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Abstract— This paper studies tracking of a reference path
in a networked control system where the controller consists of
a central decision maker and an on-site controller, which are
connected through a discrete noiseless channel. The reference
path is available noncausally to the central decision maker
and the on-site controller has access to noisy observations
from the plant and the reference information provided by the
central decision maker. For a quadratic optimization objective,
we provide the optimal control using dynamic programming
and show that the optimal controller can be separated into
a noncausal feedforward term (generated by the central deci-
sion maker) plus a feedback term (generated by the on-site
controller) which has causal access to the controls applied
without any loss of performance. We show that the feedforward
control is the solution of a deterministic quadratic program,
i.e., certainty equivalence holds. We later study the problem
of transmission of the feedforward controls to the on-site
controller over a discrete noiseless channel. We formulate and
solve an optimization problem for the optimal time-varying
and time invariant uniform quantization of the feedforward
control signals sent by the central decision maker to the on-site
controller over a communication network.

I. INTRODUCTION

A. Problem Definition

We consider a discrete-time linear system with the follow-
ing dynamics.

xP,t+1 = AP xP,t + BP ut + wt, zP,t = CP xP,t,

where (A, B) is controllable and (A, C) is observable, wt is
an i.i.d. Gaussian noise process, with covariance matrix Nw

and zP,t is scalar. The path to be followed is given by
{zR,t, 0 ≤ t ≤ T}.

The tracking error z is equal to:
zt = zP,t − zR,t.

The control has the observation
yC,t = zP,t + vt,

where vt is a zero-mean Gaussian observation noise with
covariance Nv. The controller function, µ(.) has access to
the information vector It,

ut = µ(It),

where It consists of the initial state, reference trajectory,
received observations, and the past controls (Fig. 1).
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Fig. 1: Basic system structure1 .
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Fig. 2: Separation of the control as feedforward and feedback
terms, x̂ denotes the estimation output.

It = {x0; zR,0, zR,1, . . . , zR,T ; zP,0 + v0, zP,1 + v1

, . . . , zP,t + vt; u0, u1, . . . , ut−1} (1)

Given the restrictions on the information vector for all the
control terms, we will be considering the minimization of
the following cost measure.

J0 = min
uT
0

:=u0,u1,...,uT

T
∑

t=0

E[(zt)
2 + uT

t Rut]. (2)

We will express the optimal control as a superposition of
feedforward and feedback terms (Fig. 2), where feedforward
term is defined as the conditional expectation uff,t :=
E[ut|I0].

Later in the paper we will study the optimal quantization
of feedforward control terms over a channel(Fig. 3) such as
the widely used CAN (Controller Area Network). Let zq be
the additional deterministic error due to the quantization of
the feedforward control signals. We seek the solution to the
following optimization problem:

min
Q

E[||zq ||
2
2],
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Fig. 3: Transmission of the feedforward control over the
network.

subject to
T

∑

i=1

Ri ≤ K.

where Q is the set of uniform scalar quantizers, ||.||2 denotes
the Euclidean (l2) norm, Ri is the rate per control signal
and K is the total rate constraint imposed by the network.
Throughout, fixed-rate encoding is used and thus, Ri =
log2(Ki), where Ki is the number of quantization levels.

B. Relevant Literature

There is an extensive literature on tracking and feedfor-
ward control design problems. For a general control objec-
tive, feedforward control is an effective design scheme if the
disturbances are measurable in advance, whereas feedback
control acts on measured outputs of a system [2], [3]. Such
design tools can also be applied in the tracking problem.
The performance of a tracking controller depends on the
constraints and the information structure under which the
controls are generated; such as the availability of causal
and non-causal information on the reference path and distur-
bances, the assumptions on system and observation noises,
and communication constraints in case the control is remote.
Some of the relevant studies on tracking control design
are the following. References [2], [3] study the necessary
and sufficient conditions on the existence of feedforward
control for asymptotic tracking, stability and invertibility.
Reference [7] has studied the H∞ optimal controller for a
nonlinear plant linearized around the operating points fed by
a deterministic control. Reference [6] studies the problem
of H∞ tracking with both causal and noncausal reference
signals being available and it is shown that the best causal
controller is as good as the best noncausal H∞ controller
if the system is minimum phase. Reference [10] provides
a polynomial matrix solution to the optimal feedback and
feedforward control when a measurable disturbance acts on
the system. Reference [8] studies the design of the optimal
feedforward tracking controller design using a frequency
domain approach.

Our paper is different from the above in that, the reference
is available noncausally to the controller, and the system is
noisy. Furthermore, the reference is not necessarily the output
of a linear plant, for instance it can be the output of a non-
linear computerized scheduler/planner. We provide a finite
horizon time-domain approach using dynamic programming.
We further provide a new design scheme for networked
control systems, based on the feedforward and feedback

separation of the control. Such a separation is required,
since in practical control systems, the remote controller can
be assumed to be computationally incapable of performing
complex tasks. In the proposed design, the feedback term is
generated by the remote controller which has noisy observa-
tions from the plant, and the feedforward term is provided by
a central decision maker which has the noncausally available
trajectory information. We first provide the solution to the
optimal controller and then separate the optimal solution.
The feedforward control needs to be transmitted to the plant,
however; an encoding problem for which is also posed and
solved.

Networked control systems have been a major research
area in the past few years. In this paper we also provide an
optimization problem for the encoding of the feedforward
control signals. In the encoding of the controls, however,
we will restrict our analysis to scalar quantizers, since the
computational capability of the plant (the decoder in this
case) is assumed to be limited.

We start off with the the optimal control evaluation and
feedback-feedforward separation through dynamic program-
ming in section II. We then study the encoding problem in
section III, followed by simulations in section IV and end
with the concluding remarks in section V.

II. OPTIMAL CONTROL AND FEEDBACK-FEEDFORWARD
SEPARATION

In this section we provide the solution to the optimal
control problem and show that it is separable into two
components without any loss of optimality. We first provide
a definition:

Definition 2.1: Suppose there is no noise in the system,
neither in the process nor in the observations and that the
optimal control is given by

uk = Φk(xk).

Certainty Equivalence holds if the closed loop optimal con-
trol has the same form as the deterministic optimal control
with the state being replaced by its estimate.

uCE
k = Φk(x̂k)

We also note that certainty equivalence implies the weaker
notion of separation of estimation and control. We now state
the main results of this section.

Theorem 2.1: For the minimization of the quadratic cost
problem (2) introduced above, the optimal control for any
time 0 ≤ t ≤ T − 1 is given by

ut = −l−1
t (mtE[xP,t|It] − ht(z

T
R,0)),

where

lt = (R +

T
∑

τ=t+1

BT Aτ−t−1T mT
τ KτmτAτ−t−1B

+

T
∑

τ=t+1

(CP Aτ−t−1
P BP )T (CP Aτ−t−1

P BP )) (3)



mt =

T
∑

τ=t+1

BT Aτ−t−1T mT
τ KτmτAτ−t

+

T
∑

τ=t+1

(CP Aτ−t−1
P BP )T (CP Aτ−t

P ), (4)

ht =

T
∑

τ=t+1

BT Aτ−t−1T mT
τ Kτhτ +

T−1
∑

τ=t+1

(CP Aτ−t−1
P BP )T zR,τ , (5)

and

Kt = −l−T
t , (6)

with
KT = 0.

Remark: As is observed in (5), there is a strict dependency
on the future trajectory values, since CP Ak

P BP cannot be
zero ∀k ≥ 1. This follows from the assumptions on the
plant being observable and controllable [9]. Thus, non-causal
access to the reference path improves the performance. �

Theorem 2.2: The optimal control is separable into a
feedforward control and a feedback control with causal
access to the previously applied controls without any loss
of optimality. The feedback control is given by

ufb,t = ηt[E[xP,t|It] − E[xP,t|I0]] (7)

where
ηt = −l−1

t mt.

The optimal feedforward control is

uff,t = E[ut|I0]

Furthermore, the optimal feedforward control, is the op-
timal deterministic l2 minimizing controller (i.e., certainty
equivalence control). The optimal feedforward controller
will be of one degree of freedom and only depend on the
reference path values.

We devote the rest of this section to the proofs of the
theorems.

A. Proof of Theorem 2.1

We define

Jτ (Iτ ) = min
uτ

{

T
∑

t=τ

E[(zt)
2 + uT Ru + Jτ+1|I(τ)]}.

By dynamic programming at time T − 1 we will have

JT−1(IT−1) = min
uT−1

E[(CP xP,T−1 − zR,T−1)
2

+uT
T−1RuT−1 + (CP AP xP,T−1 + CP BP uT−1

+CP wT−1 − zR,T )2|IT−1, uT−1]

The first term on the right hand side is not a function of
the controller. Therefore the controller minimizes

E[uT
T−1RuT−1 + (CP AP xP,T−1 + CP BP uT−1

+CP wT−1 − zR,T )2|IT−1, uT−1].

(8)

Taking the gradient with respect to uT−1, we obtain

E[2RuT−1 + 2(CP BP )T (CP BP uT−1 + CP AP xP,T−1

+CP wT−1 − zR,T )|IT−1]

Thus, we compute the optimal control as:

uT−1 = −(R + (CP BP )T CP BP )−1(CP BP )T

.E[CP AP xP,T−1 + CP wT−1 − zR,T |IT−1]

The expectation depends on the information vector avail-
able to the controller at time T − 1. We will discuss the
estimation problem later.

Given rT
0 , then zR,T is deterministic (for the reference

path is noncausally available); therefore, one can take it out
of the expectation:

uT−1 = (R + (CP BP )T CP BP )−1(CP BP )T zR,T

−(R + (CP BP )T CP BP )−1(CP BP )T

.E[CP AP xP,T−1 + CP wT−1|IT−1]

Since wT−1 is independent of IT−1, we have uT−1 as

(R + (CP BP )T CP BP )−1(CP BP )T (zR,T ) − (R +

(CP BP )T CP BP )−1(CP BP )T CP AP E[xP,T−1|IT−1]

or

uT−1 = −(lT−1)
−1(mT−1E[xP,T−1|IT−1] − hT−1),

where

lT−1 = (R + (CP BP )T CP BP ),

mT−1 = (CP BP )T CP AP ,

and
hT−1 = (CP BP )T zR,T

Note that the optimal policy is an affine function of the
conditional expectation. We have

JT−1(IT−1) = (CP xP,T−1 − zR,T−1)
2

+((CP )′CP E[wT−1w
′
T−1]) + (CP AP xP,T−1 − zR,T )2

+E[(hT−1(z
T
R,0) − mT−1xP,T−1)

T KT−1

.(hT−1(z
T
R,0) − mT−1xP,T−1)]

+E[(xP,T−1 − E[xP,T−1|IT−1])
T PT−1

.(xP,T−1 − E[xP,T−1|IT−1])|IT−1],

where
KT−1 = −l−1

T−1,

and
PT−1 = mT−1l

−1
T−1mT−1.



Thus the cost at time T −1 can be expressed as the cost due
to the estimation and the control cost. Now the DP equation
for time T − 2 is

JT−2(IT−2) = min
uT−2

E[(CP xP,T−2 − CRxR,T−2)
2

+uT
T−2RuT−2 + JT−1(IT−1)]

A control does not have a dual effect ([1], [5]) if the
state estimation error process is independent of the applied
control. In our case, we note that there is no dual effect,
for the estimation error at time T − 1 is not a function of
the control applied at time T − 2. The controller has access
to the control received by the plant, and since that control
is additive, the state estimation error is not affected by the
control policy and is merely a function of the disturbance
processes. Expressing JT−1 as a function of uT−2, we
obtain:

JT−2(IT−2) = min
uT−2

{(CP xP,T−2 − CRxR,T−2)
2

+uT
T−2RuT−2 + (CP xP,T−1 − zR,T−1)

2

+(CP AP xP,T−1 − zR,T )2 + E[wT
T−1C

T
P CP w′

T−1]

+E[(hT−1(z
T
R,0) − mT−1xP,T−1)

T

.KT−1(hT−1(z
T
R,0) − mT−1xP,T−1)]

+E[(xP,T−1 − E[xP,T−1|IT−1])
T PT−1

.(xP,T−1 − E[xP,T−1|IT−1])|IT−1],

One can exclude the last term (the state estimation error
component) from the minimization with respect to uT−2, as
there is no dual effect of the control, i.e. xt − E{xt|It} is
not a function of the control signal. Thus uT−2 minimizes:

E[uT
T−2RuT−2 + (CP xP,T−1 − zR,T−1)

2

+(CP AP xP,T−1 − zR,T )2 + (hT−1(z
T
R,0)

−mT−1xP,T−1)
T KT−1(hT−1(z

T
R,0)

−mT−1xP,T−1)|IT−2]

Using xP,T−1 = AP xP,T−2 + BP uT−2 + wT−2, we obtain:

E[uT
T−2RuT−2

+(CP [AP xP,T−2 + BP uT−2 + wT−2] − zR,T−1)
2

+(CP [A2
P xP,T−2 + AP BP uT−2 + AP wT−2]

−zR,T )2 + (hT−1(z
T
R,0) − mT−1[AP xP,T−2

+BP uT−2 + wT−2])
T KT−1(hT−1(z

T
R,0)

−mT−1[AP xP,T−2 + BP uT−2 + wT−2])|IT−2]

Again taking the gradient and setting it to zero we will obtain
the optimal control.

uT−2 = −l−1
T−2(E[(mT−2xP,T−2 − hT−2(z

T
R,0))|IT−2], (9)

where

lT−2 = (R + BT
P (CT

P CP + (CP AP )T CP AP )BP

+(mT−1BP )T KT−1(mT−1BP ))

mT−2 = (CP BP )T CP AP + BT
P (CP AP )T CP AP AP

+(mT−1BP )T KT−1AP

hT−2 = (CP BP )T zR,T−1 + (CP AP BP )T zR,T

+(mT−1B)′KT−1hT−1

Defining
NT−2 = l−1

T−2,

we can write the expectation as the difference between the
state and the estimation error. We thus obtain:

[mT−2xP,T−2 − hT−2(z
T
R,0)]

T KT−2

.[mT−2xP,T−2 − hT−2(z
T
R,0)]

+(xP,T−2 − E[xP,T−2])
T PT−2(xP,T−2

−E[xP,T−2]) + (CP (AP xP,T−2) − CRxR,T−1)
2

+(hT−1(z
T
R,0) − CP AP (AP xP,T−2))

T KT−1

.(hT−1(z
T
R,0) − CP AP (AP xP,T−2))|IT−2]

+E[wT
T−2[(mT−1)

T KT−1(mT−1) + CT
P CP ]wT−2]

+E[wT
T−1C

T
P CP wT−1] + E[(xP,T−1

−E[xP,T−1|IT−1])
T

.PT−1(xP,T−1 − E[xP,T−1|IT−1])|IT−1],

with,
KT−2 = −NT−2

PT−2 = mT
T−2NT−2mT−2.

Thus, one can obtain recursions for any time t.

Jt = [mtxP,t − ht(z
T
R,0)]

T Kt.[mtxP,t − ht(z
T
R,0)

+(xP,t − E[xP,t])
T Pt(xP,t − E[xP,t])

+
T

∑

τ=t+1

[mτAτ−t
P xP,t − hτ (zT

R,0)]
T Kτ

.[mτAτ−t
P xP,t − hτ (zT

R,0)]

+

T
∑

τ=t

(zR,τ − CP Aτ−t
P xP,t)

T (zR,τ − CP Aτ−t
P xP,t)

T
∑

τ=t

E[wT
τ ((mτAτ−t

P )T KτmτAτ−t
P

+[CP Aτ−t
P ]T [CP Aτ−t

P ]wτ ]

+
T

∑

τ=t+1

E[(xP,τ − E[xP,τ |Iτ ])T Pτ

.(xP,τ − E[xP,τ |Iτ ])|Iτ ]. (10)

The recursions for the control terms follow. �
Remark The expected cost imports terms from the future.
We also note that, the estimation error strictly increases the
cost of the system, in an additive way. �



B. Proof of Theorem 2.2

Rewriting the optimal control ut as

ut = αtβtE[xP,t|It] + αtht(z
T
R,0)) (11)

where
αt = l−1

t

and
βt = −mt,

we can write the control as

ut = (E[ut|I0]) + (ut − E[ut|I0])

which will lead to the feedforward and the feedback terms
as follows:

uff,t = E[ut|I0]

and
ufb,t = ut − E[ut|I0].

In this case, we will have

E[ut|I0] = αtβtE[E[xP,t|It]|I0]

+αtht(z
T
R,0))] (12)

To compute the expectation we have, we provide a recur-
sion for the state evolution:

xP,t+1 = AP xP,t + BP (αtβtE[xP,t] + αtht(z
T
R,0))) + wt,

which can be written as:

xP,t+1 = (AP + BP αtβt)xP,t − BP (αtβt)

(xP,t − E[xP,t]) + BP αtht(z
T
R,0))) + wt,

Thus, the state at some time k can be expressed as:

xP,k+1 = (

k
∏

t=0

(AP + BP αtβt)xP,0

−

k
∑

t=0

{

k
∏

t=l

BP (AP + BP αtβt)}(αlβl)(xP,l − E[xP,l])

+

k
∑

t=0

{

k
∏

t=l

(AP + BP αtβt)}BP αlhl(z
T
R,0)))

+

k
∑

t=0

{

k
∏

t=l

(AP + BP αtβt)}wl.

Here xP,t − E[xP,t|It] and wt are zero-mean processes.
The estimation errors are orthogonal to the estimates.

Therefore the expectation of the state at time 0 will be

E[xP,k+1|I0] = (

k
∏

t=0

(AP + BP αtβt)xP,0

+

k
∑

t=0

{

k
∏

t=l

(AP + BP αtβt)}BP αlhl(z
T
R,0))) (13)

Thus, the noise terms are taken out, and the feedforward
control is a certainty equivalence control.

The online feedback optimal control at a given time t is:
ufb,t = ut − (E[ut|I0])

which becomes
ufb,t = αtβtE[xP,t|It] + αtht(z

T
R,0))]

−αtβt(E[ut|I0]). (14)
And finally we obtain

ufb,t = αtβt[E[xP,t|It] + αtht(z
T
R,0))]

−αtβt(E[xP,t|I0]) − E[αtht(z
T
R,0)|I0]. (15)

The deterministic parts cancel each other leading to
ufb,t = αtβt[E[xP,t|It] − E[xP,t|I0]] (16)

Therefore the optimal controller can be implemented as
two separate components; a feedforward term and a feedback
term (However we should note that the estimator in the
feedback term should have causal access to the last applied
control). The optimal feedforward term is now precomputed.

Suppose there is no noise in the system evolution and no
state uncertainty. Then the dynamic programming recursion
would cross out the noise and the state estimation error terms
and the same recursion would be obtained for the control
terms. Note that this is the same as arguing that certainty
equivalence holds in this case. Another interpretation for this
argument is the following. Let uj

0 := {u0, u1, . . . , uj}. The
feedforward seeks to minimize

min
uT
0

E[J0|I0] = min
uT
0

{. . . {{z2
T |(I0, u

T−1
0 )}

+z2
T−1 + uT

T−1RuT−1|(IT−2, u
T−2
0 )} . . .

+z2
0 + uT

0 Ru0|(u0, I0)} (17)

Telescoping outwards the conditionings for instance for T −
1, we obtain

E[(CP xP,T−1 − CRxR,T−1)
2 + uT

T−1RuT−1

(CP AP xP,T−1 + CP BP uT−1 + CP wT−1

−zR,T )2|I0, u
T−2
0 ], (18)

the minimization of which yields to the same control ob-
tained in (9). �

Remark Note that αt and βt are independent of the
reference path values; they are solely functions of plant
dynamics. �

Thus for the optimal controller, we can provide an off-
line deterministic l2 minimizing controller and supplement
this with a noise rejecting filter as the optimal solution.
C. On Estimation

For the sake of completeness we briefly study the estima-
tion problem. As was studied above, the feedback control
law is independent of the estimation, due to the separation
principle. For the optimal estimation, for a linear system,
one can use Kalman filtering if the noise statistics are
Gaussian. The optimal feedback control estimator needs
causal information on the applied controls to perform the
estimation. In the simulation studied in this paper we use
time-varying Kalman filter for the estimation.



III. OPTIMAL QUANTIZATION OF THE FEEDFORWARD
SIGNALS

We consider a plant that is controlled remotely over a finite
capacity network. In such a system the plant might not be
able to make use of the noncausal information available to
it. However, by separating the control to two components,
the central decision maker sends the feedforward commands
to the plant, and the plant can merely be in charge of sup-
pressing the noise and following the feedforward commands
generated by the decision maker.

The central decision maker cannot send the feedforward
controls with arbitrary precision over the network, hence we
need to encode the controls. While implementing this, the
decoding should be simple as well. Therefore, we restrict the
encoding to be within the class of uniform scalar quantizers,
as this is the computationally simplest quantizer.

Let zq
R,t be the plant position with quantized feedforward

control. Define zq as the additional error due to the quanti-
zation of the feedforward signals, i.e.

zq,t = zR,t − zq
P,t.

We seek the solution to,

min E[||zq ||
2
2], (19)

subject to
T

∑

i=1

Ri ≤ K

where Ri is the rate (in the sense of the logarithm of the
number of levels; fixed length encoding) per control signal
and K is the total rate constraint imposed by the network.

We have the following theorem summarizing the results of
this section. In the theorem we assume that the quantization
errors are independent of the quantized values, which is a
common assumption in high-rate quantization [11].

Theorem 3.1: Let Acnv be the convolution matrix given
by:

Acnv(i, j) = CAi−jB1(i≥j),

where 1(.) is the indicator function. And let

aj =
∑

i

|Acnv(i, j)|
2 1 ≤ j ≤ T,

and
M = inf{L : |ui| ≤ L/2 ∀i}

Then, the optimal solution to (19) among the class of time-
invariant scalar uniform quantizers has the additional cost
of

Dinv(K) = [
∑

i

(ai)
2]M22−2K/T .

The optimal time varying uniform scalar quantizer will have
the additional cost as

Dtv(K) =
∑

i

M222/T (
P

log
2
(ai))2−2K/T .

Proof:

We have û = u+ue, where û is the quantized control and
ue is the quantization error. The derailment in the path due
to the quantization error is equal to zq = Acnvue. We seek
to minimize

E[||Acnvue||2]

which is equal to

E[
∑

i

[
∑

j

Acnv(i, j)ue(j)]
2]

Using the independence of the quantization errors, the term
above is equivalent to

E[
∑

j

[
∑

i

Acnv(i, j)
2]ue(j)

2]

Using a uniform quantizer for each of the controls, we obtain,

min
l0,l1,...,lT

∑

j

|M |/22lj
∑

i

|Acnv(i, j)|2

subject to
∑

log2(lj) ≤ K

Defining xi := log2(li), we have the problem of

min
∑

(ai)
2M22−2xi

subject to
∑

xi ≤ K.

This problem is convex in xi, constraint qualifications hold
and the unique optimal solution can be obtained using a
Lagrangian approach. Define

L(x, λ) := min
∑

a2
i M

22−2xi + λ
∑

xi,

where λ ≥ 0. If we take the derivative with respect to xi,
we obtain the following necessity condition:

−2(ai)
2M2ln(2)2−2xi + λ = 0

which suggests that (ai)/2xi should be constant for all time
stages i and that λ > 0. We then have

xi = log2(ai) − log2(α),

for some α which satisfies the constraint equation:
∑

xi = K,

due to the complementary slackness condition. We thus have
α = 21/T [

P

log
2
(ai)−K]

If we had restricted the quantizers to be strictly time
invariant then for each of the controls we would have used
Ri = K/T bits, and li would be fixed for all time stages.
In this case all the controls would have the same expected
quantization error and the cost would be

∑

(ai)
2M22−2K/T .

This concludes the proof. �
Remark Note that there is an exponential decrement in

the derailment due to the quantization error in both cases.
However, since the first control terms are more impactful
than the latter ones (as can also be seen from the fact that the
convolution matrix is lower-triangular) using a time varying
scheme improves the performance. �
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Fig. 4: Reference, noisy and noiseless paths, R=0.05
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Fig. 5: Feedforward and feedback controls, R=0.05

IV. SIMULATIONS

A three-dimensional plant with the following matrices is
used in the simulations.

A =





0.4 0.01 −0.05
0.02 0.5 0.01
−0.02 0.1 0.3





B = 1/2
[

1 0.1 0.1
]T

C = 1/2
[

1 0.2 1
]

.

The penalty term for the control, R, is adjusted to provide
the two different sets of plots; Figs. 4, 5 and 6, 7.
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Fig. 6: Reference, noisy and noiseless paths, R=0.000005
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Fig. 7: Feedforward and feedback controls, R=0.000005

V. CONCLUSION

In this paper we constructed the optimal l2 feedback and
feedforward controls, and showed that there is no loss of op-
timality as a result of the optimal separation of the controller
to a noncausal and complex feedforward and a standard LQR
feedback component. We then computed the optimal time
varying and time invariant uniform quantizers minimizing
the expected distortion under a data rate constraint.

All in all, we designed a tracking controller in a networked
system setup. We have had three components in the cost for
tracking; the deterministic error, the stochastic estimation
errors due to the noise components in the system and
an additional quantization error due to the communication
network constraints. All the effects of these are quantifiable
and appear additively in the outcome.
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