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Abstract— We consider a noiseless multi-sensor LTI system
where the initial state has a continuous density over a bounded
set and the channels connecting the sensors to the controller are
discrete and noiseless. We study the rate requirements for the
stability of such a system. We show that when the overall system
is stabilizable and detectable, the rate required for asymptotic
stability is at most an arbitrarily small ε > 0 larger than
P

|λi|>1
log

2
(|λi|), where λi’s are the open-loop eigenvalues

of the system. Thus, there is no loss in performance due
to decentralization. We provide a sequential encoding scheme
achieving this rate.

I. INTRODUCTION

A. Problem formulation

We consider a remotely controlled n-dimensional discrete-
time LTI system with the dynamics

xt+1 = Axt + But , t ≥ 0, (1)

where (A, B) is stabilizable, xt is the state, ut is the control,
and the initial state x0 is a random vector with a known
continuous distribution over a compact support.

There are L sensors with the mth one observing ym =
Cmx, 1 ≤ m ≤ L, where ym ∈ Rli (see Fig. 1). We assume
(A, [(C1)T . . . (CL)T ]T ) to be detectable and that A is in
Jordan form A = (Ju, Js), where Ju is a k× k matrix with
unstable eigenvalues and Js is a n− k × n− k matrix with
stable eigenvalues.

In our setup, the communication channels connecting the
sensors to the controller are discrete and noiseless. We denote
the encoder output at sensor i transmitted to controller at time
t by zi

t. The sensors have access to the following:

I isensor,t = {u[0,t−1], z
i
[0,t−1], y

i
t}

The controller is a centralized one, and has access to all the
sensor outputs:

Icontroller,t = {u[0,t−1], z[0,t], x̂[0,t−1]}

We consider fixed-rate quantizers, i.e., the rate is defined to
be the logarithm of the number of symbols transmitted over
the discrete channel. Let Ri, 1 ≤ i ≤ L, be the rates of the
encoding outputs of the sensors. Throughout, we have zi

t =
γi

t(I
i
·,sensor,t) ∈ {1, 2, . . . , 2Ri

}, for some sensor functions
(encoders) γi

t . We seek a solution to the following problem.
Problem: Let RA be defined as

RA = {R1, R2, . . . , RL : ∃u[1,2,...,∞), lim
T→∞

xT = 0; },
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Fig. 1: Multi-sensor system structure

We seek the minimum such rate in the sense that

R∗ = inf
Ri∈RA

L
∑

i=1

Ri,

and an encoding scheme that achieves this rate. �

B. Relevant literature

Control of physically distant systems over communica-
tion channels has recently emerged as a major research
topic. Recently, this analysis has included decentralized and
multi-sensored systems as well. In decentralized systems,
depending on the availability of information transfer among
subsystems, different decentralized observer and controller
designs are possible has been as observed in [1], [2], [3].
However, these references have not considered information
issues. Some representative papers specifically focusing on
information constraints are [9], [6], [4], [11] and [8]. The
first one, [9], studies the remote control problem from a
resource allocation point of view, and obtains achievable
rates via linear matrix inequalities. Reference [7] uses bin-
ning schemes in a decentralized control context. Reference
[11] carries out a sufficient rate analysis in a multi-controller
setting, where the open-loop state dynamics are decoupled,
and multi-controllers act upon different plants with limited
information available to them from various plants. Reference
[6] primarily studies the case where the modes observable
by the sensors are decoupled. Such a restriction reduces the
problem to a number of centralized encoding problems. The



most general case in which the observable modes are not
separable, that is, the observation vectors at each of the
sensors are not sufficient to extract each of the observable
modes themselves, or the case in which the observable modes
at each of the sensors are coupled have not been studied.
Nonetheless, reference [6] comments on a special case where
the assumption on separability does not hold, and studies the
case where the sensors observing the same modes cooperate
while encoding the same mode.

The results closest to ours have been presented in [4] and
[5], which provide a comprehensive treatment of distributed
control with communication constraints and necessary and
sufficient conditions on stability. Indeed, references [4], [5]
are the first works that have argued that the minimum rate re-
quired is the same as the rate required in the centralized case.
This current paper is different from [4], [5] in that we make
the connection with Slepian-Wolf coding theorem precise
since Slepian-Wolf coding is only valid for discrete sources,
and further we explicitly construct encoding schemes using
both geometric and analytic tools as we had done earlier
in [7] and [8]. Reference [8] studies the case when there
is bounded noise in the system, and hence Wyner-Ziv [17]
coding arguments and binning schemes are used to obtain
sufficient rate regions leading to stability. In this paper,
however, there is no noise and this enables us to achieve
a precise result. Our analysis in this paper builds on the
correlation of the encoded data by the sensors who do not
communicate among themselves.

More formally, we prove in this paper that there is no
loss in rate performance due to decentralization, when the
objective is asymptotic stability. We provide a sequential
coding scheme based on the QR decomposition achieving
the rate bound.

C. Preliminaries

A quantizer, Q, for a continuous variable is a mapping
from the real line to a finite or countable set, characterized
by corresponding bins {Bi} and their reconstruction levels
qi, such that ∀i, Q(x) = qi if x ∈ Bi and qi ∈ Bi.

We define a mode of a linear system as the eigenvectors of
the system matrix A. Note that in this definition, some modes
can be coupled since there may be generalized eigenvectors,
and hence may belong to the same Jordan block. The state
space can be expressed as a superposition of modes.

We define om(ym) as the set of unstable modes in the
observable space of sensor m, whose initial states are re-
covered. We let xu denote the unstable modes of the system
and xs denote the stable ones. We say an unstable mode,
i, is separable if, xi

0 is recoverable by at least one sensor;
i.e., xi

0 ∈ om(ym), for some m; the state is separable if
xu

0 =
⋃

1≤m≤L om(ym). We say two modes are decoupled, if
the open loop dynamics of them are independent, otherwise
they are coupled. This classification will be helpful in the
development. Throughout, for two vectors u, v, the notation
u ≤ v denotes componentwise inequality, i.e., ui ≤ vi∀i.

Before proceeding further, let us comment on the effect of
the stable modes. For the stable modes, there does not need

to be any communication, since these modes asymptotically
go to zero, and they are asymptotically ineffective in the
evolution of the observation outputs, since limt→∞ At

sx
s =

0. Thus, we have

lim
t→∞

||Atxu
0 − Atx0||∞ = 0.

Due to space limitations, we omit the technical discussion
played by the stable modes in the following analysis; we
include this in a longer version.

We denote by G = (Ou)−1 the transformation matrix
to recover the unstable modes of the system, such that
x̂u

0 = GY , with the assumption that stable modes are all zero.
We have Y = [(Y 1)T (Y 2)T . . . (Y L)T ]T , where the
upper case letters, such as

Y i =
[

(Ci,u)T (Ci,uAu)T . . . (Ci,u(Au)r−1)T
]T

xu
0

represent the sufficient observation vectors needed for the
recovery of the unstable modes of the initial state, each
provided by the corresponding sensors. Let yi ∈ Rli . Then,
Ci,u : Rk → Rli denotes the observation matrix, mapping
the the unstable subspace to the observation range of sensor
i. We let x[0,t] denote the set of all state vectors up to
time t, {x0, . . . , xt}, and likewise u[0,t] denote the set of all
control vectors up to time t, {u0, . . . , ut}. Superscript i will
designate the i-th component of that sequence, which is not
necessarily scalar, so that, for example, xi

[0,t] = {xi
0, . . . , x

i
t}.

In each case, I i
·,sensor,t will denote the information available

to sensor i at time t.
Since control is assumed to be available to the sensors,

there is no dual effect of control, i.e., control does not
impact the state estimation error. Therefore, to compute the
minimum rate requirements, without any loss of generality,
we assume the system to be control-free. Later on, however,
we will consider control in the final construction and de-
scribe how the state can be designed to converge to zero
asymptotically.

D. Converse bound

As a lower bound to the rate problem introduced, one can
consider a centralized system, with a single observation post.
The lower bound for such a centralized system for asymptotic
stability is given by

∑

|λi|>1

log2(|λi|) + ε,

for some arbitrarily small ε > 0 (see [5] and the references
therein). Since the decentralized encoder has fewer degrees
of freedom for encoding, this rate value is a lower bound for
any achievable decentralized encoding scheme.

The organization of the rest of the paper is as follows. We
first provide a discussion on distributed coding of correlated
sources in section II, first in a broader context and then more
specifically in the context of a linear source. Following this,
we obtain achievable rates and constructions for the multi-
sensor case in section III. We discuss the multi-controller
setup in section IV. The paper ends with the concluding
remarks of section V.



II. CODING FOR CORRELATED SOURCES

A. Decentralized coding for correlated sources: Slepian-
Wolf and Wyner-Ziv coding theories

Let X and Y be two correlated discrete-valued random
variables. Slepian and Wolf [15] showed that, to be able to
perfectly decode both signals (so that the estimation error
is zero), the achievable rate region is: {Rx, Ry : Rx ≥
H(X |Y ), RY ≥ H(Y |X), Rx + Ry ≥ H(X, Y )}. Thus
there is no loss in encoding separately, if it is desired to
minimize the sum of the rates. This result extends to more
than two sources as well. Wyner and Ziv [17] studied the case
where the reconstruction is not perfect. Their analysis has
been extended in the literature for multi-terminal encoding
systems (see for example [13], [20]). Wyner [16] extended
the analysis to continuous sources. In general, when the
recovery is not perfect, that is the distortion is non-zero, there
is a strict rate loss in the Wyner-Ziv problem as opposed
to the Slepian-Wolf problem. However, when the distortion
goes to zero, then the rate loss of distributed coding is zero
[18] even for the continuous alphabet, smooth sources. Thus,
there exists a Wyner-Ziv coder which is as good as the
best one which has perfect access to the correlated random
variable.

For any finite number of sensors, the achievable rate
region in the Slepian-Wolf setting is precisely known. In a
direct application of the Slepian-Wolf coding theorem to our
problem, however, there is a technical difficulty that needs
to be overcome. In our analysis, we have multiple, possibly
more than two, sensors, and the source to be encoded has
a continuous distribution, which eliminates a direct use of
Slepian-Wolf coding. We consider in this paper, however, the
case where the estimation error converges to zero. Therefore,
if the continuous source can be transformed to a discrete
source as a result of fine quantization, one can carry on the
analysis with discrete sources. Furthermore, since we assume
our source has a compact support, such a transformation is
not difficult; using high-rate uniform quantization ensures a
smooth transformation, that will be made precise in the next
section.

We now illustrate distributed coding gain, with an example
in a linear systems context [8]. This illustration will be
helpful in the analysis of the next section as well. A typical
evolution in a linear system starting from the unit box is
given in the following figures. At each stage the sensors have
access to the uncertainty polygon that they are transmitting
(see Figure 2). Thus, each sensor is capable of considering
the support sizes of the errors at all the controllers, and this
can be exploited in reducing the data rates (Figs. 3 and 4).

In the following, we study different cases.
1) Case 1: Separable, decoupled modes: The unstable

modes, om(ym) that are observable by sensor m satisfies
⋃

m om(ym) = xu, where xu denotes the unstable modes,
and om(ym) are decoupled. The unstable modes of the initial
state om(ym) can be recovered in Tm = pm stages, where
pm is the dimension of the unstable subspace observed by
sensor m. Let T := max1≤m≤L{Tm}. All the observable
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Fig. 2: The symbols to be encoded are correlated.
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Fig. 3: If the sensors do not collaborate then each of their
corresponding sensors will send information for 7 symbols.

modes will be recovered by time T .
This case arises in a system of the following type:

A =

[

2 0
0 1

]

,

y1 = [1 0]x; y2 = [0 1]x.

Since any of the observable sets is decoupled from the rest,
the problem is one of a number of independent centralized
encoding problems; each system can be assumed to be
centralized within itself and the optimal schemes can be
computed using known results in the literature. This case
has been studied in [6].
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Fig. 4: For any level that sensor X has to send, there are only 4

levels, and not 7, that sensor Y needs to send. Thus there is a gain
in encoding.



2) Case 2: Coupled, separable modes: In this scheme, as
was in case 1, we also have

⋃

m om(ym) = xu, where xu

denotes the unstable modes, but here the modes are coupled.
Thus, after some time T ≤ n, all sensors have access to

what they need to transmit. The only case in which coupling
might occur is due to the Jordan form. Such a case arises in
a system of the following type:

A =

[

2 1
0 2

]

,

y1 = [1 0]x; y2 = [0 1]x.

Suppose we encode each of the modes with Ri bits
per stage. Since the growth in the off-diagonal terms is
linear in time, stability is characterized by the eigenvalues
of each of the modes. Therefore the rate needed is R =
∑

|λi|>1 log2(|λi|) + ε, for some arbitrarily small ε.
3) Case 3: Inseparable modes: This is the case where

the sensors can not recover the modes themselves, and the
controller needs a joint decoding to observe the output. Such
an example would be the following.

A =





2 1 0
0 2 0
0 0 2



 ,

y1 = [1 0 0]x; y2 = [0 1 1]x.

Note that neither of the pairs (A, C1), (A, C2) is de-
tectable. We study case 3 in the remainder of the paper, for
this is the most general case.

III. STABILIZING RATES AND RATE LOSS

Since the initial condition has a continuous density func-
tion with a compact support, we can use the Lemma 3.1
of [12] or a special case of an argument in [19] which
would reduce to the following: Let an n−dimensional vector
random variable X have a finite differential entropy and have
a continuous distribution function over a compact support
set. Let X be quantized uniformly with n-dimensional unit
cubes, with bin sizes δ. Then the following relationship holds
between the entropy of the quantized state and the entropy
of the state:

lim
δ→0

(

H(Q(X)) + n log2(δ)

)

= H(X).

In view of this, we will also have

lim
δ→0

(

H(Q(AX)) + n log2(δ)

)

= H(AX).

Hence, in the fine quantization limit,

lim
δ→0

(

H(Q(AX)) − H(Q(X))

)

= log2(|A|)

Thus the additive evolution of the entropy is not lost due
to fine quantization. As t becomes large, for a sufficiently
small δ0, and a small ε, we will have

lim
t→∞

1/t|H(Q(AtX)) − (H(AtX) − n log2(δ0) + ε)| = 0.

Thus, using continuous sources which are finely quantized,
we can study discrete valued sources without affecting the
linear evolution.

A. Two sensor case

Define

RA = {R1, R2 : ∃u[1,2,...,∞), lim
T→∞

xT = 0; }.

Rloss = inf
RA

2
∑

1

Ri −
∑

|λi|>1

(log2(|λi|)).

Theorem 3.1: For the decentralized system (1) with two
sensors the rate loss is zero. Thus there is no loss of
optimality in separate encoding by sensors.

Proof: Suppose that x0 = G[y1T y2T ]T . Then, at
time t, we have AtG[y1T y2T ]T . Here we assume the
y vectors to be discrete valued. In the Slepian-Wolf
coding, H(y2, H(AtG[y1 y2]T |y2) is a corner point of
the achievable rate region. But we know that H(y1) +
H(AtG[y1 y2]T |y1) = H(AT G[y1 y2]T ). Let K be the
differential entropy of the unquantized state. Thus, using the
arguments in [12], the entropy satisfies:

lim
t→∞

1/t(H(Atx0))

= lim
t→∞

1/t(log2(|A|) + log2(|G|) + K − lim
δ→0

2 log(δ))

= lim
t→∞

1/t(log2(|A|) + log2(|G|) + K + 2 log(t))

≤ log2(|A|) + ε (2)

for some arbitrary ε > 0. Note that, here the speed of decay
of δ to zero can be picked to be slower than the speed of
decay of 1/t. Thus, the rate

∑2
1 log2(|λi|) + ε for some

arbitrarily small ε > 0 is sufficient. �
A Geometric Proof We now provide a geometric proof.

The proof is for the case when the modes are orthogonal,
but it can be extended to the general case. Consider Fig. 5.
We observe that the evolution is parallel to the eigenvectors
(in the coordinate system defined by the observation vector).
As we observed in Fig. 4, the lengths of the strips h1 and h2

are what determine the number of bins to be encoded. Using
a similar argument now for infinitesimal widths in the bins
in either modes, we need to encode h1 and h2.

We will prove that limt→∞ h1h2/|λ1λ2|
t = η, where η is

a constant. Suppose that at time t = 0, the lengths of both
of the diagonals are 1. Consider the angles θ and α. Note
that, tan(α) = (|λ2|/|λ1|)

t . We have,

h1 =
√

|λ2t
1 + λ2t

2 |(sin(θ + α) − cos(θ + α) tan(θ − α))

h2 = |λt
1| cos(θ)

h1h2 =
√

λ2t
1 + λ2t

2 (λt
1)

(

cos(θ)/ cos(θ − α)

)

.

(

sin(θ + α) cos(θ − α) − cos(θ + α) sin(θ − α)

)

(3)
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Fig. 5: ~AC and ~DB are the orthogonal scaled eigenvectors. For
a given value of y1, the uncertainty is within a strip of length
h1 = | ~BF |. Likewise, for any given y2 value, the uncertainty is
within an interval of h2 = | ~GH|. The product of h1 and h2 is a
scalar multiple of the length of the eigenvectors for small α.

After a few steps involving trigonometric identities, we
obtain:

h1h2 =
2(|λ1|

t|λ2|
t) cos(θ)

cos(θ − α)/ cos(α).

Suppose λ2 < λ1. Then, we have limt→∞ α = 0. Since

lim
α→0

cos(θ − α)/ cos(α) = 1,

and θ is a constant, we have limt→∞ h1h2 = 2|λ1|
t|λ2|

t.
Thus, we have η = 2. The only case not studied above is
when λ1 = λ2. In this case the polyhedron will be a square
and simple geometric analysis shows that η = 2 holds in this
case as well. �

B. Multi-sensor case

For the general multi-sensor case, we will once again
consider the continuous sources to be masses of infinitesimal
hyper-cubes. Therefore, multi-source Slepian-Wolf coding
would be applicable. We state the main theorem of the paper.

Theorem 3.2: Define

RA = {R1, R2, . . . , RL : ∃u[1,∞); lim
T→∞

xT = 0},

Rloss := inf
RA

∑

i

Ri −
∑

|λi|>1

(log2(|λi|)).

For the decentralized system (1), the rate loss is zero. Thus
there is no loss in performance due to separate encoding by
sensors.

Proof: Suppose x0 = G[y1 y2 . . . yL]T , where G is
the transformation matrix as introduced earlier.

We apply Slepian-Wolf Coding theorem for L sources
([14], pg. 415), for which the corner points of the convex
achievable rate region are well known. For the extension to
multi-sensor case, we will use the QR decomposition. For
any real-matrix V , there exists an upper triangular matrix
R and an orthonormal matrix Q such that, V G = QR.
In our case, we have AtG = QR. Note that with such a
transformation the eigenvalues are not necessarily preserved,

but since |AtG| = |A|t|G| = |Q||R| = |R|, the determinant
of AtG is identical to that of the matrix R. Thus, Q−1xt =
RY . Hence, we can achieve the following corner point in
the Slepian-Wolf achievable rate region:

(H(RL,LY L),

H(RL−1,L−1Y
L−1 + RL−1,LY L|Y L), . . . ,

H(R1,1Y
1 + R1,2Y

2 + · · · + R1,LY L|Y 1, . . . , Y L−1))

Note that here the sum rate equals H(RY ). Since Q is
orthonormal, the multiplication by Q does not alter the
entropy. We thus have,

H(Ry) = t log2(|R|) + H(Y ).

Since this equals to t log2(|A|) + log2(|G|) + H(Y L
1 ), and

H(Y L
1 ) = lim

δ→0
K − k log2(δ),

where K is the finite differential entropy of the unquantized
vector and k is the dimension on Y L

1 , we have

lim
t→∞

1/t{t log2(|A|) + log2(|G|) + H(Y L
1 )}

= lim
t→∞

1/t lim
δ→0

{t log2(|A|) + log2(|G|) + K − k log2(δ)}

Since the goal is asymptotic stability in the sense that
limt→∞ δ = 0, the speed of convergence of the bin size
can be picked to satisfy the following:

lim
t→∞

lim
δ→0

1/t{t log2(|A|) + log2(|G|) + K − k log2(δ)}

= lim
t→∞

1/t{t log2(|A|) + log2(|G|) + K + k log2(t)}, (4)

which is arbitrarily close to log2(|A|).
Construction:
We first define

Rt := 1/t{t log2(|A|) + log2(|G|) + K + k log2(t)}.

Let the target time for first series of encodings be Tt > 0.
From the analysis above, for any ε > 0 and δ > 0, ∃
t = Tt > 1 such that Rt is less than log2(|A|) + ε.
Pick δ0 = ||x0 − x̂0||∞, where x̂0 is the mid-point of the
uncertainty region (bin) where the initial state resides. Let
δ < δ0 and pick an arbitrarily small ε. Find an appropriate
t = Tt such that the above holds. Now, let AtG = QR
as above. Let RY = v, where v is a vector with the same
dimension as Y . Note that the corner point above is now
known to be achievable from the analytical analysis above.
Our construction builds on this corner point whose sum-rate
achieves the entropy bound. First, the Lth sensor encodes
vL. Given vL, the controller can extract Y L through the
following relation:

Y L = R−1
L,LvL.

Then the L − 1th sensor encodes vL−1 conditioned on the
value of Y L (as was done in the two sensor case). Given
this value, Y L−1 is recovered by the controller:

Y L−1 = R−1
L−1,L−1(v

L−1 − RL−1,LY L).



Thus, all vm, m ≥ 1, values are encoded by the corre-
sponding sensors conditioned on the values of Y i for all
i > m.

At the controller, Y m values are recoverable, given vm

and Y k, k > m:

Y m = R−1
m,m(vm −

L
∑

j>m

Rm,jY
j).

This recovery is possible due to the upper diagonal structure
of the matrix R.

Such a sequential decoding lets us achieve the Slepian-
Wolf bound. The rate needed for this scheme is given by
the diagonal terms of the matrix R. Thus at the end of Tt

seconds we have obtained a smaller uncertainty region.
Now apply the same scheme starting from time t =

Tt + 1 until t = 2Tt, replacing δ0 with δ. Such a recursion
will ensure that δ values are decreasing geometrically and
asymptotic stability will be obtained. The rate needed is
log2(|A|) + ε, where ε > 0 is arbitrarily small. Note that
this is identical to the condition in the centralized case, and
hence, this rate is both necessary and sufficient; and thus the
bound is tight.

The controller uses its received data, and takes the unstable
modes in its estimate to zero in at most r time stages (this is
possible due to the controllability assumption for the unstable
modes)

ukTt
= f(x̂kTt

),

where x̂ is the estimate of the state, so that at times kTt, k ≥
0, the state uncertainty region gets closer to the origin, and
thus limt→∞ xt = 0. �

IV. MULTI-CONTROL SYSTEMS

The analysis in the multi-sensor case can be extended to
multi-controller systems. As long as there is a centralized
decoder, it tuns out that the same rate is necessary and
sufficient for stabilizability, since in the final analysis what
matters is the availability of observer information. However,
the union of the modes in the system that are controllable
and observable has to span the entire unstable space for
controllability; in other words for each unstable mode, there
has to be at least one subset of observer and controllers
that can jointly detect and stabilize the modes. The proof
again follows the insight given by the Slepian-Wolf coding
theorem, with the assumption that the plant can jointly
decode the received messages.

V. CONCLUDING REMARKS

In this paper, we showed that there is no rate loss due to
sensors’ partial access to the source; furthermore there exists
a coding scheme achieving a rate of

∑

|λi|≥1 log2 |λi| + ε,
where ε is arbitrarily small.

The reason there is no rate-loss is because the recovery is
perfect. If there were noise in the system, then the recovery
would not necessarily be perfect and there would be a strict
rate loss unless the decentralized sensors observe decoupled

plants. The case where the channels are noisy is currently un-
der study. We note that distributed coding through Gaussian
channels has extensively been studied in the communications
literature (see [20]), in the context of what is also known
as the Gaussian CEO (Chief Executive Officer) problem.
However, the issues with regard to feedback and control
have not been investigated, and remain as topics for future
research.
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[12] S. Yüksel and T. Başar, “Minimum rate coding for state estimation
over noiseless channels,” submitted to IEEE Trans. Automatic Control,
2004 (currently under review).

[13] T. Berger, “Multiterminal source coding”, in Lecture notes presented
at the 1977 CISM Summer School, Udine, Italy, July 1977.

[14] T. M. Cover and J. A. Thomas, Elements of Information Theory,
Wiley, NY 1991.

[15] J.D. Slepian and J. K. Wolf, “Noiseless coding of correlated informa-
tion sources,” IEEE Trans. Inform. Theory, 19:471–480, July 1973

[16] A. D. Wyner, “The Rate-Distortion Function for Source Coding with
Side Information at the Decoder II: General Sources,” Information
and Control, 38:60-80, July 1978.

[17] A. D. Wyner and J. Ziv, “The rate-distortion function for source
coding with side information at the decoder,” IEEE Trans. Inform.
Theory, 22(1):1–11, Jan. 1976.

[18] R. Zamir “The Rate Loss in the Wyner-Ziv Problem,” IEEE Trans.
Inform. Theory, 42: 2073-2084, Nov 1996

[19] I. Csiszar, “Generalized entropy and quantization problems” in Trans.
Sixth Prague Conf. on Inform. Theory, Statistical Decision Functions,
Random Processes, Prague, pp. 29-35, Akademia, 1973.

[20] P. Viswanath, “Sum Rate of a Class of Gaussian Multiterminal Source
Coding Problems,” , in Advances in Network Information Theory,
DIMACS, American Mathematical Society, pp. 43-60, RI, 2004.


