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Decentralized Q-Learning for Stochastic
Teams and Games

Gürdal Arslan and Serdar Yüksel, Member, IEEE

Abstract—There are only a few learning algorithms appli-
cable to stochastic dynamic teams and games which gener-
alize Markov decision processes to decentralized stochastic
control problems involving possibly self-interested decision
makers. Learning in games is generally difficult because
of the non-stationary environment in which each decision
maker aims to learn its optimal decisions with minimal in-
formation in the presence of the other decision makers who
are also learning. In stochastic dynamic games, learning
is more challenging because, while learning, the decision
makers alter the state of the system and hence the future
cost. In this paper, we present decentralized Q-learning al-
gorithms for stochastic games, and study their convergence
for the weakly acyclic case which includes team problems as
an important special case. The algorithms are decentralized
in that each decision maker has access only to its own deci-
sions and cost realizations as well as the state transitions;
in particular, each decision maker is completely oblivious
to the presence of the other decision makers. We show that
these algorithms converge to equilibrium policies almost
surely in large classes of stochastic games.

Index Terms—Decentralized control, learning in games,
stochastic dynamic teams, stochastic games.

I. INTRODUCTION

THIS paper aims at developing new learning algorithms
with desirable convergence properties for certain classes

of stochastic games, which are discrete-time dynamic games in
which the history can be summarized by a “state” [1]. More
specifically, we focus on weakly acyclic stochastic games that
can be used to model cooperative systems. The chief merit of
the paper lies in the fact that learning takes place in stochastic
games, which are truly dynamic games, as opposed to learning
in repeated games in which the same single-stage game is played
in every stage. In stochastic games, the policies selected by the
decision makers not only impact their immediate cost but also
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alter the stage-games to be played in the future through the state
dynamics. Hence, our results are applicable to a significantly
broader set of applications.

The existing literature on learning in stochastic games is very
small in comparison with the literature on learning in repeated
games. As the method of reinforcement learning gained pop-
ularity in the context of Markov decision problems, a surge
of interest in generalizing the method of reinforcement learn-
ing, in particular Q-learning algorithm [2], to stochastic games
has led to a set of publications primarily in the computer sci-
ence literature; see [3] and the references therein. In many of
these publications, the authors tend to assume that the real ob-
jective of the agents1 is for some reason to find and play an
equilibrium strategy (and sometimes this even requires agents
to somehow agree on a particular equilibrium strategy), and not
necessarily to pursue their own objectives. Another serious issue
is that the multi-agent algorithms introduced in many of these
recent papers are not scalable since each agent needs to main-
tain estimates of its Q-factors for each state/joint action pair and
compute an equilibrium at each step of the algorithm using the
updated estimates, assuming that the actions and objectives are
exchanged between all agents.

Standard Q-learning, which enables an agent to learn how
to play optimally in a single-agent environment, has also been
applied to very specific multi agent applications [4], [5]. Here,
each agent runs a standard Q-learning algorithm by ignoring the
other agents, and hence information exchange between agents
and computational burden on each agent are substantially lower
than the aforementioned multi-agent extensions of Q-learning
algorithm. Also, standard Q-learning in a multi-agent environ-
ment makes sense from the individual bounded rationality point
of view. However, no analytical results exist regarding the prop-
erties of standard Q-learning in a stochastic game setting.

We should also mention several attempts to extend a well-
known learning algorithm called Fictitious Play (FP) [6], [7] to
stochastic games [8]–[10]. The joint action learning algorithm
presented in [8] would be computationally prohibitive quickly
as the number of agents/states/actions grow. The algorithms
presented in [8] are claimed to be convergent to an equilibrium
in single-state single-stage common interest games but without a
proof. The extension of FP considered in [9] requires each agent
to calculate a stationary policy at each step in response to the
empirical frequencies of the stationary policies calculated and
announced by other agents in the past. The main contribution of

1The terms “agent” and “decision maker” are used interchangeably.
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Fig. 1. A networked control system.

[9] is to show that such FP algorithm is not convergent even in
the simplest 2 x 2 x 2 case where there are two states and two
agents each with two moves. The version of FP used in [10] is
applicable only to zero-sum games (strictly adversarial games).

Other related work includes [11]–[13]. In [11], a multi-agent
version of an actor-critic algorithm [14] is shown to be conver-
gent to generalized equilibria in a weak sense of convergence,
whereas in [12] a policy iteration algorithm is presented with-
out rigorous results for stochastic games. The algorithms given
in [11], [12] are rational from the individual agent perspective,
however they require higher level of data storing and process-
ing than standard Q-learning. The paper [13] uses the policy
iteration algorithm given in [12] in conjunction with certain
approximation methods to deal with a large state-space in a
specific card-game without rigorous results.

We should emphasize that our viewpoint is individual
bounded rationality and strategic decision making, that is,
agents should act to pursue their own objectives even in the
short term using localized information and reasonable algo-
rithms. It is also desired that agent strategies converge to an
agreeable solution in cooperative situations where agent objec-
tives are aligned with system designer’s objective even though
agents do not necessarily strive for converging to a particular
strategy.

The rest of the paper is organized as follows. In Section II, the
model is introduced. In Section III, the specifics of the learning
paradigm and the standard Q-learning algorithm is discussed,
followed by the presentation of our first Q-learning algorithm
for stochastic games and its convergence properties. Gener-
alizations of our main results in Section III are presented in
Section IV. This is followed by a simulation study in Section V.
The paper is concluded with some final remarks in Section VI.
Appendices contain the proofs of the technical results in the
paper.

II. STOCHASTIC DYNAMIC GAMES

Consider the (discrete-time) networked control system illus-
trated in Fig. 1 where xt is the state of the system at time t, ui

t is
the input generated by controller i at time t, and wt is the random
disturbance input at time t. Suppose that each controller i is an
autonomous decision maker (DM) interested in minimizing its

own long-term cost

E

[∑
t≥0

ci(xt, u
1
t , . . . , u

N
t )

]

where ci(xt, u
1
t , . . . , u

N
t ) is the cost incurred by controller i at

time t, and E[·] denotes the expectation given a collection of
control policies (which will be specified later in the paper) on
a probability space (Ω,F , P ). Although controller i can only
choose its own decisions ui

0 , u
i
1 , . . ., its cost generally depends

on the decisions of all controllers through its single-stage cost
as well as the state dynamics. This dynamic coupling between
self-interested DMs with long-term objectives naturally lead to
the framework of stochastic games [1] which generalize Markov
decision problems.

Over the past half-century, there have been many applications
of stochastic games on control problems; see [15, Ch. XIV] as
an early reference. At the present time, the control theory litera-
ture includes a large number of papers employing the theory of
stochastic games and their continuous-time counterparts called
“differential games” [16]. Many papers in this body of work
study a zero-sum game between a controller which aims to op-
timize the system performance and an adversary which controls
certain system parameters and inputs to make the system per-
formance as poor as possible. We selectively cite [17] for robust
control and minimax estimation problems, [18] for flow control
in queueing networks, [19] for control of hybrid systems, and
[20] for robustness, security, and resilience of cyber-physical
control systems. The case of nonzero-sum games in which the
decision makers do not always have diametrically opposed ob-
jectives has also received significant attention; see for example
[21] on admission, service, and routing control in queueing sys-
tems, [22] on transmission control in cognitive radio systems,
[23] on network security, and [24] on formation control.

We should also mention the work on team decision problems
where all DMs share a common long-term objective albeit with
access to different information variables; see, e.g., [25], [26].
In this paper, differently from the usual team decision problems
in the literature, even though each DM has access to the state
information, it does not have access to any information on the
other DMs including their presence. We also note that the emer-
gence of distributed control systems requires the formulation
of “team problems” within a game-theoretic framework where
local controllers are tasked to achieve one system level objective
without centralized coordination; see, for example, [27] on dis-
tributed model predictive control. This type of team problems
and its generalizations where the objectives of DMs are aligned
in some sense with a team objective are the primary focus of
our work, however, the class of games considered in this paper
is more general and it even includes some zero-sum stochastic
games.

A. Discounted Stochastic Dynamic Games

A (finite) discounted stochastic game has the following in-
gredients; see [1].

1) A finite set of DMs with the i−th DM referred to as DMi

for i ∈ {1, . . . , N}
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2) a finite set X of states
3) a finite set U i of control decisions for each DMi

4) a cost function ci for each DMi determining DMi’s cost
ci(x, u1 , . . . , uN ) at each state x ∈ X and for each joint
decision (u1 , . . . , uN ) ∈ U1 × · · ·UN

5) a discount factor βi ∈ (0, 1) for each DMi

6) a random initial state x0 ∈ X
7) a transition kernel for the probability P [x′|x, u1 , . . . , uN ]

of each state transition from x ∈ X to x′ ∈ X for each
joint decision (u1 , . . . , uN ) ∈ U1 × · · ·UN .

Such a stochastic game induces a discrete-time controlled
Markov process where the state at time t is denoted by xt ∈ X
starting with the initial state x0 . At any time t ≥ 0, each
DMi makes a control decision ui

t ∈ U i (possibly randomly)
based on the available information. The state xt and the joint
decisions (u1

t , . . . , u
N
t ) together determine each DMi’s cost

ci(xt, u
1
t , . . . , u

N
t ) at time t as well as the probability distri-

bution P [ · | xt, u
1
t , . . . , u

N
t ] with which the next state xt+1 is

selected.
A policy for a DM is a rule of choosing an appropriate control

decision at any time based on the DM’s history of observations.
We will focus on stationary policies of the form where a DM’s
decision at time t is determined solely based on the state xt .
Such policies for each DMi are identified by mappings from
the state space X to the set P(U i) of probability distributions
on U i . The interpretation is that a DMi using such a policy
πi : X �→ P(U i) makes its decision ui

t at any time t by choosing
randomly from U i according to πi(xt). We will denote the set
of such policies by Δi for each DMi . We will primarily be
interested in deterministic (stationary) policies2 denoted by Πi

for each DMi , where each policy πi ∈ Πi is identified by a
mapping from X to U i .

The objective of each DMi is to find a policy πi ∈ Δi that
minimizes its expected discounted cost

Ji
x(π1 , . . . πN ) = Ex

[∑
t≥0

(βi)tci
(
xt, u

1
t , . . . , u

N
t

)]
(1)

for all x ∈ X, where Ex denotes the conditional expectation
given x0 = x. Since DMs have possibly different cost functions
and each DM’s cost may depend on the control decisions of
the other DMs, we adopt the notion of equilibrium to represent
those policies that are person-by-person optimal. For ease of
notation, we denote the policies of all DMs other than DMi by
π−i . For future reference, we also define Π−i := ×j �=iΠj and
Δ−i := ×j �=iΔj as well as Π := ×jΠj and Δ := ×jΔj . Using
this notation, we write a joint policy (π1 , . . . πN ) as (πi, π−i)
and Ji

x(π1 , . . . πN ) as Ji
x(πi, π−i).

Definition 1: A joint policy (π∗1 , . . . , π∗N ) ∈ Δ constitutes
an (Markov perfect) equilibrium if, for all i, x

Ji
x(π∗i , π∗−i) = min

π i ∈Δ i
J i

x(πi, π∗−i).

It is known that any finite discounted stochastic game possesses
an equilibrium policy as defined above [28].

2When it is not clear from the context, a “policy” will mean a deterministic
policy.

Although the minimum above can always be achieved by
a deterministic policy in Πi (since each DMi’s problem is a
stationary Markov decision problem when the policies of the
other DMs are fixed at π∗−i), a deterministic equilibrium policy
may not exist in general. However, many interesting classes of
games do possess equilibrium in deterministic policies. In par-
ticular, large classes of games arising from applications where
all DMs benefit from cooperation possess equilibrium in deter-
ministic policies. The primary examples of such games of co-
operation are team problems where all DMs have the same cost
function. In team problems, the deterministic policies minimiz-
ing the common cost function are clearly equilibrium policies
although non-optimal deterministic equilibrium policies may
also exist. A more general set of games of cooperation are those
in which some function, called the potential function, decreases
whenever a single DM decreases its own cost by unilaterally
switching from one deterministic policy to another one. In this
class of games, the deterministic policies minimizing the poten-
tial function are equilibrium policies. As such, we are primarily
interested in the set of deterministic equilibrium policies de-
noted by Πeq , where Πeq ⊂ Π.

We next formally introduce the set of games considered in
this paper.

B. Weakly Acyclic Games

Let Πi
π−i denote DMi’s set of (deterministic) best replies to

any π−i ∈ Δ−i , i.e.,

Πi
π−i :=

{
π̂i ∈ Πi : Jx(π̂i , π−i) = min

π i ∈Δ i
Jx(πi, π−i),

for all x
}
.

DMi’s best replies to any π−i ∈ Δ−i can be characterized by its
optimal Q-factors Qi

π−i satisfying the fixed-point equation

Qi
π−i (x, ui) = Eπ−i (x)

[
ci(x, ui, u−i)

+ βi
∑
x ′∈X

P [x′|x, ui, u−i ] min
v i ∈U i

Qi
π−i (x′, vi)

]
(2)

for all x, ui , where Eπ−i (x) denotes the expectation with re-
spect to the joint distribution of u−i given by π−i(x) = π1(x) ×
· · · × πi−1(x) × πi+1(x) × · · · × πN (x). The optimal Q-factor
Qi

π−i (x, ui) represents DMi’s expected discounted cost to go
from the initial state x assuming that DMi initially chooses ui

and uses an optimal policy thereafter while the other DMs use
π−i . One can then write Πi

π−i as

Πi
π−i =

{
π̂i ∈ Πi : Qi

π−i (x, π̂i(x)) = min
v i ∈U i

Qi
π−i (x, vi),

for all x
}
.

The set of (deterministic) joint best replies is denoted by Ππ :=
Π1

π−1 × · · · × ΠN
π−N . Any best reply π̂i ∈ Πi

π−i of DMi is called
a strict best reply with respect to (πi, π−i) if

Ji
x(π̂i , π−i) < Ji

x(πi, π−i), for some x.
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Fig. 2. The strict best reply graph of a stochastic game.

Such a strict best reply π̂i achieves DMi’s minimum cost given
π−i for all initial states and results in a strict improvement over
πi for at least one initial state.

Definition 2: We call a (possibly finite) sequence of deter-
ministic joint policies π0 , π1 , . . . a strict best reply path if, for
each k, πk and πk+1 differ in exactly one DM position, say
DMi , and πi

k+1 is a strict best reply with respect to πk .
Definition 3: A discounted stochastic game is called weakly

acyclic under strict best replies if there is a strict best reply path
starting from each deterministic joint policy and ending at a
deterministic equilibrium policy.

Fig. 2 shows the strict best reply graph of a game where the
nodes represent the deterministic joint policies and the directed
edges represent the single-DM strict best replies. Each deter-
ministic equilibrium policy is represented by a sink, i.e., a node
with no outgoing edges, in such a graph. Note that the game
illustrated in Fig. 2 is weakly acyclic under strict best replies
since there is a path from every node to a sink (π7 or π10). Note
also that a weakly acyclic game may have cycles in its strict
best reply graph, for example, π1 → π4 → π12 → π9 → π1 in
Fig. 2.

Weakly acyclic games constitute a fairly large class of games.
In the case of single-stage games, all potential games as well
as dominance solvable games are examples of weakly acyclic
games; see [29]. We note that the concept of weak acyclicity
introduced in this paper is with respect to the stationary Markov
policies for stochastic games, and constitutes a generalization
of weak acyclicity introduced in [30] for single-stage games.
The primary examples of weakly acyclic games in the case of
stochastic games are the team problems with finite state and
control sets where DMs have identical cost functions and dis-
count factors. Clearly, many other classes of stochastic games
are weakly acyclic, e.g., appropriate multi-stage generalizations
of potential games and dominance solvable games restricted to
the stationary Markov policies are weakly acyclic for the same
reason that the single-stage versions of these games are weakly
acyclic [29].

C. A Best Reply Process for Weakly Acyclic Games

Consider a policy adjustment process in which only one DM
updates its policy at each step by switching to one of its strict best
replies. Such a process would terminate at an equilibrium policy
if the game has no cycles in its strict best reply graph and the

process continues until no DM has strict best replies. A weakly
acyclic game may contain cycles in its strict best reply graph but
there must be some edges leaving each cycle because otherwise
there would not be a path from each node to a sink. Therefore,
as long as each updating DM considers each of its strict best
replies with positive probability, the adjustment process would
terminate at an equilibrium policy in a weakly acyclic game with
probability (w.p.) one. This adjustment process would require a
criterion to determine the updating DM at each step and the DMs
would have to a priori agree to this criterion. An equilibrium
policy can be reached through a similar adjustment process
without a pre-game agreement on the selection of the updating
DM, if all DMs update their policies at each step but with some
inertia. Consider now the following policy adjustment process,
which is the best reply process with memory length of one and
inertia introduced in Sections 6.4–6.5 of [30].

Best Reply Process with Inertia (for DMi)
Set parameters

λi ∈ (0, 1): inertia
Initialize πi

0 ∈ Πi (arbitrary)
Iterate k ≥ 0

If πi
k ∈ Πi

π−i
k

πi
k+1 = πi

k

Else

πi
k+1 =

⎧⎨
⎩

πi
k w.p. λi

any πi ∈ Πi
π−i

k

w.p. (1 − λi)/
∣∣∣Πi

π−i
k

∣∣∣
End

On the one hand, if the joint policy πk := (π1
k , . . . , πN

k ) is
an equilibrium policy at any step k, then the policies will never
change in the subsequent steps. On the other hand, regardless
of what the joint policy πk := (π1

k , . . . , πN
k ) is at any step k,

the joint policy πk+L in L steps later will be an equilibrium
policy with positive probability pmin > 0 where L is the maxi-
mum length of the shortest strict best reply path from any policy
to an equilibrium policy and pmin depends only on the iner-
tias λ1 , . . . , λN , and L. This readily implies that the best reply
process with inertia will reach an equilibrium policy in finite
number of steps w.p. one [30], i.e.,

P [πk = π∗, for some π∗ ∈ Πeq and all large k < ∞] = 1.

We now note that each updating DMi at step k needs to
compute its best replies Πi

π−i
k

, which can be done by first solving

the fixed point equation (2) for π−i = π−i
k . DMi can solve (2),

for example through value iterations, provided that DMi knows
the state transition probabilities P and the policies π−i

k of the
other DMs to evaluate the expectations in (2). In most realistic
situations, DMs would not have access to such information and
therefore would not be able to compute their best replies directly.
In the next section, we introduce our learning paradigm in which
DMs would be able to learn their near best replies with minimal
information and adjust their policies (approximately) along the
strict best reply paths as in the best reply process with inertia.



ARSLAN AND YÜKSEL: DECENTRALIZED Q-LEARNING FOR STOCHASTIC TEAMS AND GAMES 1549

III. Q-LEARNING IN STOCHASTIC DYNAMIC GAMES

A. Learning Paradigm for Stochastic Dynamic Games

The learning setup involves specifying the information that
DMs have access to. We assume that each DMi knows its own
set U i of decisions and its own discount factor βi . In addition,
before choosing its decision ui

t at any time t, each DMi has the
knowledge of:

1) its own past decisions ui
0 , . . . , u

i
t−1 ;

2) past and current state realizations x0 , . . . , xt ;
3) its own past cost realizations

ci(x0 , u
i
0 , u

−i
0 ), . . . , ci(xt−1 , u

i
t−1 , u

−i
t−1).

Each DMi has access to no other information such as the
state transition probabilities or any information regarding the
other DMs (not even the existence of the other DMs). In effect,
the problem of decision making from the perspective of each
DMi appears to be a stationary Markov decision problem. It
is reasonable that each DMi with this view of its environment
would use the standard Q-learning algorithm [2] to learn its
optimal Q-factors and its optimal decisions. This would lead to
the following Q-learning dynamics for each DMi :

Qi
t+1(x, ui) = Qi

t(x, ui), for all (x, ui) �= (xt, u
i
t)

Qi
t+1(xt, u

i
t) = Qi

t(xt, u
i
t) + αi

t

[
ci(xt, u

i
t , u

−i
t )

+ βi min
v i ∈U i

Qi
t(xt+1 , v

i) − Qi
t(xt, u

i
t)
]

where αi
t ∈ [0, 1] denotes DMi’s step size at time t.

If only one DM, say DMi , were to use Q-learning and the
other DMs used constant policies π−i , then DMi would asymp-
totically learn its corresponding optimal Q-factors, i.e.,

P [Qi
t → Qi

π−i ] = 1

provided that all state-control pairs (x, ui) are visited infinitely
often and the step sizes are reduced at a proper rate. This follows
from the well-known convergence of Q-learning in a stationary
environment; see [31]. To exploit the learnt Q-factors while
maintaining exploration, the actual decisions are often selected
with very high probability as

ui
t ∈ argminv i ∈U i Qi

t(xt, v
i)

and with some small probability any decision in U i is experi-
mented. One common way of achieving this for DMi is to select
any decision ui ∈ U i randomly according to (Boltzman action
selection)

P [ui
t = ui |Ft ] =

e−Qi
t (xt ,u

i )/τ∑
v i ∈U i e−Qi

t (xt ,v i )/τ

where τ > 0 is a small constant called the temperature parame-
ter, and Ft is the history of the random events realized up to the
point just before the selection of (u1

t , . . . , u
N
t ).

However, when all DMs use Q-learning and select their deci-
sions as described above, the environment is non-stationary for
all DMs, and there is no reason to expect convergence in that
case. In fact, one can construct examples where DMs using Q-
learning are caught up in persistent oscillations; see [32, Sect. 4]

for the non-convergence of Q-learning in Shapley’s game. How-
ever, the convergence of Q-learning may still be possible in
team problems, coordination-type games, or more generally in
weakly-acyclic games. It is instructive to first consider the re-
peated games.

Here, there is no state dynamics (the set X of states is a
singleton) and the DMs have no look-ahead (β1 = · · ·βN = 0).
The only dynamics in this case is due to Q-learning, which
reduces to the averaging dynamics

Qi
t+1(u

i) = Qi
t(u

i), for all ui �= ui
t (3)

Qi
t+1(u

i
t) = Qi

t(u
i
t) + αi

t

[
ci(ui

t , u
−i
t ) − Qi

t(u
i
t)
]

(4)

where

P [ui
t = ui |Ft ] =

e−Qi
t (ui )/τ∑

v i ∈U i e−Qi
t (v i )/τ

. (5)

The long-term behavior of these averaging dynamics is analyzed
in [32] and strongly connected to the long-term behavior of the
well-known Stochastic Fictitious Play (SFP) dynamics [33] in
the case of two DMs; see [32, Lemma 4.1]. In two-DM SFP,
each DMi tracks the empirical frequencies of the past decisions
of its opponent DM−i and chooses a nearly optimal response
(with some experimentation) based on the incorrect assumption
that DM−i will choose its decisions according to the empirical
frequencies of its past decisions

q−i
t (u−i) =

1
t

t−1∑
k=0

I{u−i
t =u−i }, for all u−i

where I{·} is the indicator function and

P [ui
t = ui |Ft ] =

e−M i
t (ui )/τ∑

v i ∈U i e−M i
t (v i )/τ

Mi
t (u

i) :=
∑
u−i

q−i
t (u−i)ci(ui, u−i).

Using the connection between Q-learning dynamics (3)–(5)
and SFP dynamics, the convergence of Q-learning (3)–(5) is
established in zero-sum games as well as in partnership games
with two DMs; see [32, Prop. 4.2]. It may be possible to extend
this convergence result to multi-DM potential games [34], [35],
but this is currently unresolved. However, given the nonconver-
gence of FP (where DMs choose exact optimal responses with no
experimentation, i.e., τ ↓ 0) in some coordination games [36],
the prospect of establishing the convergence of Q-learning even
in all two-DM weakly acyclic games does not seem promising.

It is possible to employ additional features such as the trun-
cation of the observation history or multi-time-scale learning
to obtain learning dynamics that are convergent in all repeated
weakly acyclic games; see our previous work [37] and the oth-
ers [38], [30], [39], [40]. However, the question of learning an
equilibrium policy in stochastic games is an open question. The
only relevant reference considering the stochastic games is [11]
where each DM uses value learning coupled with policy search
at a slower time-scale. The results in [11] apply to all stochastic
games and therefore they are necessarily quite weak. Loosely
speaking, the main result in [11] shows that the limit points of
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Fig. 3. Illustration of the k−th exploration phase.

certain empirical measures (weighted with the step sizes) in the
policy space constitute “generalized Nash equilibria”, which in
particular does not imply convergence to an equilibrium policy.
In the next subsection, we propose a simple variation of Q-
learning which converges to an equilibrium policy in all weakly
acyclic stochastic games.

B. Q-Learning in Stochastic Dynamic Games

The discussion in the previous subsection reveals that the
standard Q-learning (3)–(5) may not be convergent even in re-
peated coordination games. The main obstacle to convergence
of Q-learning in games is due to the presence of multiple active
learners leading to a non-stationary environment for all learn-
ers. To overcome this obstacle, we use some inspiration from
our previous work [37] on repeated games and modify the Q-
learning for stochastic games as follows. In our variation of
Q-learning, we allow DMs to use constant policies for extended
periods of time called exploration phases.

As illustrated in Fig. 3, the k−th exploration phase runs
through times t = tk , . . . , tk+1 − 1, where

tk+1 = tk + Tk (with t0 = 0)

for some integer Tk ∈ [1,∞) denoting the length of the k−th
exploration phase. During the k−th exploration phase, DMs
use some constant policies π1

k , . . . , πN
k as their baseline policies

with occasional experimentation. The essence of the main idea
is to create a stationary environment over each exploration phase
so that DMs can accurately learn their optimal Q-factors corre-
sponding to the constant policies used during each exploration
phase. Before arguing why this would lead to an equilibrium
policy in all weakly acyclic stochastic games, we introduce (in
the next column) our variation of Q-learning.

Algorithm 1 mimics the best reply process with inertia in
Section II-C arbitrarily closely with arbitrarily high probability
under certain conditions. The key difference here is that each
DM using Algorithm 1 approximately learns its optimal Q-
factors during each exploration phase with limited observations.
Accordingly, each DM updates its (baseline) policy to one of
its near best replies with inertia based on its learnt Q-factors.
Hence, Algorithm 1 can be regarded as an approximation to the
best reply process with inertia in Section II-C; see [41] where
best replies are obtained based on rewards that must be estimated
using noisy observations.

Assumption 1: For all (x′, x), there exists a finite integer
H ≥ 0 and joint decisions ũ0 , . . . , ũH such that

P [xH +1 = x′ | (x0 , u0 , . . . , uH ) = (x, ũ0 , . . . , ũH )] > 0.

Algorithm 1: (for DMi).
Set parameters

Qi : some compact subset of the Euclidian space
R|X×U i | where |X × U i | is the number of pairs (x, ui);
{Tk}k≥0 : sequence of integers in [1,∞);
ρi ∈ (0, 1): experimentation probability;
λi ∈ (0, 1): inertia;
δi ∈ (0,∞): tolerance level for sub-optimality;
{αi

n}n≥0 : sequence of step sizes where

αi
n ∈ [0, 1],

∑
n αi

n = ∞,
∑

n

(
αi

n

)2
< ∞

(e.g., αi
n = 1/nr where r ∈ (1/2, 1]).

Initialize πi
0 ∈ Πi (arbitrary), Qi

0 ∈ Qi (arbitrary)
Receive x0

Iterate k ≥ 0
(k−th exploration phase)
Iterate t = tk , . . . , tk+1 − 1

ui
t =

{
πi

k (xt), w.p. 1 − ρi

any ui ∈ U i , w.p. ρi/|U i |
Receive ci(xt, u

i
t , u

−i
t ).

Receive xt+1 (selected according to P [ · | xt, u
i
t , u

−i
t ]).

ni
t = the number of visits to (xt, u

i
t) in the k−th

exploration phase up to t

Qi
t+1(xt, u

i
t) = (1 − αi

ni
t
)Qi

t(xt, u
i
t)

+αi
ni

t

[
ci(xt, u

i
t , u

−i
t ) + βi minv i Qi

t(xt+1 , v
i)
]

Qi
t+1(x, ui) = Qi

t(x, ui), for all (x, ui) �= (xt, u
i
t)

End
Πi

k+1 =
{
π̂i ∈ Πi : Qi

tk + 1
(x, π̂i(x))

≤ minv i Qi
tk + 1

(x, vi) + δi, for all x
}

If πi
k ∈ Πi

k+1
πi

k+1 = πi
k

Else

πi
k+1 =

{
πi

k , w.p. λi

any πi ∈ Πi
k+1 , w.p. (1 − λi)/|Πi

k+1 |
End
Reset Qi

tk + 1
to any Qi ∈ Qi (e.g., project Qi

tk + 1
on Qi)

End

Assumption 1 ensures that the step sizes satisfy the well-
known conditions of the stochastic approximation theory [31]
during each exploration phase.

Assumption 2: For all i, 0 < δi < δ̄ and 0 < ρi < ρ̄, where
δ̄ and ρ̄ (which depend only on the parameters of the game at
hand) are defined in Appendix B.

Assumption 2 requires that the tolerance levels for sub-
optimality used in the computation of near best replies as well as
the experimentation probabilities to be nonzero but sufficiently
small.

Theorem 1: Consider a discounted stochastic game that is
weakly acyclic under strict best replies. Suppose that each DMi

updates its policies by Algorithm 1. Let Assumption 1 and 2
hold.
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1) For any ε > 0, there exist T̃ < ∞, k̃ < ∞ such that if
min	 T	 ≥ T̃ , then

P [πk ∈ Πeq] ≥ 1 − ε, for all k ≥ k̃.

2) If Tk → ∞, then

P [πk ∈ Πeq] → 1.

3) There exists finite integers {T̃k}k≥0 such that if Tk ≥ T̃k ,
for all k, then

P
[
πk → π∗, for some π∗ ∈ Πeq

]
= 1.

Proof: See Appendix B. �
Let us discuss the main idea behind this result. Since all

DMs use constant policies throughout any particular exploration
phase, each DM indeed faces a stationary Markov decision
problem in each exploration phase. Therefore, if the length of
each exploration phase is long enough and the experimentation
probabilities ρ1 , . . . , ρN are small enough (but non-zero), each
DMi can learn its corresponding optimal Q-factors in each ex-
ploration phase with arbitrary accuracy with arbitrarily high
probability. This allows each DMi to accurately compute its
near best replies to the other DMs’ policies π−i

k at the end of
the k−th exploration phase. Intuitively, allowing each DMi to
update its policy πi

k to its near best replies (to π−i
k ) at the end of

the k−th exploration phase with some inertia λi ∈ (0, 1) results
in a policy adjustment process that approximates the best reply
process with inertia in Section II-C.

Remark 1: One may also wish to find explicit lower-bounds
on Tk to achieve almost sure convergence based on the conver-
gence rates of the standard Q-learning with a single DM; we
refer the reader to [42] for bounds on the convergence rates for
standard Q-learning.

IV. GENERALIZATIONS

A. Learning in Weakly Acyclic Games Under Strict
Better Replies

We present another Q-learning algorithm with provable con-
vergence to equilibrium in discounted stochastic games that are
weakly acyclic under strict better replies. We first introduce the
notion of weak acyclicity under strict better replies. Given any
π = (πi, π−i) ∈ Δ, let Υi

π denote DMi’s set of (deterministic)
better replies with respect to π, i.e.,

Υi
π :=

{
π̂i ∈ Πi : Jx(π̂i , π−i) ≤ Jx(πi, π−i), for all x

}
.

Any better reply π̂i ∈ Υi
π of DMi is called a strict better reply

(with respect to π) if

Ji
x(π̂i , π−i) < Ji

x(πi, π−i), for some x.

Definition 4: We call a (possibly finite) sequence of deter-
ministic joint policies π0 , π1 , . . . a strict better reply path if,
for each k, πk and πk+1 differ in exactly one DM position, say
DMi , and πi

k+1 is a strict better reply with respect to πk .
Definition 5: A discounted stochastic game is called weakly

acyclic under strict better replies if there is a strict better reply
path starting from each deterministic joint policy and ending at
a deterministic equilibrium policy.

Since every strict best reply path is also a strict better reply
path, the set of games weakly acyclic under strict better replies
contain (in fact, strictly) the set of games weakly acyclic under
strict best replies.

It is straightforward to introduce a policy adjustment process
analogous to the one in Section II-C where, at each step, each
DMi switches to one of its strict better replies with some in-
ertia; see [30, Sections 6.4–6.5]. Such a process would clearly
converge to an equilibrium in games that are weakly acyclic un-
der strict better replies. We next introduce a learning algorithm
which allows each DM to learn the Q-factors corresponding
to two policies, a baseline policy and a randomly selected ex-
perimental policy, during each exploration phase. If the learnt
Q-factors indicate that the experimental policy is better than
the baseline policy within a certain tolerance level, then the
baseline policy is updated to the experimental policy with some
inertia at the end of each exploration phase. This learning al-
gorithm enables DMs to adjust their policies with much less
information (as in Section III-A), and follow (approximately)
along the strict better reply paths that the adjustment process
follows.

Since any policy except the baseline policy can be chosen as
an experimental policy (with equal probability), each DM can
switch to any of its strict better replies with positive probability.
In contrast, each DM using Algorithm 1 can only switch to one
of its strict best replies. As a result, each DM using Algorithm 2
can escape a strict best reply cycle by switching to a strict
better reply (if one exists); whereas, any DM using Algorithm 1
cannot. This flexibility comes at the cost of running two Q-
learning recursions, one for the baseline policy and the other for
the experimental policy, instead of one. However, this flexibility
also leads to convergent behavior in a strictly larger set of games.
We cite [43] as a reference to an earlier use of the idea of
comparing two strategies and selecting one according to the
Boltzman distribution.

The counterpart of Theorem 1 can be obtained for Algorithm 2
in games that are weakly acyclic under strict better replies.

Assumption 3: For all i, 0 < δi < δ̌ and 0 < ρi < ρ̌, where
δ̌ and ρ̌ (which depend only on the parameters of the game at
hand) are defined in Appendix C.

Theorem 2: Consider a discounted stochastic game that is
weakly acyclic under strict better replies. Suppose that each
DMi updates its policies by Algorithm 2. Let Assumption 1 and
3 hold.

1) For any ε > 0, there exist T̃ < ∞, k̃ < ∞ such that if
min	 T	 ≥ T̃ , then

P [πk ∈ Πeq] ≥ 1 − ε, k ≥ k̃.

2) If Tk → ∞, then

P [πk ∈ Πeq] → 1.

3) There exists finite integers {T̃k}k≥0 such that if Tk ≥ T̃k ,
for all k, then

P
[
πk → π∗, for some π∗ ∈ Πeq

]
= 1.

Proof: See Appendix C. �
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Algorithm 2: (for DMi).
Set parameters as in Algorithm 1
Initialize πi

0 , π̂
i
0 ∈ Πi (arbitrary except π̂i

0 �= πi
0),

Qi
0 , Q̂

i
0 ∈ Qi (arbitrary)

Receive x0
Iterate k ≥ 0

(k−th exploration phase)
Iterate t = tk , . . . , tk+1 − 1

ui
t =

{
πi

k (xt), w.p. 1 − ρi

any ui ∈ U i , w.p. ρi/|U i |
Receive ci(xt, u

i
t , u

−i
t )

Receive xt+1 (selected according to P [ · | xt, u
i
t , u

−i
t ])

ni
t = the number of visits to (xt, u

i
t) in the k−th

exploration phase up to t
Qi

t+1(xt, u
i
t) = (1 − αi

ni
t
)Qi

t(xt, u
i
t)

+αi
ni

t

[
ci(xt, u

i
t , u

−i
t ) + βiQi

t(xt+1 , π
i
k (xt+1))

]
Q̂i

t+1(xt, u
i
t) = (1 − αi

ni
t
)Q̂i

t(xt, u
i
t)

+αi
ni

t

[
ci(xt, u

i
t , u

−i
t ) + βiQi

t(xt+1 , π̂
i
k (xt+1))

]
Qi

t+1(x, ui) = Qi
t(x, ui), for all (x, ui) �= (xt, u

i
t)

Q̂i
t+1(x, ui) = Q̂i

t(x, ui), for all (x, ui) �= (xt, u
i
t)

End
If (Q̂i

tk + 1
(x, π̂i

k (x)) ≤ Qi
tk + 1

(x, πi
k (x)) + δi, for all x)

and
(Q̂i

tk + 1
(x, π̂i

k (x)) ≤ Qi
tk + 1

(x, πi
k (x)) − δi, for somex)

πi
k+1 =

{
πi

k , w.p. λi

π̂i
k , w.p. 1 − λi

Else
πi

k+1 = πi
k

End
π̂i

k+1 = any policy πi ∈ Πi\{πi
k+1} with equal

probability
Reset Qi

tk + 1
, Q̂i

tk + 1
to any Qi, Q̂i ∈ Qi

End

B. Learning in Weakly Acyclic Games Under Multi-DM
Strict Best or Better Replies

The notion of weak acyclicity can be generalized by allowing
multiple DMs to simultaneously update their policies in a strict
best or better reply path.

Definition 6: We call a (possibly finite) sequence of deter-
ministic joint policies π0 , π1 , . . . a multi-DM strict best (better)
reply path if, for each k, πk and πk+1 differ for at least one DM
and, for each deviating DMi , πi

k+1 is a strict best (better) reply
with respect to πk .

Definition 7: A discounted stochastic game is called weakly
acyclic under multi-DM strict best (better) replies if there is a
multi-DM strict best (better) reply path starting from each deter-
ministic joint policy and ending at a deterministic equilibrium
policy.

This generalization leads to a strictly larger set of games that
are weakly acyclic. To see this, consider a single-stage game
characterized by the cost matrices in Fig. 4 where DM1 chooses
a row, DM2 chooses a column, and DM3 chooses a matrix, si-

Fig. 4. Cost matrices of a single-stage game with three DMs.

Fig. 5. DMi ’s single-stage utility.

multaneously. Assume a > 0. There is no strict best (or better)
reply path to an equilibrium from the joint decisions (1, 1, 1),
(1, 3, 1), (3, 3, 1), (3, 1, 1), (1, 1, 2), (3, 1, 2), if only a single
DM can update its decision at a time. Therefore, this game is not
weakly acyclic under strict best (or better) replies in the sense
of Definition 3 (or Definition 5). However, if multiple DMs are
allowed to switch to their strict best (or better) replies simultane-
ously, then it becomes possible to reach the equilibrium (2, 3, 2)
from any joint decision. For example, if DM2 and DM3 switch
to their strict best (or better) replies simultaneously from the
joint decision (1, 1, 1), then the resulting joint decision would
be (1, 3, 2). This would subsequently lead to the equilibrium
(2, 3, 2) if DM1 switches to its strict best (or better) reply from
(1, 3, 2).

Both learning algorithms introduced in this paper allow mul-
tiple DMs to simultaneously update their policies with positive
probability. In view of this, it is straightforward to see that
our main convergence results Theorem 1 (Theorem 2) hold in
games that are weakly acyclic under multi-DM strict best (bet-
ter) replies.

V. A SIMULATION STUDY: PRISONER’S DILEMMA

WITH A STATE

We consider a discounted stochastic game with two DMs
where X = U1 = U2 = {1, 2}. Each DMi’s utility (to be max-
imized) at each time t ≥ 0 depends only on the joint decisions
(u1

t , u
2
t ) of both DMs as in Fig. 5.

We assume b > c > 0 > a. The state evolves as

P
[
xt+1 = 1 | (u1

t , u
2
t ) = (1, 1)

]
= 1 − γ

P
[
xt+1 = 2 | (u1

t , u
2
t ) �= (1, 1)

]
= 1 − γ

where γ ∈ (0, 1) and P [x0 = 1] = 1/2.
The single-stage game corresponds to the well-known pris-

oner’s dilemma where the i−th prisoner (DMi) cooperates (de-
fects) at time t by choosing ui

t = 1 (ui
t = 2). The single-stage

game has a unique equilibrium (u1 , u2) = (2, 2), i.e., both DMs
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TABLE I
THE FRACTION OF TIMES AT WHICH πk VISITS AN EQUILIBRIUM AND THE

FRACTION OF TIMES AT WHICH πk AGREES WITH π̆k

T 1
1 0 0 1

∑ 1 0 0 0
k = 0 I{π k ∈Π e }

(averaged over π0 ∈ Π)

1
1 0 0 1

∑ 1 0 0 0
k = 0 I{π k = π̆ k }

(averaged over π0 ∈ Π)

10 0.2581 0.1254
25 0.5274 0.3410
50 0.7835 0.6170
100 0.9282 0.6301
1000 0.9935 0.6879
10000 0.9978 0.7733
50000 0.9976 0.9705

defect, leading to utilities (0, 0). The dilemma is that each DM
can do strictly better by cooperating, i.e., (u1 , u2) = (1, 1) (not
an equilibrium).

In the multi-stage game, the state xt indicates, w.p. 1 − γ,
whether or not both DMs cooperated in the previous stage. It
turns out that cooperation can be obtained as an equilibrium of
the multi-stage game if the DMs are patient, i.e., the discount
factors are sufficiently high, and the error probability γ is suf-
ficiently small. Note that each DMi has four different policies
of the form πi : X → U i . For large enough β1 , β2 , and small
enough γ, the multi-stage game has two (Markov perfect) equi-
libria. In one equilibrium, called the cooperation equilibrium,
each DM cooperates if x = 1 and defects otherwise. In the other
equilibrium, called the defection equilibrium, both DMs always
defect. Furthermore, from any joint policy in Π1 × Π2 , there
is a strict best reply path to one of these two equilibria, which
implies that the multi-stage game is weakly acyclic under strict
best replies.

We set b = 2, c = 1, a = −1, γ = 0.3. We simulate Algo-
rithm 1 with the following parameter values: ρi = 0.1, λi = 0.5,
δi = 0, αi

k = 1/k0.51 , for all i, k. We keep the lengths of the
exploration phases constants, i.e, Tk = T , for all k. We consider
different values for T since the lengths of the exploration phases
appear to be most critical for the behavior of the learning pro-
cess. For each value of T , we run Algorithm 1 and the best reply
process with inertia (in Section II-C) in parallel, with 1000 pol-
icy updates starting from each of the 16 initial joint policies in
Π. We initialize all the learnt Q-factors at 0 for each simulation
run; however, we do not reset the learnt Q-factors at the end of
any exploration phase during any simulation run. We let πk and
π̆k denote the policies generated by Algorithm 1 and the best
reply process with inertia in Section II-C, respectively. For each
value of T , Table I shows the fraction of times at which πk visits
an equilibrium and the fraction of times at which πk agrees with
π̆k , during the 1000 policy updates (averaged uniformly over all
16 initial policies in Π).

The results in Table 1 reveal that, as T increases, πk visits an
equilibrium and agrees with π̆k more often. This is consistent
with Theorem 1 since DMs are expected to learn their Q-factors
more accurately with higher probability for larger values of T .
When T is sufficiently large, the polices πk are at equilibrium
and agrees with π̆k nearly all of the time regardless of the initial
policy. In a typical simulation run (with a large enough T ), the

polices πk and π̆k transition to an equilibrium in few steps and
stay at equilibrium thereafter.

VI. CONCLUDING REMARKS

In this paper, we develop decentralized Q-learning algorithms
and present their convergence properties for stochastic games
under weak acyclicity. This is the first paper, to our knowledge,
that presents learning algorithms with convergence to equilib-
ria in large classes of stochastic games. The decision makers
observe only their own decisions and cost realizations, and the
state transitions; they need not even know the presence of the
other decision makers.

Our approach has a two-time scale flavor; however, unlike the
existing work on multi-time-scale learning, it does not depend on
the stochastic approximation theory. Note that the existing work
on multi-time-scale learning, e.g., [11], [14], [32], [38], require
the stability analysis of some ordinary differential equations
(ODE) describing the mean behavior of the learning algorithms.
Aside from the difficulty of choosing the step sizes running
at multiple time scales, the existing work involves nonlinear
ODEs whose analysis does not seem to be within reach even
for dynamic team problems. In contrast, our approach leads to a
considerably simpler analysis for all weakly acyclic stochastic
games.

APPENDIX A
A UNIFORM CONVERGENCE RESULT FOR THE STANDARD

Q-LEARNING ALGORITHM WITH A SINGLE DM

Convergence of the standard Q-learning algorithm with a sin-
gle DM is well known [31]. However, to prove the results of
this paper, we need the sample paths generated by the stan-
dard Q-learning algorithm to well behave with respect to the
initial conditions. Let us now consider a single-DM version of
the setup introduced in Section II where the DM index i (in
the superscript) is dropped (only in Appendix A) and c(x, u)
representing the one-stage cost for applying control u at x is
an exogenous random variable with finite variance. Let us as-
sume that a single DM using a stationary random policy π ∈ Δ
updates its Q-factors as: for t ≥ 0

Qt+1(x, u) = Qt(x, u), for all (x, u) �= (xt, ut) (6)

Qt+1(xt, ut) = Qt(xt, ut) + αnt

(
c(xt, ut)

+ β min
v

Qt(xt+1 , v) − Qt(xt, ut)
)

(7)

where the initial condition Q0 is given, ut is chosen according
to π(xt), the state xt evolves according to P [ · |xt, ut ] starting
at x0 , nt is the number of visits to (xt, ut) up to time t, and
{αn}n≥0 is a sequence of step sizes satisfying

αn ∈ [0, 1],
∑

n

αn = ∞,
∑

n

α2
n < ∞.

Lemma 1: Assume that each (x, u) is visited infinitely often
w.p. one. For any ε > 0 and compact Q ∈ R|X×U |, there exists
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T Q
ε < ∞ such that, for any Q0 ∈ Q,

P

[
sup

t≥T Q
ε

∣∣Qt − Q̄
∣∣
∞ ≤ ε

]
≥ 1 − ε

where | · |∞ denotes the maximum norm and Q̄ is the unique
fixed point of the mapping F : X × U �→ X × U defined
by

F (Q)(x, u) = E[c(x, u)] + β
∑
x ′

P [x′|x, u]min
v

Q(x′, v)

for all x, u.
Proof: Let {Q′

t}t≥0 and {Q′′
t }t≥0 be the trajectories for the

initial conditions Q′
0 and Q′′

0 , respectively, corresponding to a
sample path {(xt, ut , c(xt, ut))}t≥0 . It is easy to see that, for all
t ≥ 0

|Q′
t+1(xt, ut) − Q′′

t+1(xt, ut)|
≤ (1 − αnt

)|Q′
t(xt, ut) − Q′′

t (xt, ut)| + αnt
β|Q′

t − Q′′
t |∞.

This implies that Mt := supQ ′
0 ,Q ′′

0 ∈Q |Q′
t − Q′′

t |∞ is non-
increasing and therefore convergent. Suppose that Mt → M̄ >
0. There exists some t̄ < ∞ such that maxt≥t̄ Mt < M̄(1 +
1/β)/2. Hence, we have, for all t ≥ t̄

|Q′
t+1(xt, ut) − Q′′

t+1(xt, ut)|

≤ (1 − αnt
)|Q′

t(xt, ut) − Q′′
t (xt, ut)| + αnt

β
M̄(1 + 1/β)

2
.

This leads to: for all (x, u) and t ≥ t̄

|Q′
t+1(x, u) − Q′′

t+1(x, u)|
≤ Πmt (x,u)

s=0 (1 − αs)M0

+
[
1 − Πmt (x,u)

s=0 (1 − αs)
]
βM̄(1 + 1/β)/2

where mt(x, u) :=
∑t

s=0 I{(xt ,ut )=(x,u)} is the number of visits
to (x, u) in [0, t]. Since each (x, u) is visited infinitely often w.p.
one and

∑
s αs = ∞, we have, for each (x, u), Πmt (x,u)

s=0 (1 −
αs) → 0 as t → ∞ w.p. one. This implies that M̄ ≤ βM̄(1 +
1/β)/2 < M̄ w.p. one, which is a contradiction. Therefore,
Mt → 0, w.p. one.

Theorem 4 in [31] shows that, for any initial condition
Q0 , Qt → Q̄, w.p. one. Hence, for any Q′

0 ∈ Q, we have
|Q′

t − Q̄|∞ + supQ ′′
0 ∈Q |Q′

t − Q′′
t |∞ → 0, w.p. one. Therefore,

supQ ′′
0 ∈Q |Q′′

t − Q̄|∞ → 0, w.p. one. This leads to the result, i.e.,

for any ε > 0 and compact Q ∈ R|X×U |, there exists T Q
ε < ∞

such that

P

[
sup

t≥T Q
ε

sup
Q ′′

0 ∈Q
|Q′′

t − Q̄|∞ ≤ ε

]
≥ 1 − ε.

�
Remark 2: The Q-factors corresponding to a certain deter-

ministic policy π̂ can be learnt by modifying the recursion (6)–

(7) as follows: for t ≥ 0,

Q̂t+1(x, u) = Q̂t(x, u), for all (x, u) �= (xt, ut)

Q̂t+1(xt, ut) = Q̂t(xt, ut) + αnt
(c(xt, ut)

+βQ̂t(xt+1 , π̂(xt+1)) − Q̂t(xt, ut)
)

where the initial condition Q̂0 is given and ut is chosen accord-
ing to π(xt). Hence, the uniform convergence result in Lemma 1
also holds for the this recursion.

APPENDIX B
PROOF OF THEOREM 1

For any π−i ∈ Δ−i , let F i
π−i denote the self-mapping of X ×

U i defined by

F i
π−i (Qi)(x, ui) = Eπ−i (x)

[
ci
(
x, ui, u−i

)
+ βi

∑
x ′

P
[
x′|x, ui, u−i

]
min
v i

Qi(x′, vi)
]

for all x, ui . It is well-known that F i
π−i is a contraction mapping

with the Lipschitz constant βi with respect to the maximum
norm. Recall from (2) that each DMi’s optimal Q-factors Qi

π−i

is the unique fixed point of F i
π−i . We also note that, during the

k−th exploration phase, each DMi actually uses the random
policy π̄i

k defined as

π̄j
k = (1 − ρj )πj

k + ρjνj (8)

where νj is the random policy that assigns the uniform distri-
bution on U j to each x.

Lemma 2: For any ε > 0, there exists Tε < ∞ such that, if
Tk ≥ Tε , then

P
[∣∣Qi

tk + 1
− Qi

π̄−i
k

∣∣
∞ ≤ ε, for all i

]
≥ 1 − ε.

Proof: Note that the k−th exploration phase starts with xkT ,
which belongs to the finite state space X, and Qi

tk
∈ Qi , where

Qi is compact, for all i. Note also that, during each exploration
phase, DMs use stationary random policies of the form (8) and
there are finitely many such joint policies. Hence, the result
follows from Lemma 1 in Appendix A. �

Lemma 3: For any ε > 0, there exists ρε > 0 such that, if
ρi ≤ ρε , for all i, then

∣∣∣Qi
π−i

k
− Qi

π̄−i
k

∣∣∣
∞

≤ ε, for all i, k.
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Proof: We have∣∣∣Qi
π−i

k
− Qi

π̄−i
k

∣∣∣
∞

=
∣∣∣F i

π−i
k

(Qi
π−i

k
) − F i

π̄−i
k

(Qi
π̄−i

k
)
∣∣∣
∞

≤
∣∣∣F i

π−i
k

(Qi
π−i

k
) − F i

π̄−i
k

(Qi
π−i

k
)
∣∣∣
∞

+
∣∣∣F i

π̄−i
k

(Qi
π−i

k
) − F i

π̄−i
k

(Qi
π̄−i

k
)
∣∣∣
∞

≤
(
1 −

∏
j �=i

(1 − ρj )
) ∣∣∣F i

π−i
k

(Qi
π−i

k
)

− F i
φ−i

k
(Qi

π−i
k

)
∣∣∣
∞

+ βi
∣∣∣Qi

π−i
k

− Qi
π̄−i

k

∣∣∣
∞

where φ−i
k ∈ Δ−i is some convex combination of the policies in

Δ−i of the form where each DMj , j �= i, either uses its baseline
policy πj

k ∈ Πj or the uniform distribution3. Because (π−i
k , φ−i

k )
belongs to a finite subset of Π−i × Δ−i , an upper bound F̄ < ∞
on ∣∣∣F i

π−i
k

(Qi
π−i

k
) − F i

φ−i
k

(Qi
π−i

k
)
∣∣∣
∞

exists, which is uniform in (π−i
k , φ−i

k ). This results in

∣∣∣Qi
π−i

k
− Qi

π̄−i
k

∣∣∣
∞

≤
⎛
⎝1 −

∏
j �=i

(1 − ρj )

⎞
⎠ F̄

1 − βi

which proves the lemma. �
Let δ̄ denote the minimum separation between the entries

of DMs’ optimal Q-factors (with respect to the deterministic
policies), defined as4

δ̄ := min
i,x,v i ,ṽ i ,π−i ∈Π−i :

Qi
π −i (x,v i ) �=Qi

π −i (x,ṽ i )

∣∣Qi
π−i (x, vi) − Qi

π−i (x, ṽi)
∣∣ .

We consider δ̄ to be an upper bound on the tolerance levels for
sub-optimality, i.e., δi ∈ (0, δ̄), for all i. In that case, we also
introduce an upper bound ρ̄ > 0 on the experimentation rates
such that, if ρi ≤ ρ̄, for all i, then∣∣∣Qi

π−i
k

− Qi
π̄−i

k

∣∣∣
∞

<
1
2

min{δi, δ̄ − δi}, for all i, k. (9)

Such an upper bound ρ̄ > 0 exists due to Lemma 3.
Lemma 4: Suppose δi ∈ (0, δ̄), ρi ∈ (0, ρ̄), for all i. For any

ε > 0, there exist T̄ < ∞, such that, if Tk ≥ T̄ , then P [Ek ] ≥
1 − ε where Ek , k ≥ 0, is the event defined as

Ek :=
{

ω ∈ Ω :
∣∣∣Qi

tk + 1
− Qi

πk

∣∣∣
∞

<
1
2

min{δi, δ̄ − δi}, ∀i
}

.

Proof: The result follows from Lemma 2 and (9). �

3More precisely, φ−i
k

=
∑

J ⊂{1 , . . . ,N }\{i} aJ φ−i
k ,J

where aJ :=∏
j ∈J

(1−ρj )
∏

j �∈J ∪{i } ρj

1−
∏

j �= i
(1−ρj )

and φk ,J ∈ Δ−i is a policy such that φj
k ,J

= πj
k

for j ∈ J and φj
k ,J

= νj for j �∈ J ∪ {i}.
4To avoid trivial cases, we assume Qi

π −i (x, vi ) �= Qi
π −i (x, ṽi ) for some i,

x, vi , ṽi , π−i ∈ Π−i

A. Proof of Part (i)

Note that ω ∈ Ek ⇒ Ππk
= Πk+1 = Π1

k+1 × · · · × ΠN
k+1 .

Therefore, we have

P [πk+1 = πk |Ek , πk ∈ Πeq] = 1, for all k. (10)

Since we have a weakly acyclic game at hand, for each π ∈ Π,
there exists a strict best reply path of minimum length Lπ < ∞
starting at π and ending at an equilibrium policy. Let L :=
maxπ∈Π Lπ . There exists pmin ∈ (0, 1) (which depends only
on λ1 , . . . , λN , and L) such that, for all k,

P
[
πk+L ∈ Πeq

∣∣Ek , . . . , Ek+L−1 , πk �∈ Πeq
] ≥ pmin . (11)

Fix ε̃ ∈ (0, ε) satisfying
[

(1−ε̃)pm in
ε̃+(1−ε̃)pm in

− ε̃
]
[1 − ε̃] ≥ 1 − ε.

Lemma 4 implies the existence of T̃ < ∞ such that, if
min	 T	 ≥ T̃ , then

P [Ek , . . . , Ek+L−1 ] ≥ 1 − ε̃, for all k. (12)

For the rest of this part, we assume min	 T	 ≥ T̃ . From (10),
(11), (12), we obtain, for all k

P [πk+L ∈ Πeq |πk �∈ Πeq] ≥ pmin(1 − ε̃)

and P [πk+L = · · · = πk |πk ∈ Πeq] ≥ 1 − ε̃. (13)

This leads to the recursive inequalities

p(n+1)L ≥ (1 − ε̃)[pnL + pmin(1 − pnL )] (14)

where pk := P [πk ∈ Πeq], for all k. We have, for all n,

p(n+1)L − pnL ≥ −ε̃. (15)

We rewrite (14) as

p(n+1)L − pnL ≥ [ε̃ + (1 − ε̃)pmin ]
[

(1 − ε̃)pmin

ε̃ + (1 − ε̃)pmin
−pnL

]
.

This shows that if

pnL ≤ (1 − ε̃)pmin

ε̃ + (1 − ε̃)pmin
− ε̃ (16)

we have p(n+1)L ≥ pnL + pmin ε̃. Therefore, whenever pnL sat-
isfies (16), it will increase by at least pmin ε̃ until it exceeds the
right hand side of (16), which will happen in a finite number of
steps. In fact, pnL would increase as long as pnL < (1−ε̃)pm in

ε̃+(1−ε̃)pm in
.

On the other hand, if pnL ≥ (1−ε̃)pm in
ε̃+(1−ε̃)pm in

, pnL cannot decrease
more than ε̃; recall (15). Therefore, there exists ñ < ∞ such
that, for all n ≥ ñ,

pnL ≥ (1 − ε̃)pmin

ε̃ + (1 − ε̃)pmin
− ε̃.

Finally, due to (13), we have, for all n ≥ ñ, 	 ∈ {1, . . . , L − 1}

pnL+	 ≥
(

(1 − ε̃)pmin

ε̃ + (1 − ε̃)pmin
− ε̃

)
(1 − ε̃) ≥ 1 − ε.
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B. Proof of Part (ii)

For any ε > 0, let T̃ < ∞, k̃ < ∞ be as in part (i). Let k̂ < ∞
be such that mink≥k̂ Tk ≥ T̃ . It is straightforward to see from the

proof of part (i) that, for all k ≥ k̂ + k̃, we have P [πk ∈ Πeq] ≥
1 − ε.

C. Proof of Part (iii)

Pick a sequence {ε̃n}n≥0 satisfying ε̃n > 0, for all n, and∑
n

(1 − pmin)−n ε̃n < ∞ (17)

where pmin is as in (11). Lemma 4 implies the existence of a
sequence {T̃n}n≥0 of finite integers such that

TnL , . . . , T(n+1)L−1 ≥ T̃n (18)

⇒ P
[
EnL , . . . , E(n+1)L−1

] ≥ 1 − ε̃n . (19)

We assume (18) (therefore (19)) holds for all n. This leads to

P [π(n+1)L �∈ Πeq] ≤ (1 − pmin)P [πnL �∈ Πeq] + ε̃n .

From this, it is straightforward to obtain

P
[
π(n+1)L /∈ Πe

]
≤ (1 − pmin)n

(
1 +

n∑
s=0

(1 − pmin)−s ε̃s

)
.

Due to (19), we have, for 	 ∈ {0, . . . , L − 1},

P [πnL+	 ∈ Πeq] ≥ (1 − ε̃n )P [πnL ∈ Πeq] .

Therefore, for 	 ∈ {0, . . . , L − 1}

P
[
π(n+1)L+	 /∈ Πeq

]
≤ (1 − pmin)n

(
1 +

n∑
s=0

(1 − pmin)−s ε̃s

)
+ ε̃n+1 .

From this and (17), we obtain∑
k≥1

P [πk /∈ Πe ]

≤ L
∑
n≥0

[
(1 − pmin)n

(
1 +

n∑
s=0

(1 − pmin)−s ε̃s

)
+ ε̃n+1

]

< ∞.

Borel-Cantelli Lemma implies

P [πk /∈ Πeq , for infinitely many k] = 0. (20)

From (17) and (19), we obtain
∑

k≥0 P [Ω\Ek ] < ∞. Borel-
Cantelli Lemma again implies

P [Ω\Ek , for infinitely many k] = 0. (21)

Finally, (20) and (21) imply the desired result.

APPENDIX C
PROOF OF THEOREM 2

For any π = (πi, π−i) ∈ Πi × Δ−i , let F i
π denote the self-

mapping of X × U i defined by

F i
π (Qi)(x, ui) = Eπ−i (x)

[
ci
(
x, ui, u−i

)
+ βi

∑
x ′

P
[
x′|x, ui, u−i

]
Qi(x′, πi(x′))

]

for all x, ui . It is well known that F i
π is a contraction mapping

with the Lipschitz constant βi with respect to the maximum
norm. Let us denote the unique fixed point of F i

π by Qi
π . We

also note that, during the k−th exploration phase, each DMi

actually uses the random policy π̄i
k defined as

π̄j
k = (1 − ρj )πj

k + ρjνj (22)

where νj is the random policy that assigns the uniform distri-
bution on U j to each x.

Lemma 5: For any ε > 0, there exists Tε < ∞ such that, if
T ≥ Tε , then

P
[ ∣∣∣Qi

tk + 1
− Qi

(π i
k ,π̄−i

k )

∣∣∣
∞

≤ ε and∣∣∣Q̂i
tk + 1

− Qi
(π̂ i

k ,π̄−i
k )

∣∣∣
∞

≤ ε, for all i
]
≥ 1 − ε, for all k.

Proof: Note that each exploration phase starts with xkT ,
which belongs to a finite state space, and Qi

kT , Q̂i
kT ∈ Qi , where

Qi is compact, for all i. Note also that, during each exploration
phase, DMs use stationary random policies of the form (22) and
there are finitely many such joint policies. Hence, the desired
result follows from Lemma 1 in Appendix A; see Remark 2. �

Lemma 6: For any ε > 0, there exists ρε > 0 such that, if
ρi ≤ ρε , for all i, then

max
{∣∣∣Qi

(π i
k ,π−i

k ) − Qi
(π i

k ,π̄−i
k )

∣∣∣
∞

,
∣∣∣Qi

(π̂ i
k ,π−i

k ) − Qi
(π̂ i

k ,π̄−i
k )

∣∣∣
∞

}
≤ ε, for all i, k.

Proof: We have∣∣∣Qi
(π i

k ,π−i
k ) − Qi

(π i
k ,π̄−i

k )

∣∣∣
∞

=
∣∣∣F i

(π i
k ,π−i

k )

(
Qi

(π i
k ,π−i

k )

)
− F i

(π i
k ,π̄−i

k )

(
Qi

(π i
k ,π̄−i

k )

)∣∣∣
∞

≤
∣∣∣F i

(π i
k ,π−i

k )

(
Qi

(π i
k ,π−i

k )

)
− F i

(π i
k ,π̄−i

k )

(
Qi

(π i
k ,π−i

k )

)∣∣∣
∞

+
∣∣∣F i

(π i
k ,π̄−i

k )

(
Qi

(π i
k ,π−i

k )

)
− F i

(π i
k ,π̄−i

k )

(
Qi

(π i
k ,π̄−i

k )

)∣∣∣
∞

≤
(
1 −

∏
j �=i

(1 − ρj )
)
×

∣∣∣F i
(π i

k ,π−i
k )

(
Qi

(π i
k ,π−i

k )

)
− F i

(π i
k ,φ−i

k )

(
Qi

(π i
k ,π−i

k )

)∣∣∣
∞

+ βi
∣∣∣Qi

(π i
k ,π−i

k ) − Qi
(π i

k ,π̄−i
k )

∣∣∣
∞

where φ−i
k ∈ Δ−i is some convex combination of the joint

policies of the form where each DMj , j �= i, either uses its
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baseline policy πj
k ∈ Πj or the uniform distribution (as in Ap-

pendix B). Because (πi
k , π−i

k , φ−i
k ) belongs to a finite subset of

Πi × Π−i × Δ−i , an upper bound F̌ < ∞ on∣∣∣F i
(π i

k ,π−i
k )

(
Qi

(π i
k ,π−i

k )

)
− F i

(π i
k ,φ−i

k )

(
Qi

(π i
k ,π−i

k )

)∣∣∣
∞

exists, which is uniform in (πi
k , π−i

k , φ−i
k ). This results in

∣∣∣Qi
(π i

k ,π−i
k ) − Qi

(π i
k ,π̄−i

k )

∣∣∣
∞

≤
(
1 −

∏
j �=i

(1 − ρj )
) F̌

1 − βi

which leads to the first bound. The second bound can be obtained
similarly. �

Let δ̌ denote the minimum separation between the entries of
DMs’ Q-factors (for deterministic policies), defined as5

δ̌ := min
{∣∣Qi

(π i ,π−i )(x, πi(x)) − Qi
(π̃ i ,π−i )(x, π̃i(x))

∣∣ :

i, x, πi, π̃i ∈ Πi , π−i ∈ Π−i ,

Qi
(π i ,π−i )(x, πi(x)) �= Qi

(π̃ i ,π−i )(x, π̃i(x))
}

.

We consider δ̌ to be an upper bound on the tolerance levels for
sub-optimality, i.e., δi ∈ (0, δ̌), for all i. In that case, we also
introduce an upper bound ρ̌ > 0 on the experimentation rates
such that, if ρi ≤ ρ̌, for all i, then

max
{ ∣∣∣Qi

(π i
k ,π−i

k ) − Qi
(π i

k ,π̄−i
k )

∣∣∣
∞

,

∣∣∣Qi
(π̂ i

k ,π−i
k ) − Qi

(π̂ i
k ,π̄−i

k )

∣∣∣
∞

}
<

1
2

min{δi, δ̌ − δi}
(23)

for all i, k. Such an upper bound ρ̌ > 0 exists due to Lemma 6.
Lemma 7: Suppose 0 < δi < δ̌, 0 < ρi < ρ̌, for all i. For

any ε > 0, there exist T̄ < ∞, such that, if Tk ≥ T̄ , then
P
[
Ěk

] ≥ 1 − ε where Ěk , k ≥ 0, is the event defined as

Ěk :=
{

ω ∈ Ω : max
{ ∣∣∣Qi

tk + 1
− Qi

(π i
k ,π−i

k )

∣∣∣
∞

,∣∣∣Q̂i
tk + 1

− Qi
(π̂ i

k ,π−i
k )

∣∣∣
∞

}

<
1
2

min{δi, δ̌ − δi}, for all i
}

.

Proof: The result follows from Lemma 5 and (23). �
We have

P
[
πk+1 = πk |Ěk , πk ∈ Πeq

]
= 1, for all k. (24)

Since we have a weakly acyclic game at hand, for each π ∈
Π, there exists a strict better reply path of minimum length
Ľπ < ∞ starting at π and ending at an equilibrium policy. Let
Ľ := maxπ∈Π Ľπ . There exists p̌min ∈ (0, 1) (which depends
only on λ1 , . . . , λN , and L) such that, for all k

P
[
πk+Ľ ∈ Πeq

∣∣Ěk , . . . , Ěk+L−1 , πk �∈ Πeq
] ≥ p̌min . (25)

5We assume Qi
(π i ,π −i )

(x, πi (x)) �= Qi
( π̃ i ,π −i )

(x, π̃i (x)), for some i, x,

πi , π̃i ∈ Πi , π−i ∈ Π−i , to avoid trivial cases.

Fix ε̌ ∈ (0, ε) satisfying
[

(1−ε̌)p̌m in
ε̌+(1−ε̌)p̌m in

− ε̌
]
[1 − ε̌] ≥ 1 − ε.

Lemma 7 implies the existence of Ť < ∞ such that, if
min	 T	 ≥ Ť , then

P
[
Ěk , . . . , Ěk+L−1

] ≥ 1 − ε̌, for all k. (26)

For the rest of the proof, we assume min	 T	 ≥ Ť . From (24),
(25), (26), we obtain, for all k

P
[
πk+Ľ ∈ Πeq |πk �∈ Πeq

] ≥ p̌min(1 − ε̌)

and P
[
πk+Ľ = · · · = πk |πk ∈ Πeq

] ≥ 1 − ε̌.

This leads to the recursive inequalities

p(n+1)Ľ ≥ (1 − ε̌)[pnĽ + p̌min(1 − pnĽ )], n ≥ 0 (27)

where pk := P [πk ∈ Πeq]. Note that these inequalities are sim-
ilar to (14) and by similar reasoning, there exists ň < ∞ such
that, for all n ≥ ň and 	 ∈ {1, . . . , L − 1}

pnĽ+	 ≥
(

(1 − ε̌)p̌min

ε̌ + (1 − ε̌)p̌min
− ε̌

)
(1 − ε̌) ≥ 1 − ε.

This proves part (i). The proofs of part (ii)–(iii) are analogous
to the proofs of part (ii)–(iii) of Theorem 1, respectively.
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