solution for an approximate belief-MDP. We
then provide bounds on the performance of the policy obtained
using the limit Q values compared to the performance of the
optimal policy for the POMDP, where we also present explicit
performance guarantees using recent results on filter stability in
controlled POMDPs. (ii) We apply these results to fully observed
MDPs with continuous state spaces and establish the near
optimality of learned policies via quantization of the state space,
where the quantization is viewed as a measurement channel
leading to a POMDP model and a history of unit window size
is considered. In particular, we show that Q-learning, with its
convergence and near optimality properties, is applicable for
continuous space MDPs when the state space is quantized.

I. INTRODUCTION

A stochastic control model where the controller can only
see a noisy version of the state, is called a Partially Ob-
served Markov Decision Process (POMDP). POMDPs offer a
practically rich and relevant, yet mathematically challenging,
model. Even in the most basic setup of finite state-action
models, the analysis and computation of optimal solutions
are complicated.

On approximation methods. The problem of approx-
imate optimality is significantly more challenging for
POMDPs compared to the fully observed MDP counterpart.
Most of the studies in the literature are algorithmic and com-
putational contributions with few rigorous analytical results.
These include [12], [23], [20]. For partially observed setups,
[16], building on [15], introduces a rigorous approximation
analysis (and explicit methods for quantization of probabil-
ity measures) and shows that finite model approximations
obtained through quantization are asymptotically optimal.
[18] presents a notion of approximate information variable
and studies near optimality of policies that satisfies the
approximate information state property. We refer the reader
to the survey papers [9], [21], [3] and the recent book
[7] for further structural results as well as algorithmic and
computational methods for approximating POMDPs.

On learning for POMDPs. Learning in POMDPs is
challenging: if one attempts to learn optimal policies through
empirical observations, the analysis and convergence prop-
erties become significantly harder to obtain (compared with
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MDPs) as the observations progress in a non-Markovian
fashion even under a memoryless control policy, and the be-
lief state space is uncountable (as it is a space of probability
measures). [5] studies a learning algorithm for POMDPs with
average cost criteria where a policy improvement method is
proposed using random polices and the convergence of this
method to local optima is given. [10] and [8] are studies
that propose a similar general approach as we present in this
paper, however these only provide extensive experimental or
numerical results without analytical convergence or rigorous
approximation results.

A natural, though optimistic, attempt to learn POMDPs
would be to ignore the partial observability and pretend that
the noisy observations reflect the true state perfectly. For
example, for infinite horizon discounted cost problems, one
can construct Q iterations as:

Qk+1(yk, uk) = (1− αk(yk, uk))Qk(yk, uk)

+ αk(yk, uk)
(
Ck(yk, uk) + βmin

v
Qk(Yk+1, v)

)
(1)

where yk represents the observations and uk represents the
control actions, 0 < β < 1 is the discount factor, and
αk’s are the learning rates. We can further improve this
algorithm by using not only the most recent observation but
a finite window of past observations and control actions.
However, the joint observation and control process is not
a controlled Markov process (as only (Xk, Uk) is), and
hence the convergence does not directly follow from standard
techniques ([4], [19]).

Even if convergence is guaranteed, it is not clear what
the limit Q values are, and whether they are meaningful
at all. [17] studies the Q learning algorithm for POMDPs
by ignoring the partial observability and constructing the
algorithm using the most recent observation variable as in
(1), and establishes convergence of this algorithm under mild
conditions. In our paper, we will consider memory sizes of
more than zero for the information variables and a continuous
state space, and thus the algorithm in [17] can be seen as
a special case of our setup. Different from our work, [17]
does not study what the limit of the Q iterations mean,
and in particular whether the limit equation corresponds to
some approximate MDP model. Furthermore, using longer
window sizes reveals the intimate connection between the
approximate learning problem and the nonlinear controlled
filter stability problem that we will study in detail.

Contributions. (i) In Theorem 2, we show that the Q
iterations constructed using finite history variables converge
under mild assumptions on the hidden state process, and the
limit fixed point equation corresponds to an optimal solution
for an approximate belief-MDP model. (ii) We, towards
a practically consequential goal, in Theorem 1 establish
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bounds for the performance loss of the policy obtained using
the approximate belief-MDP when it is used in the original
model. This also establishes that under explicit filter stability
conditions to be presented, one can guarantee near optimality
of the presented algorithm. (iii) In Section V, we study the Q
learning problem for fully observed models with continuous
state spaces. We show that the problem can be seen as
a POMDP with a quantizer channel if we discretize the
state space and that Q-learning can be applied to continuous
state spaces via our POMDP analysis with its convergence
and near optimality results under guaranteed performance
bounds.

II. PARTIALLY OBSERVED MARKOV DECISION
PROCESSES AND BELIEF-MDP REDUCTION

Let X ⊂ Rm denote a Borel set which is the state space of
a partially observed controlled Markov process for some m ∈
N. Let Y be a finite set denoting the observation space of the
model, and let the state be observed through an observation
channel O. The observation channel, O, is defined as a
stochastic kernel (regular conditional probability) from X
to Y, such that O( · |x) is a probability measure on Y for
every x ∈ X, and O(A| · ) : X→ [0, 1] is a Borel measurable
function for every A ⊂ Y. U denotes the action space which
is also a finite set.

An admissible policy γ is a sequence of control functions
{γt, t ∈ Z+} such that γt is measurable with respect
to the σ-algebra generated by the information variables
It = {Y[0,t], U[0,t−1]}, t ∈ N, I0 = {Y0}, where
Ut = γt(It), t ∈ Z+, are the U-valued control actions and
Y[0,t] = {Ys, 0 ≤ s ≤ t}, U[0,t−1] = {Us, 0 ≤ s ≤ t− 1}.
We define Γ to be the set of all such admissible policies. The
update rules of the system are determined by relationships:

Pr
(
(X0, Y0) ∈ B

)
=

∫
B

µ(dx0)O(dy0|x0), B ∈ B(X×Y),

where µ is the (prior) distribution of the initial state X0, and

Pr

(
(Xt, Yt) ∈ B

∣∣∣∣ (X,Y, U)[0,t−1] = (x, y, u)[0,t−1]

)
=
∫
B
T (dxt|xt−1, ut−1)O(dyt|xt),

B ∈ B(X ×Y), t ∈ N, where T is the transition kernel of
the model which is a stochastic kernel from X × U to X.
Note that, although Y is finite, we here use an integral sign
instead of the summation sign for notational convenience.

We let the objective of the agent (decision maker) be the
minimization of the infinite horizon discounted cost,

Jβ(µ, T, γ) = ET,γµ

[ ∞∑
t=0

βtc(Xt, Ut)

]
(2)

for some discount factor β ∈ (0, 1), over the set of admissible
policies γ ∈ Γ, where c : X×U→ R is a Borel-measurable
stage-wise cost function and ET,γµ denotes the expectation
with initial state probability measure µ and transition kernel
T under policy γ. Note that µ ∈ P(X), where we let P(X)
denote the set of probability measures on X. We define

J∗β(µ, T ) = inf
γ∈Γ

Jβ(µ, T, γ).

For the analysis of POMDPs, a common approach is to
reformulate the problem as a fully observed MDP, where
the decision maker keeps track of the posterior distribution
of the state Xt given the available history It. In the following
section, we formalize this approach.

A. Reduction to fully observed models using belief states
It is by now a standard result that, for optimality analysis,

any POMDP can be reduced to a completely observable
Markov decision process ([22], [13]), whose states are the
posterior state distributions or beliefs of the observer or the
filter process; that is, the state at time t is

zt := Pr{Xt ∈ · |Y0, . . . , Yt, U0, . . . , Ut−1} ∈ P(X). (3)

We call this equivalent process the filter process. The filter
process has state space Z = P(X) and action space U.
Here, Z is equipped with the Borel σ-algebra generated by
the topology of weak convergence [1]. Then, the transition
probability η of the filter process can be constructed as
follows. If we define the measurable function

F (z, u, y) := Pr{Xt+1 ∈ · |Zt = z, Ut = u, Yt+1 = y}

from P(X)×U×Y to P(X) and use the stochastic kernel
P ( · |z, u) = Pr{Yt+1 ∈ · |Zt = z, Ut = u} from P(X)×U
to Y, we can write η as

η( · |z, u) =

∫
Y

1{F (z,u,y)∈ · }P (dy|z, u). (4)

The one-stage cost function c̃ : P(X)×U → [0,∞) of the
filter process is given by

c̃(z, u) :=

∫
X

c(x, u)z(dx), (5)

which is a Borel measurable function. Hence, the filter
process is a completely observable Markov process with the
components (Z,U, c̃, η).

Even though the belief-MDP reduction approach provides
a powerful analytical tool for the analysis of POMDPs,
computational challenges are formidable: The belief space
Z = P(X) is uncountable even if X were finite, and the
computation of the belief state Pr(Xt ∈ ·|It) is numerically
demanding. Therefore, some approximation of the belief-
MDP is usually needed.

In the following section, we provide an alternative MDP
reduction and present rigorous approximation results that
only make use of a finite history of the information variables
and lead to a finite dimensional implementation for near
optimality.

III. AN ALTERNATIVE FINITE WINDOW BELIEF-MDP
REDUCTION AND ITS APPROXIMATION

A. An alternative finite window belief-MDP reduction
In this section we construct an alternative fully observed

MDP reduction using the predictor from N stages earlier
and the most recent N information variables (that is, mea-
surements and actions). This new construction allows us to
highlight the most recent information variables and compress
the information coming from the past history via the predic-
tor (to be defined below) as a probability measure valued
variable. In what follows, we will sometimes consider the
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case with N = 1 to make the presentation less complicated.
The general case follows from identical steps.

Consider the following state variable at time t:

ẑt = (π−t−N , I
N
t ) (6)

where, for N ≥ 1

π−t−N = Pr(Xt−N ∈ ·|yt−N−1, . . . , y0, ut−N−1, . . . , u0),

INt = {yt, . . . , yt−N , ut−1, . . . , ut−N}

and INt = yt for N = 0 with µ being the prior probability
measure on X0. We will refer to π−t−N as the predictor
at t − N . The state space with this representation is Ẑ =
P(X) × YN+1 × UN where we equip Ẑ with the product
topology where we consider the weak convergence topology
on the P(X) coordinate and the usual (discrete) topologies
on YN+1 ×UN coordinates.

This new state representation can be mapped to the belief
state zt defined in (3). Consider the map ψ : Ẑ → P(X),
for some ẑt = (π−t−N , I

N
t )

ψ(ẑt) = ψ(π−t−N , I
N
t ) = Pπ

−
t−N (Xt ∈ ·|INt )

= Pµ(Xt ∈ ·|yt, . . . , y0, ut−1, . . . , u0) = zt

such that the map ψ acts as a Bayesian update of π−t−N
using INt . Using this map, we can define the stage-wise cost
function and the transition probabilities. Consider the new
cost function ĉ : Ẑ × U → R, using the cost function c̃ of
the belief MDP (defined in (5)) such that

ĉ(ẑt, ut) = ĉ(π−t−N , I
N
t , ut) = c̃(ψ(π−t−N , I

N
t ), ut)

=

∫
X

c(xt, ut)P
π−t−N (dxt|yt, . . . , yt−N , ut−1, . . . , ut−N ).

(7)

Furthermore, we can define the transition probabilities for
N = 1 as follows: for some A ∈ B(Ẑ) such that

A = B × {ŷt−N+1, ût, . . . , ût−N+1}, B ∈ B(P(X))

we write

Pr(ẑt+1 ∈ A|ẑt, . . . , ẑ0, ut, . . . , u0)

= Pr(π−t ∈ B, ŷt+1, ŷt, ût|π−[t−1,0], y[t,0], u[t,0])

= 1{yt,ut=ŷt,ût,G(π−t−1,yt−1,ut−1)∈B}

Pπ
−
t−1(ŷt+1|yt, yt−1, ut, ut−1)

= Pr(π−t ∈ B, ŷt+1, ŷt, ût|π−t−1, yt, yt−1, ut, ut−1)

= Pr(ẑt+1 ∈ A|ẑt, ut) =:

∫
A

η̂(dẑt+1|ẑt, ut).

where the map G is defined as

G(π−t−1, yt−1, ut−1) = Pµ(Xt ∈ ·|yt−1, . . . , y0, ut−1, . . . , u0).

Hence, we have a proper fully observed MDP, with the
cost function ĉ, transition kernel η̂ and the state space Ẑ .

Note that any policy φ : P(X)→ U defined for the belief
MDP, can be extended to the newly defined finite window
belief-MDP using the map ψ, and defining φ̂ := φ◦ψ. Thus,
if an optimal policy can be found for the belief MDP, say
φ∗, the policy φ̂∗ = φ∗◦ψ is an optimal policy for the newly
defined MDP.

We now write the discounted cost optimality equation for
the newly constructed finite window belief MDP.

J∗β(ẑ) = min
u∈U

(
ĉ(ẑ, u) + β

∫
J∗β(ẑ1)η̂(dẑ1|ẑ, u)

)
.

B. Approximation of the finite window belief-MDP

We now approximate the MDP constructed in the previous
section. Consider the following set for a fixed π∗ ∈ P(X)
denoted by ẐNπ∗ :{

π∗, y[0,N ], u[0,N−1] : y[0,N ] ∈ YN+1, u[0,N−1] ∈ UN
}

such that the state at time t is ẑNt = (π∗, INt ). Compared to
the state ẑt = (π−t−N , I

N
t ) defined in (6), this approximate

model uses π∗ as the predictor, no matter what the real
predictor at time t−N is.

The approximate cost function is defined as

ĉ(ẑNt , ut) = ĉ(π∗, INt , ut) = c̃(ψ(π∗, INt ), ut)

=

∫
X

c(xt, ut)P
π∗(dxt|yt, . . . , yt−N , ut−1, . . . , ut−N ).

We define the approximate controlled transition kernel by,
with ẑNt+1 = (π∗, INt+1) and ẑNt = (π∗, INt ),

η̂N (ẑNt+1|ẑNt , ut) = η̂N (π∗, INt+1|π∗, INt , ut)

:= η̂

(
P(X), INt+1|π∗, INt , ut

)
. (8)

Denoting the optimal value function for the approximate
model by JNβ , we can write the following fixed point
equation

JNβ (ẑN ) = min
u∈U

(
ĉ(ẑN , u)

+β
∑

ẑN1 ∈ẐNπ∗

JNβ (ẑN1 )η̂N (ẑN1 |ẑN , u)

)
. (9)

Since we have a finite model in this approximate setup, there
exists an optimal policy φN that satisfies this fixed point
equation. Note that both JNβ and φN are defined on the finite
set ẐNπ∗ . However, we can simply extend them to the set Ẑ by
defining for any ẑ = (π, y1, y0, u0) ∈ Ẑ (here, with N = 1)

J̃Nβ (ẑ) = J̃Nβ (π, y1, y0, u0) := JNβ (π∗, y1, y0, u0)

φ̃N (ẑ) = φ̃N (π, y1, y0, u0) := φN (π∗, y1, y0, u0).

We will later prove that Q-value iterations using finite
window of information variables converge to the Q-values
for the approximate model constructed in this section.

In what follows, we investigate the difference Jβ(ẑ, φ̃N )−
J∗β(ẑ), that is the loss occurring from applying the approx-
imate policy on the original model. Before the result, we
introduce the following definition and notation.

Definition 1. For probability measures µ, ν ∈ P(X), the
total variation metric is given by

‖µ− ν‖TV = sup
f :‖f‖∞≤1

∣∣∣∣∫ f(x)µ(dx)−
∫
f(x)ν(dx)

∣∣∣∣ .
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We now define the following filter stability term which
establishes an insensitivity bound for different initializations
of the filter process

Lt := sup
γ̂∈Γ̂

Eγ̂
π−0

[‖Pπ
−
t (Xt+N ∈ ·|Y[t,t+N ], U[t,t+N−1])

− P π̂(Xt+N ∈ ·|Y[t,t+N ], U[t,t+N−1])‖TV ]. (10)

The expectation is with respect to the realizations of π−t and
Y[t,t+N ], U[t,t+N−1] under the true dynamics of the system
when the prior distribution of x0 is given by π−0 . The proof
of the following result can be found in [6, Appendix C].

Theorem 1.

sup
ẑ∈Ẑ

∣∣∣Jβ(ẑ, φ̃N )− J∗β(ẑ)
∣∣∣ ≤ 2‖c‖∞

(1− β)

∞∑
t=0

βtLt.

where L is defined as in (10).

IV. Q ITERATIONS USING A FINITE HISTORY OF
INFORMATION VARIABLES AND CONVERGENCE

Assume that we start keeping track of the information
variables

INt =

{
{yt, yt−1, . . . , yt−N , ut−1, . . . , ut−N} if N > 0

yt if N = 0.

We will construct the Q-value iteration using these infor-
mation variables. In what follows, we will drop the N
dependence in INt , and we take N = 1 for simplicity of
notation. For these new approximate states, we follow the
usual Q learning algorithm such that for any I ∈ YN+1×UN
and u ∈ U

Qk+1(I, u) = (1− αk(I, u))Qk(I, u)

+ αk(I, u)
(
Ck(I, u) + βmin

v
Qk(Ik1 , v)

)
, (11)

where Ik1 = {Yt+1, yt, . . . , yt−N+1, ut, . . . , ut−N+1}, we
put the k dependence to emphasize that the distribution of
Yt+1 and hence Ik1 are different for every k, the time we hit
{yt, yt−1, . . . , yt−N , ut−1, . . . , ut−N} for the k-th time.

To choose the control actions, we use polices that choose
the control actions randomly and independent of everything
else such that at time t ut = ui, w.p σi for any ui ∈ U with
σi > 0 for all i.

The algorithm differs from the usual Q-value iteration:
(i) The distribution of Ik1 , which is the consecutive N -

window information variable when we hit the (I, u) pair
for the k-th time, is generally different for every k and
the pair (I, u) is not a controlled Markov process. Fur-
thermore, the controlled transitions are time dependent.

(ii) Here, the cost we observe is c(xt, ut) (which is not
a direct function of measurements), where c(xt, ut) de-
pends on (It, ut) pair randomly and in a time-dependent
fashion.

We will observe that if one assumes that the hidden state
process {xt} is positive Harris recurrent and in particular
admits a unique invariant probability measure, say π∗, under
some memoryless randomized exploration policy γ, then the
average of the approximate state transitions converges to

P ∗(It+1|It, ut) := η̂N ((π∗, It+1)|(π∗, It), ut) (12)

with η̂N defined as in (8).
We also have that the sample path averages of the random

cost realizations converge to,

C∗(I, u) = ĉ(π∗, I, u) =

∫
X

c(x, u)Pπ
∗
(dx|I) (13)

where, P ∗(x|I) is the Bayesian update of π∗, using I and
ĉ(π∗, I, u) is defined as in (7).

Now consider the following fixed point equation

Q∗(I, u) = C∗(I, u) + β
∑
I′

P ∗(I ′|I, u) min
v
Q∗(I ′, v)

(14)

where P ∗ is defined in (12) and C∗ is defined in (13).
For the rest of the paper, we will use the following notation

V ∗(I) := min
v∈U

Q∗(I, v), Vt(I) := min
v∈U

Qt(I, v). (15)

We note that π∗, P ∗, and C∗ do not have to be calculated
by the controller. We will show that the algorithm converges
to (14), when the hidden state process is positive Harris
recurrent.

Assumption 1.
1. αt(I, u) = 0 unless (It, ut) = (I, u). Furthermore,

αt(I, u) =
1

1 +
∑t
k=0 1{Ik=I,uk=u}

We note that this means αk(I, u) = 1
k if Ik = I, uk = u,

when k is the instant of the kth visit to (I, u).
2. Under every memoryless policy, say γ, the hidden

state process {Xt} is positive Harris recurrent and in
particular admits a unique invariant measure π∗γ .

3. During the exploration phase every (I, u) pair is visited
infinitely often.

Theorem 2. Under Assumption 1,
i. The algorithm given in (11) converges almost surely to
Q∗ which satisfies (14).

ii. For any policy γN that satisfies Q∗(I, γN (I)) =
minuQ

∗(I, u), if we assume that the controller has
access to at least N + 1 observations and N control
action variables, when it starts acting, we have

Jβ(µ, T, γN )− J∗β(µ, T ) ≤ 2‖c‖∞
(1− β)

∞∑
t=0

βtLt

where Lt is defined in (10).

Proof Sketch. We first prove that the process Qk, determined
by the algorithm in (11), converges almost surely to Q∗. We
define

∆k(I, u) := Qk(I, u)−Q∗(I, u)

Fk(I, u) := Ck(I, u) + βVk(Ik1 )−Q∗(I, u)

F̂k(I, u) := C∗(I, u) + β
∑
I1

Vk(I1)P ∗(I1|I, u)−Q∗(I, u),

where Vk is defined in (15). Then, we can write the following
iteration

∆k+1(I, u) = (1− αk(I, u))∆k(I, u) + αk(I, u)Fk(I, u).
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Now, we write ∆k = δk + wk such that

δk+1(I, u) = (1− αk(I, u))δk(I, u) + αk(I, u)F̂k(I, u)

wk+1(I, u) = (1− αk(I, u))wk(I, u) + αk(I, u)rk(I, u)

where rk := Fk − F̂k = βVk(Ik1 ) −
β
∑
I1
Vk(I1)P ∗(I1|I, u) + Ck(I, u) − C∗(I, u). Next,

we define

r∗k(I, u) =βV ∗(Ik1 )− β
∑
I1

V ∗(I1)P ∗(I1|I, u)

+ Ck(I, u)− C∗(I, u)

We further separate wk = uk + vk such that

uk+1(I, u) = (1− αk(I, u))uk(I, u) + αk(I, u)ek(I, u)

vk+1(I, u) = (1− αk(I, u))vk(I, u) + αk(I, u)r∗k(I, u)

where ek = rk − r∗k.
In [6, Appendix A], it is shown that vk(I, u)→ 0 almost

surely for all (I, u). Now, we go back to the iterations:

δk+1(I, u) = (1− αk(I, u))δk(I, u) + αk(I, u)F̂k(I, u)

uk+1(I, u) = (1− αk(I, u))uk(I, u) + αk(I, u)ek(I, u)

vk+1(I, u) = (1− αk(I, u))vk(I, u) + αk(I, u)r∗k(I, u).

Note that, we want to show ∆k = δk + uk + vk → 0 almost
surely. The following analysis holds for any path that belongs
to the probability one event in which vk(I, u)→ 0. For any
such path and for any given ε > 0, we can find an N <∞
such that ‖vk‖∞ < ε for all k > N . We now focus on the
term δk + uk for k > N :

(δk+1 + uk+1)(I, u) = (1− αk(I, u))(δk + uk)(I, u)

+ αk(I, u)(F̂k + ek)(I, u). (16)

Observe that for k > N , having that vk → 0 almost surely,

(F̂k + ek)(I, u) = (Fk − r∗k)(I, u)

≤ βmax
I,u
|Qk(I, u)−Q∗(I, u)|

= β‖∆k‖∞ ≤ β‖δk + uk‖∞ + βε.

By choosing C < ∞ such that β̂ := β(C + 1)/C < 1, for
‖δk + uk‖∞ > Cε, we can write that β‖δk + uk + ε‖∞ ≤
β̂‖δk + uk‖∞. Now with (16),

(δk+1 + uk+1)(I, u) = (1− αk(I, u))(δk + uk)(I, u)

+ αk(I, u)(F̂k + ek)(I, u)

≤ (1− αk(I, u))(δk + uk)(I, u) + αk(I, u)β̂‖δk + uk‖∞
< ‖δk + uk‖∞

Hence (δk+1 +uk+1)(I, u) clearly converges to 0 for ‖δk +
uk‖∞ > Cε. One can also show that once the process hits
below Cε it always stays there. Thus, taking ε→ 0, we can
conclude that ∆k = δk + uk + vk → 0 almost surely.

For item (ii), notice that (14) coincides with the DCOE
for the approximate belief MDP defined in (9). Hence, using
Theorem 1, we conclude the result for a policy that satisfies
Q∗(I, γN (I)) = minuQ

∗(I, u).

A. Convergence to Near Optimality under Filter Stability
Here, we study the Lt term defined in (10).

Definition 2. [2, Equation 1.16] For a kernel operator K :
S1 → P(S2) (that is a regular conditional probability from
S1 to S2) for standard Borel spaces S1, S2, we define the
Dobrushin coefficient as:

δ(K) = inf

n∑
i=1

min(K(x,Ai),K(y,Ai)) (17)

where the infimum is over all x, y ∈ S1 and all partitions
{Ai}ni=1 of S2.

Example 1. For the following stochastic transition matrix

K =

 1
3

1
3

1
3

0 1
2

1
2

3
4 0 1

4


The Dobrushin coefficient is the minimum over any two rows
where we sum the minimum elements among those rows. For
this example, the first and the second rows give 2

3 , the first
and the third rows give 7

12 and the second and the third rows
give 1

4 . Then the Dobrushin coefficient is 1
4 .

Let δ̃(T ) := infu∈U δ(T (·|·, u)).

Theorem 3. [11, Theorem 3.3] Assume that for µ, ν ∈
P(X), we have µ� ν and that α := (1−δ̃(T ))(2−δ(O)) <
1. Then, for any ρ < 1

α , and for any realizable y[0,t], u[0,t−1]

under µ and under some policy γ, we have

Lt ≤ 2αN (18)

for all t where Lt is defined in (10).

The following result is a direct corollary of Theorem 2
and Theorem 3.

Corollary IV.1 (to Theorem 2 and 3). If we assume: (i)
Assumption 1 holds, (ii) X ⊂ Rm for some m < ∞, (iii)
the transition kernel T (·|x0, u0) admits a density function
f with respect to a measure φ such that T (dx1|x0, u0) =
f(x1, x0, u0)φ(dx1) and f(x1, x0, u0) > 0 for all x1, x0, u0,
(iv) α := (1− δ̃(T ))(2− δ(O)) < 1, then for any policy γN
that satisfies Q∗(I, γN (I)) = minuQ

∗(I, u), we have

|Jβ(µ, T, γN )− J∗β(µ, T )| ≤ 2αN .

V. APPLICATION: REINFORCEMENT LEARNING FOR
CONTINUOUS SPACE MDPS VIA FINITE STATE

APPROXIMATIONS WITH QUANTIZATION AS A POMDP
In this section, we consider a fully observed system with

a continuous state space and construct an approximate Q
learning algorithm by discretizing the state space and using
a finite subset of the state space for the Q iterations. We
assume that X ⊂ Rd is compact, and thus we can choose a
finite subset X̂ = {x1, . . . , xn} such that

max
x∈X

min
x̂∈X̂
|x− x̂| ≤ α(1/n)1/d

for some α > 0. We use a nearest neighbor map ρ : X→ X̂

to choose elements from the finite set X̂ such that at any
time instance t <∞, if the state is xt, we use

x̂t = ρ(xt) := arg min
x̂∈X̂

‖x̂− xt‖
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for the Q learning algorithm. Note that with this map, we
separateX into n subsets {B1, . . . , Bn} such that for xi ∈ X̂
Bi := {x ∈ X : ρ(x) = xi}. Using the map ρ, we construct
the following Q learning algorithm for any (x, u) ∈ X×U

Qk+1(ρ(x), u) = (1− αk(ρ(x), u))Qk(ρ(x), u) (19)

+ αk(ρ(x), u)
(
Ck(ρ(x), u) + βmin

v
Qk(ρ(X1), v)

)
that is for any true value of the state, we use its representative
state from the finite set X̂. To choose the control actions,
we again use randomized memoryless policies with positive
probability for every action.

We now argue that this approximate iteration can be seen
as a special case of the POMDP iteration (11) by considering
the discretization as a quantizer channel. If we consider
the finite set X̂ as the observation space and define the
observation channel as a quantizer such that O(x̂i|x) =
1{x∈Bi}, then the algorithm in (19) is the same algorithm
as in (11) with N = 0.

Thus, we can use the set X̂ to construct the Q learning
algorithm. Using the quantizer channel and Theorem 2 (i)
for N = 0, the algorithm converges to

Q∗(x̂, u) = C∗(x̂, u) + β
∑
x̂1

P ∗(x̂1|x̂, u) min
v
Q∗(x̂1, v)

where, for x̂ ∈ B and x̂1 ∈ B1, if we define π̂∗(A) := π∗(A)
π∗(B)

for all A ⊂ B with π∗ being the invariant measure, the cost
and transitions are defined as

C∗(x̂, u) =

∫
B

c(x, u)π̂∗(dx)

P ∗(x̂1|x̂, u) =

∫
B

T (B1|x, u)π̂∗(dx).

This fixed point equation aligns with the approximate finite
model constructed in [14, Chapter 4]. Thus, we arrive at the
following result, using Theorem 2 and [14, Theorem 4.38]:

Theorem 4. Under Assumption 1, if the transition kernel
T (·|x0, u0) admits a density function f with respect to a
measure φ such that T (dx1|x0, u0) = f(x1, x0, u0)φ(dx1),
f(x1, x0, u0) > 0 for all x1, x0, u0 and f is Lipschitz
continuous in x0 with constant αT and if c(x, u) is Lipschitz
continuous in x with constant αc, then the Q learning
algorithm in (19) converges and for any policy γn that
satisfies Q∗(x̂, γn(x̂)) = minuQ

∗(x̂, u), we have

Jβ(T, γn)− J∗β(T ) ≤ K(α, αc, αT , β)(1/n)1/d

where the constant K(α, αc, αT , β) is defined in [14, Theo-
rem 4.38].

VI. CONCLUDING REMARKS

We studied the convergence of an approximate Q learning
algorithm for POMDPs that uses finite window history vari-
ables. We first established convergence and then provided the
approximate belief-MDP model that the limit fixed equation
corresponds to. Furthermore, we provided bounds on the
difference between the performance of the policy that is
learned via the proposed algorithm and the optimal policy.
In particular, we obtained explicit error bounds between the
resulting policy’s performance and the optimal performance

as a function of the memory length and a coefficient related
to filter stability. We applied these results to fully observed
MDPs with continuous state spaces and established near opti-
mality of learned policies via quantization of the state space,
where the quantization is viewed as a measurement channel
leading to a POMDP and a history of unit window size was
considered. In particular, we showed that Q-learning, with
its convergence and near optimality properties, applies for
continuous space MDPs when the state space is quantized.
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