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Abstract

We investigate the stabilization of unstable multidimensional partially observed single-

station, multi-sensor (single-controller) and multi-controller (single-sensor) linear sys-

tems controlled over discrete noiseless channels under fixed-rate information con-

straints. Stability is achieved under communication requirements that are asymp-

totically tight in the limit of large sampling periods. Through the use of similarity

transforms, sampling and random-time drift conditions we obtain a coding and control

policy leading to the existence of a unique invariant distribution and finite second mo-

ment for the sampled state. We use a vector stabilization scheme in which all modes

of the linear system visit a compact set together infinitely often.
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Chapter 1

Introduction

1.1 Networked Control Systems As Dynamic Teams

Networked control systems have been extensively studied and we refer the reader to

[1] for an overview of the theory.

Networked control systems can be viewed as stochastic dynamic team problems.

The mathematical framework for such problems typically involves four components.

They are

1. decision makers;

2. uncertainty;

3. information structure;

4. cost function.

For our purposes, decision makers are either sensors or controllers. Sensors receive

measurements on the environment and decide what to send to one or more controllers.

The controllers receive messages from one or more sensors and apply an action which

influences the environment. Typically, we introduce a state variable which the con-

trollers attempt to influence.

There is an element of uncertainty in the measurements taken by the sensors, in

the value taken by the state, or in both. In this report, uncertainty will be introduced

1



CHAPTER 1. INTRODUCTION 2

by additive plant and observation noise, taking values according to some probability

distribution.

The information structure defines what information is available to the sensors and

controllers at each time stage and thus determines how they can interact and what

policies they can adopt.

Unlike in adversarial game theory, in team problems the decision makers work

together towards the goal of minimizing some cost function or achieving some per-

formance criterion. In this report, the cost function is the rate of a discrete noiseless

channel between the sensors and the controllers. The goal is to minimize the rate

while maintaining some form of stochastic stability for the system. We will make a

precise mathematical definition of several forms of stochastic stability later on.

By definition, a team problem is dynamic [2] if the information available to a

decision maker is affected by the actions of some decision maker. We are interested

in a class of sequential dynamic team problems. In a sequential scheme, the order

in which agents act is deterministic. For a problem with M stations that are both

sensors and controllers, the system equations are given by

xt+1 = ft(xt,wt,u
1
t , . . . ,u

M
t )

yjt = gjt (xt,v
j
t ,u

1
t−1, . . . ,u

M
t−1)

for some set of functions {ft} and {gjt} with ft : X2
t × UMt → Yt and gt : Xt ×

Yjt × UMt−1 → Yjt for 1 ≤ j ≤ M and t ∈ N. The state variable is xt ∈ Xt, the

control action of station j at time t is ujt ∈ Ut and its measurement or observation

is yjt ∈ Yjt . The processes {wt} and {vjt} are sequences of noise variables which

take values according to some probability distribution. The initial state x0 is also

determined by a probability distribution. Thus, there is an element of randomness

in the values taken by the state and the measurements made by the stations, making

the above a stochastic problem.

Example. Consider the single-station, fully observed discrete LTI system de-

scribed by the equations

xt+1 = Axt + But + wt, yt = xt + vt, (1.1)
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where xt ∈ Rn, ut ∈ Rm and yt ∈ Rn are the state, control action and sensor obser-

vation at time t respectively. The matrices A and B are of appropriate dimension.

The processes {wt} and {vt} are each independent identically distributed (i.i.d.) se-

quences of random vectors. At time t both wt and vt are independent of the state xt

and each other.

At time t, we allow the sensor to send an encoded value qt ∈ {1, . . . , Nt} for some

Nt ∈ N to the controller over a discrete noiseless channel. We define the rate at time

t to be the number of bits needed to send the message. More precisely, the rate at

time t is Rt = log2(Nt). The average rate is given by

Ravg(N) =
1

N

N−1∑

t=0

Rt.

Information structure. For a process {xt} we define x[a,b] = {xa,xa+1, . . . ,xb}.
At time t, the sensor maps its information Ist := y[0,t] → qt and the controller maps

its information Ict := q[0,t] → ut.

The task of the sensor is to map the continuous observations y[0,t] to the discrete

encoded value qt. The controller must then form a continous estimate x̂t based on

this value. This is accomplished through the application of a quantizer, which we

define presently.

Definition 1.1.1. A k-dimensional N-bin vector quantizer is a mapping Q : Rk → C
where C = {c1, . . . , cN} ⊂ Rk is called the codebook. The quantizer is characterized

by the sequence of bins {Bi}Ni=1 where Bi = {x ∈ Rk | Q(x) = ci}. The bins form

a partition of Rk. That is, ∪Ni=1Bi = Rk and Bi ∩ Bj = ∅ for all i 6= j. A scalar

quantizer is a vector quantizer of dimension k = 1.

For networked control systems, the design objective is typically stability or opti-

mality. The precise type of stability considered depends on the context of the problem.

In this report, we are interested in two strong forms of stability. Given a state process

{xt}, satisfying certain conditions, we want to show that

1. {xt} has a finite second moment and

2. {xt} is positive Harris recurrent (see Appendix) and has a unique invariant

distribution.
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The intuition behind the first condition is clear. We want the state to be well behaved

in the sense that its expected second moment converges. The second condition is

useful because of the ergodic theorem. Let {xt} be a Markov process, satisfying

positive Harris recurrence with invariant measure π. The ergodic theorem, due to

Birkhoff, states that almost surely

lim
N→∞

1

N

N−1∑

t=0

f(xt) =

∫
f(x)π(dx),

for all integrable f under π. One reason this theorem is important is because it

connects the theory of Markov chains to the theory of stochastic control. In many

applications, f is a cost function. In the context of infinite horizon decision problems,

the ergodic theorem translates the problem of cost optimization for Markov chains

into the problem of stochastic optimization over the set of invariant distributions. We

can then take a convex analytic approach (see [3] and [4]).

Before proceeding further, we introduce a fundamental result on stability. Refer-

ences [5], [6] and [7] obtained a lower bound on the average rate of the information

transmission for the finiteness of second moments. Their result is generalized in [1]

and we reproduce the proof below for convenience.

Theorem 1.1.2. Suppose in the system (1.1) that x0 has finite differential entropy.

Then a necessary condition for

lim sup
t→∞

1

t
log(E[‖xt‖2]) ≤ 0

is that

lim inf
N→∞

Ravg(N) ≥
∑

|λi|>1

log2(|λi|), (1.2)

where {λi} is the set of eigenvalues of A.

Proof of Theorem 1.1.2: We say that an eigenvalue is stable if it is within the

unit circle (modulus strictly less than one) and that it is unstable otherwise. Since

the matrix A can always be diagonalized into two blocks, one with all eigenvalues



CHAPTER 1. INTRODUCTION 5

stable and the other with all eigenvalues unstable, we need only consider the case

where A has all eigenvalues unstable.

We denote the expected norm and covariance matrix of xt by

St = E[xTt xt], Σt = E[xtx
T
t ].

We will use the usual information theory notation. Namely, H(·) denotes discrete

entropy, h(·) denotes differential entropy and I(·; ·) denotes mutual information. A

key fact in the proof is that the entropy of the encoded values H(q[0,T−1]) serves as a

lower bound on the average rate for information transmission (see Proposition 5.3.1

of [1]). We then have

TRavg(T ) ≥ H(q[0,T−1]) =
T−1∑

t=1

H(qt|q[0,t−1]) +H(q0)

≥
T−1∑

t=1

(
H(qt|q[0,t−1])−H(qt|xt, q[0,t−1])

)
+H(q0) (1.3)

=
T−1∑

t=1

I(xt; qt|q[0,t−1]) +H(q0)

=
T−1∑

t=1

(
h(xt|q[0,t−1])− h(xt|q[0,t])

)
+H(q0)

=
T−1∑

t=1

(
h(Axt−1 + But−1 + wt−1|q[0,t−1])− h(xt|q[0,t])

)
+H(q0)

=
T−1∑

t=1

(
h(Axt−1 + wt−1|q[0,t−1])− h(xt|q[0,t])

)
+H(q0)

≥
T−1∑

t=1

(
h(Axt−1 + wt−1|q[0,t−1],wt−1)− h(xt|q[0,t])

)
+H(q0) (1.4)

=
T−1∑

t=1

(
h(Axt−1|q[0,t−1],wt−1)− h(xt|q[0,t])

)
+H(q0)

=
T−1∑

t=1

(
h(Axt−1|q[0,t−1])− h(xt|q[0,t])

)
+H(q0) (1.5)
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=
T−1∑

t=1

(
log2(|det(A)|) + h(xt−1|q[0,t−1])− h(xt|q[0,t])

)
+H(q0)

=

( T−1∑

t=1

log2(|det(A)|)
)

+ h(x0|q0)− h(xT−1|q[0,T−1]) +H(q0)

≥
( T−1∑

t=1

log2(|det(A)|)
)

+ h(x0|q0)− h(xT−1) +H(q0) (1.6)

≥
( T−1∑

t=1

log2(|det(A)|)
)

+ h(x0|q0)− 1

2
log

(
(2πe)ndet(ΣT−1)

)
+H(q0) (1.7)

≥
( T−1∑

t=1

log2(|det(A)|)
)

+ h(x0|q0)− 1

2
log

(
(2πe)n(

1

n
ST−1)n

)
+H(q0). (1.8)

In the above, (1.3) holds because discrete entropy is nonnegative. The inequality (1.4)

holds because conditioning cannot increase entropy. Line (1.5) follows since wt−1 is

independent of xt−1. The inequality (1.7) holds because, for a given covariance matrix,

the Gaussian distribution maximizes entropy. The last step (1.8) is an application

of the arithmetic-geometric mean inequality which shows that det(Σt) ≤ ( 1
n
Tr(Σt))

n.

Taking the limit under our assumption that lim supT→∞
1
T

log(ST ) ≤ 0 then gives the

result. ut

Remark 1.1.3. It is shown in [7] that (1.2) is also a necessary condition for

sup
t∈N

E[‖xt‖2] <∞.

Although we have shown the bound in the fully observed single-station case, it

holds for all systems in this report. This follows because in team problems, more

information does not hurt performance. Thus, the lower bound in the centralized

setting is also a lower bound in the decentralized setting [1]. In light of this fact, we

find it convenient to define

Rmin =
∑

|λi|>1

log2(|λi|). (1.9)
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1.2 Notation

We denote the indicator function of an event E by 1E. We will use Rm×n to denote the

space of real m×n matrices and Rn to denote the space of real n dimensional vectors.

We let Rn+ be the space of real n dimensional vectors with all entries nonnegative.

Unless otherwise stated, all vectors are assumed to be column vectors. For any

x ∈ Rn we write x =
[
x1 · · · xn

]T
where xi ∈ R is the ith entry. We define the

absolute value operation for vectors as the component-wise absolute value. That is,

|x| =
[
|x1| · · · |xn|

]T
. For a matrix A ∈ Rn×n we denote its transpose by AT ,

determinant by det(A) and trace by Tr(A). If it is invertible, we denote the inverse

by A−1. We let Λ(A) denote the set of eigenvalues of A. The p norm is denoted by

‖ · ‖p and defined as ‖x‖p = {∑n
i=1 |xi|p}

1
p .

Definition 1.2.1. For x ∈ Rn and y ∈ Rn+ we write x ≤ y if |xi| ≤ yi for all

1 ≤ i ≤ n. We write x � y otherwise.

1.3 Brief Literature Review

This report is based on previous work in three main areas. We draw on results

from quantization theory, networked control theory and stochastic control theory,

particularly the study of Markov chains.

For an introduction to vector quantization, the reader is referred to [8] and [9].

The works [1] and [10] present a review of networked control theory and the relevant

literature. A thorough treatment of Markov chains and stochastic stability can be

found in [11].

In this report, we implement an adaptive quantizer in order to form a discrete

estimate of the state. Adaptive quantizers change their bin sizes over time. They are

outlined by Goodman and Gersho in [12], which studies an adaptive quantizer where

the bin sizes expand or contract by a multiplicative constant at each time stage. It

is shown that the logarithm of the range has a stationary distribution given an i.i.d.

source. By choosing appropriate multiplicative constants Mi, it is shown that the

state space of the quantizer range can be made irreducible. Such quantizers were

developed for the purpose of speech encoding.
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The paper [13] employs adaptive quantizers to show mean-stationarity of symbol-

by-symbol encoding schemes when the source is stationary. It is shown that, under

certain conditions, the application of the Goodman–Gersho adaptive quantization

scheme results in the sequence of triples consisting of the bin size, input and output

being asymptotically mean stationary [9]. Applications to variable-length coding

schemes and queueing theory are also considered.

The programs considered in [12] and [13] cannot be applied to our setup since we

are interested in systems that are open-loop unstable.

More recently, [14] studied the application of quantizers to both continuous and

discrete linear time-invariant (LTI) control systems in the noise-free case. The ap-

proach taken yields global asymptotic stability. The class of quantizers with granular

region (−(M + 1/2)∆, (M + 1/2)∆], where ∆ is the bin size and M is some posi-

tive integer is considered. The authors allow the bin size to change, expanding and

contracting the granular region, and study the evolution of the bin size over time. Par-

ticular attention is paid to the case where M is small and the existence of stabilizing

control policies are presented under various assumptions.

Since we consider multi-sensor and multi-controller systems, the decentralized con-

trol literature is also relevant. In decentralized control theory, [15] is an important

work. It studies the effect of feedback in decentralized systems which are jointly

observable and jointly controllable. The notion of a complete system is introduced.

These are systems which can be made controllable and observable through the ap-

plication of nondynamic decentralized feedback. Section 5 of [15] is of importance

to us, as it applies standard techniques from graph theory to decompose a system

into strongly connected components. We will employ a simplified version of such a

decomposition when we study multi-sensor and multi-controller systems.

The work [16] studies decentralized control systems with LTI state equations and

time-varying control laws. Assuming joint controllability and joint observability, it is

shown that some systems which are unstabilizable via time-invariant control policies

can be stabilized through the application of time-varying control policies. One of the

main contributions of the paper is to show that many stability results can be obtained

in the presence of fixed modes under linear time-invariant policies when the class of

control laws is widened. Systems with noiseless plants and observations are studied.
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Reference [5] considers a system with communication constraints. Here, we see

that special attention is given to the development of coding and communication pro-

tocols. The work is motivated in part by remotely controlled systems in which delays

are a central part of the analysis and performance is closely linked to the data rate of

the control system. A major contribution of the article is the relation of containability,

a weak form of stability, to the data rate.

References [5], [6] and [7] obtained a fundamental lower bound on the average rate

of the information transmission for the finiteness of second moments. As derived in

Section 1.1 for the system (1.1), this bound is

Rmin =
∑

|λi|>1

log2(|λi|),

which holds for all linear systems in this report.

In [6], single-sensor, single-controller systems with communication constraints are

studied. Motivated by geographically distributed systems, the paper states a control

problem in which the sensor communicates with the controller via a discrete, noiseless

channel. The goal is to design the channel encoder and decoder to achieve a variety

of control objectives. Upper bounds are computed by explicitly stating the control

policy.

The work [7] considered the case of finite-dimensional linear systems with both

plant and observation noise. Stochastic stability is achieved for noise processes with

unbounded support through the use of time-varying control laws. A variable-rate

quantizer is used, in which the rate is very high at some time stages and zero at

others. A new quantizer error bound is introduced and a lower bound on the data

rate is derived.

Recent developments in decentralized systems under communication constraints

include [17] and [18]. In [17], a noisy linear scalar system is considered in which

quantized measurement are sent to the controller over a discrete noiseless channel.

The existence of an invariant distribution and finite second moment are achieved for

open-loop unstable systems using martingale theory. A fixed-rate coding and control

policy is employed using adaptive quantizers.

The paper [18] uses random-time Lyapunov theory to obtain stability results for
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noisy scalar systems. In the setup of the paper, a coder communicates with a con-

troller over an erasure channel with finite capacity. One contribution of the paper

is the formulation of a general drift criteria which can be used to verify stability for

Markov processes. The existence of a finite second moment for the state is established

by obtaining a bound on the difference between stopping times.

In this report, we make use of the drift approach developed in [1], [17] and [18].

This method leads to greatly simplified proofs and allows us to develop an intuition

about the stability of the systems considered. We are able to obtain strong forms

of stability even in the presence of unbounded noise through the application of drift

criteria.

In view of space constraints, we have only presented a summary of the directly

related literature above and will simply refer the reader to additional material, e.g.,

[19], [20], [21] and [22].

1.4 Contributions

In view of the literature, the contributions of this work are as follows:

• The case where the system is multi-dimensional and driven by unbounded noise

over a discrete-channel has not been studied to our knowledge, regarding the

existence of an invariant distribution and ergodicity properties. Results for the

limit properties of the finite moment are also new.

• We give sufficient conditions for multi-sensor and multi-controller systems with

both system noise and observation noise with unbounded support, which has

not been treated previously, to our knowledge.

Our approach builds on martingales and random-drift programs, as considered in

[17] and [18]. However, new geometric constructions are needed for the vector and

partially observed settings. We define a more general class of stopping times and

adopt a further geometric approach than what is present in these papers.

We structure this report as follows. In Chapter 2, we study single-station systems

driven by Gaussian noise and give our main result for such systems, Theorem 2.2.1.

Chapter 3 extends these results to a larger class of noise distributions with sufficiently
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light tails. Chapters 4 and 5 study the multi-sensor (single-controller) and multi-

controller (single-sensor) cases respectively. We give concluding remarks in Chapter

6 and suggestions for further research in Chapter 7. Some basic definitions and results

from the theory of matrices, Markov chains and stochastic stabilization are provided

in the Appendix.



Chapter 2

Single-Station Systems

In this chapter, we consider single-sensor, single-controller systems.

2.1 Problem Statement

Consider the class of single-station LTI discrete-time systems with both plant and

observation noise. The system equations are given by

xt+1 = Axt + But + wt, yt = Cxt + vt, (2.1)

where xt ∈ Rn, ut ∈ Rm and yt ∈ Rp are the state, control action and observation

at time t respectively. The matrices A,B,C and the noise vectors wt,vt are of

compatible size. The initial state, x0, is drawn from a Gaussian distribution.

Assumption 2.1.1. The noise processes {wt} and {vt} are each i.i.d. sequences of

multivariate Gaussian random vectors with zero mean. At time t, both wt and vt are

independent of xt and each other.

Assumption 2.1.2. The pair (A,B) is controllable and the pair (C,A) is observable.

The setup is depicted in Figure 2.1. The observations are made by the sensor and

sent to the controller through a finite capacity channel. At each time stage t, we allow

the sensor to send an encoded value qt ∈ {1, . . . , Nt} for some Nt ∈ N. We define

the rate of our system at time t as Rt = log2(Nt). Now, suppose that the channel is

12
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used periodically, every T time stages. The rate for all time stages is then specified

by {N0, . . . , NT−1}. The average rate is

Ravg =
1

T

T−1∑

t=0

Rt. (2.2)

Sensor

Controller

Plant

qt

ut

yt

Figure 2.1: A single-station system with finite-rate communication channel.

Information structure. For a process {xt} we define x[a,b] = {xa,xa+1, . . . ,xb}.
At time t, the sensor maps its information Ist := y[0,t] → qt ∈ {1, . . . , Nt}. The

controller maps its information Ict := q[0,t] → ut ∈ Rm.

2.2 Main Result

We label the eigenvalues of A as λ1, . . . , λn. Without loss of generality, we assume

that |λi| > 1 for all 1 ≤ i ≤ n. Our main result for single-station systems is the

following:

Theorem 2.2.1. There exists a coding and control policy with average rate Ravg ≤
1/(T2n)

∑n
i=1 log2(d|λi|T2n + εe+ 1) for some ε > 0 which gives:

(a) the existence of a unique invariant distribution for {x2nt};

(b) limt→∞E[‖x2nt‖2
2] <∞.

Theorem 2.2.2. The average rate in Theorem 2.2.1 achieves the minimum rate (1.9)

asymptotically for large sampling periods. That is, limT→∞Ravg = Rmin.
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2.3 Coding and Control Policy

For now, assume that A has only one eigenvalue λ. See Remark 2.4.2 for a justification

of this. We will give an explicit coding and control policy in a more general setting

in Chapters 4 and 5.

Put K = d|λ| + εe for some parameter ε > 0 and consider the following scalar

(K + 1)-bin uniform quantizer. Assuming that K is even, this is defined for k ∈
{1, 2, . . . , K} as

Q∆
K(x) =





(
−K+1

2
+ k
)

∆, if x ∈ [
(−K

2
+ k − 1

)
∆,
(−K

2
+ k
)

∆),

K−1
2

∆, if |x| = K
2

∆,

0, if |x| > K
2

∆,

where ∆ ∈ R+ is the bin size. The set [−K
2

∆, K
2

∆] is called the granular region while

the set (−∞,−K
2

∆) ∪ (K
2

∆,∞) is called the overflow region. If the state is in the

granular region, that is if |x| ≤ K
2

∆, then we say the quantizer is perfectly-zoomed at

x. Otherwise, we say it is under-zoomed.

We write our quantizer as the composite function Q∆
K(x) = D∆

K(E∆
K (x)). The

encoder E∆
K : R → {0, 1, . . . , K} and decoder D∆

K : {0, 1, . . . , K} → C for k ∈
{1, 2, . . . , K} are

E∆
K (x) =





k, if x ∈ [(−K
2

+ k − 1)∆, (−K
2

+ k)∆),

K, if x = K
2

∆,

0, if |x| > K
2

∆,

D∆
K(x) =





(
−K+1

2
+ x
)

∆, if x 6= 0,

0, otherwise.

At time t, we associate with each component xit a bin size ∆i
t. Let qit = E∆i

t
K (yit). We

will be applying our control policy to system (2.6) where ys is a meaningful estimate

of the state xs. Let Nt = Kn + 1 for all t ∈ N. Choose any invertible function
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f : {1, . . . , K}n → {1, . . . , Kn}. We then choose the encoded value

qt =




f(q1

t , . . . , q
n
t ), if qit 6= 0 for all 1 ≤ i ≤ n,

0, otherwise.

Upon receiving qt 6= 0, the controller knows q1
t , . . . , q

n
t . The controller forms the

estimate x̂t as x̂t =
[
x̂1
t · · · x̂nt

]T
, where

x̂it =




D∆i

t
K (qit), if qt 6= 0,

0, otherwise.

We assume without loss of generality that A is a Jordan block with eigenvalue λ.

From the real Jordan canonical form (see for example [23]), we know that it can be

written as

A =




λ 1

λ
. . .
. . . 1

λ



, if λ ∈ R, A =




D I

D
. . .
. . . I

D



, if λ ∈ C,

where in the complex case we write λ = a+ ib for some a, b ∈ R and define

D =

[
a b

−b a

]
.

The update equations are

∆t+1 = Q̄ (qt,∆t) ∆t, Q̄ (qt,∆t) =




ρ|λ|, if qt = 0,

β(∆t), otherwise,
(2.3)
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for some ρ > 1 and with

β(∆t) = diag(β1(∆1
t ), . . . , βn(∆n

t )), βi(∆
i
t) =





1, if ∆i
t ≤ Li ,

|λ|
|λ|+ε−η , otherwise,

(2.4)

for some 0 < η < ε and L ∈ Rn+. Note that if we define L̄ = L|λ|/(|λ| + ε − η) then

∆i
t > L̄i for all 1 ≤ i ≤ n and all t ∈ N.

Bin ordering. We set L = c∆0, for some 0 < c ≤ 1. First let λ ∈ R. For any

δ > 0 we can choose ∆i
0 and ∆i+1

0 such that ∆i+1
0 ≤ δ∆i

0 for all 1 ≤ i ≤ n− 1. With

our update equations and our choice of L we get that the ordering is preserved over

all time stages. That is, ∆i+1
t ≤ δ∆i

t for all 1 ≤ i ≤ n− 1 and t ∈ N.

Now let λ ∈ C. We choose ∆i
0 = ∆i+1

0 for all i odd. Thus, we have divided the

complex modes into their conjugate pairs and set their initial bin sizes to be equal.

Our initial condition implies that ∆i
t = ∆i+1

t for all i odd and t ∈ N. For any δ > 0

we can choose ∆i
0 and ∆i+2

0 such that ∆i+2
t ≤ δ∆i

t for all 1 ≤ i ≤ n− 2 and t ∈ N.

Control action. Under our information structure, the update equations (2.3) can

be applied at the sensor and the controller. Our vector quantizer is implementable

and at time t the controller knows x̂t. We choose the control action

ut = −Ax̂t.

2.4 Outline of Proof for Theorem 2.2.1

In this section, we outline the supporting results and key steps in proving our main

result for single-station systems, Theorem 2.2.1. The proofs are given in Section 2.5.

Lemma 2.4.1. We can sample every 2n time stages and apply a similarity transform

to xt in (2.1) to obtain x̄s = Px2ns with s ∈ N for some invertible matrix P. This

new state satisfies the following system of equations:

x̄s+1 = Āx̄s + ūs + w̄s, ȳs = x̄s + v̄s. (2.5)

The control action ūs ∈ Rn is chosen arbitrarily by the controller. The estimate

ȳs ∈ Rn at time s is known by the sensor. The noise processes {w̄s} and {v̄s} are
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each i.i.d. sequences of zero mean multivariate Gaussian random vectors. At time s,

w̄s and v̄s are independent of x̄s but may be correlated with each other. For s1 6= s2,

the vectors w̄s1 and v̄s2 are independent. The matrix Ā is in real Jordan normal form

and has eigenvalues λ2n
1 , . . . , λ

2n
n .

By a slight abuse of notation, we will rewrite system (2.5) as

xs+1 = Axs + us + ws, ys = xs + vs, (2.6)

where xs ∈ Rn, us ∈ Rn and ys ∈ Rn are the state, control action and observation at

time s respectively.

Remark 2.4.2. We consider the case where A is a single Jordan block with eigenvalue

λ. We can do this without loss of generality since we are considering the single-station

case and the sensor obtains an estimate for all components, as seen in Lemma 2.4.1.

Thus, we can simply apply our control policy to each Jordan block. In all remaining

theorems of this section, we will work with system (2.6). Where necessary, we will

distinguish between the real and complex eigenvalue cases.

Lemma 2.4.3. The process {(xs,∆s)} is Markov.

Section 2.3 gives our control policy in terms of the parameters ρ, ε and η.

Lemma 2.4.4. For appropriate choices of ρ, ε and η, we can form a countable state

space S for {∆s}. The process {(xs,∆s)} is an irreducible and aperiodic Markov

chain on Rn × S.

Define the sequence of stopping times

τ0 = 0, τz+1 = min

{
s > τz : |ys| = |xs + vs| ≤

K

2
∆s

}
.

These are the times when all quantizers are perfectly-zoomed. We assume that this

is satisfied at time s = 0. This technical condition is justified by showing that the

process {(xs,∆s)} moves to such a perfectly zoomed state in a finite time, which is

dominated by a geometric distribution (see the proof of Proposition 3.2 in [18]).

Theorem 2.4.5. If K is even then the following hold.
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(a) For any r > 1 and any polynomial Q(k) of finite degree there exists a sufficiently

large H such that Q(k)P (τz+1 − τz > k | xτz ,∆τz) ≤ r−k for all k > H, for all

z ∈ N and for all (xτz ,∆τz).

(b) Let ∆τz →∞ be equivalent to stating that ∆i
τz →∞ for all 1 ≤ i ≤ n. Then

lim
∆τz→∞

P (τz+1 − τz > 1 | xτz ,∆τz) = 0

uniformly in xτz .

We define the compact sets

S = Sx × S∆, S∆ = {∆ ∈ Rn+ : ∆i ≤ F, 1 ≤ i ≤ n},

Sx =

{
x ∈ Rn : |xi| ≤ K

2
F, 1 ≤ i ≤ n

}
,

for some F > L1 where L1 is a component of L as described in Section 2.3. Note that

at the stopping time τz, if ∆τz ∈ S∆ then |xiτz | ≤ K
2

∆i
τz ≤ K

2
F , for all 1 ≤ i ≤ n, and

thus xτz ∈ Sx and (xτz ,∆τz) ∈ S.

Lemma 2.4.6. For some γ > 0, the following drift condition holds:

γE

[
τz+1−1∑

s=τz

(∆1
s)

2

∣∣∣∣∣xτz ,∆τz

]
≤ (∆1

τz)
2 − E[(∆1

τz+1
)2 | xτz ,∆τz ] + b1{(xτz ,∆τz )∈S}. (2.7)

For λ ∈ C, the above also holds with ∆2 in place of ∆1.

For x ∈ Rn, we say that xi and xi+1 are a conjugate pair if i is odd. To simplify

notation in the complex eigenvalue case we find it convenient to define for any x ∈ Rn,

the set of vectors

x̃i =
[
xi xi+1

]T
, if i is odd, x̃i =

[
xi−1 xi

]T
, if i is even,

for 1 ≤ i ≤ n. Note that x̃i = x̃i+1 for i odd. We are only concerned with the case

when n is even.
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Theorem 2.4.7. Let λ ∈ R. For i = n, there exists a κ > 0 such that

E

[
τz+1−1∑

s=τz

(xis)
2

∣∣∣∣∣xτz ,∆τz

]
≤ κ(∆1

τz)
2. (2.8)

If lims→∞E[(xks)
2] <∞ then the above holds for i = k − 1.

For λ ∈ C, with i = n− 1, there exists a κ > 0 such that

E

[
τz+1−1∑

s=τz

(x̃is)
T x̃is

∣∣∣∣∣xτz ,∆τz

]
≤ κ(∆̃1

τz)
T ∆̃1

τz .

If lims→∞E[(x̃ks)
T x̃ks ] <∞ then the above holds for i = k − 2.

In both cases, we have that κ does not depend on the condition (xτz ,∆τz).

Proof of Theorem 2.2.1:

(a) We know from Lemmas 2.4.3 and 2.4.4 that the process {(xs,∆s)} is an irreducible

and aperiodic Markov chain. The set S is small (see the Appendix and [18]).

Using Lemma 2.4.6 we can apply Theorem B.0.8 with a = 1, the Markov chain

{(xs,∆s)} and the functions V (xs,∆s) = (∆1
s)

2, β(xs,∆s) = 1 and b as given in

Lemma 2.4.6 to get that {(xs,∆s)} is positive Harris recurrent and has a unique

invariant distribution. Note that this proof holds since γ has no dependence on

∆τz . We choose L large enough such that we can pick ζ in Theorem 2.4.6. We

then fix ζ, γ and expand L further, if necessary, to get γ∆t > 1 for all t.

(b) Suppose that λ ∈ R. We will apply Theorem B.0.8 with a = 0, the Markov chain

{(xs,∆s)} and the functions

V (xs,∆s) = (∆1
s)

2, β(xs,∆s) = γ(∆1
s)

2, f(xs,∆s) =
γ

κ
(xns )2.

From Lemma 2.4.6, we get

E[V (xτz+1 ,∆τz+1) | Fτz ] = E[(∆1
τz+1

)2 | xτz ,∆τz ]

≤ (∆1
τz)

2 − γE
[
τz+1−1∑

s=τz

(∆1
s)

2

∣∣∣∣∣xτz ,∆τz

]
+ b1{(xτz ,∆τz )∈S}
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≤ (∆1
τz)

2 − γ(∆1
τz)

2 + b1{(xτz ,∆τz )∈S}

= V (xτz ,∆τz)− β(xτz ,∆τz) + b1{(xτz ,∆τz )∈S}.

We know that Theorem 2.4.7 holds immediately for {xns} and thus

E

[
τz+1−1∑

s=τz

f(xs,∆s)

∣∣∣∣∣Fτz

]
=
γ

κ
E

[
τz+1−1∑

s=τz

(xns )2

∣∣∣∣∣xτz ,∆τz

]
≤ γ(∆1

τz)
2 = β(xτz ,∆τz).

Thus, lims→∞
γ
κ
E[(xns )2] < ∞ by Theorem B.0.8 and so lims→∞E[(xns )2] < ∞.

This implies that Theorem 2.4.7 holds for {xn−1
s } as mentioned in the proof and

theorem statement. The finite second moment of all components then follows by

induction.

In the complex case, we have that the drift condition (2.7) in Lemma 2.4.6

also holds with ∆2
s in place of ∆1

s since they are equal. Choosing the functions

V (xs,∆s) = (∆1
s)

2 + (∆2
s)

2, β(xs,∆s) = γ((∆1
s)

2 + (∆2
s)

2), f(xs,∆s) = γ
κ
(x̃ns )T x̃ns ,

we obtain the result.

ut

Finally, a remark on the policy we have employed in this chapter is in order.

Remark 2.4.8. We have presented a vector stabilization scheme. From the problem

statement, it would be natural to adopt a sequential stabilization scheme. That is,

each of the components of the state is viewed as a separate system. In this case,

we lose the Markov property and the number of time stages we must wait (denoted

by H in Theorem 2.4.5) to establish geometric decay is dependent on the conditions

(xτz ,∆τz). This complicates the analysis and such a scheme is left for future work.

2.5 Supporting Results for Section 2.4

Proof of Theorem 2.2.2: In Sections 2.3 and 2.4, we describe our control policy for

period T = 2n with a fixed average rate of Ravg = 1
2n

log2 ({∏n
i=1d|λi|2n + εe}+ 1) .

Suppose that instead of sending an estimate every 2n time stages, we apply them

periodically every T2n time stages. Taking the limit as T approaches infinity, our
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average rate satisfies

lim
T→∞

Ravg ≤ lim
T→∞

1

T2n

(
n∑

i=1

log2(d|λi|T2n + εe+ 1)

)

= lim
T→∞

(
n∑

i=1

log2(d|λi|T2n + εe+ 1)
1

T2n

)
=

n∑

i=1

log2(|λi|).

In this sense, our policy achieves the minimum rate (1.9) asymptotically. ut

Proof of Lemma 2.4.1: Recall the basic recursion for LTI systems.

xt = Axt−1 + But−1 + wt−1 = A2xt−2 + ABut−2 + But−1 + Awt−2 + wt−1

· · · = Atx0 +
t−1∑

i=0

At−1−iBui +
t−1∑

i=0

At−1−iwi.

In the first n time stages the sensor makes observations on the state and forms an

estimate. In the second n time stages we allow the controller to apply a control action.

We set ui = 0 for 0 ≤ i ≤ n− 2 so that the first n observations of the sensor are




y0

y1

...

yn−1




= O(C,A)x0 +




0

Cw0

...∑n−2
i=0 CAn−2−iwi




+




v0

v1

...

vn−1



,

where O(C,A) is the observability matrix of the pair (C,A). We have assumed that

(C,A) is an observable pair as part of Assumption 2.1.2. Equivalently, O(C,A) has full

column rank. By choosing a subset of n equations from the matrix equation above,

it is clear that we can apply the inverse to obtain the estimate

ŷ0 = x0 +
n−2∑

i=0

ξiwi +
n−1∑

i=0

ζivi,

for some set {ξi, ζi} of matrices ξi ∈ Rn×n and ζi ∈ Rn×p.
Our estimate ŷ0 is generated at time n− 1. At this time stage, the sensor sends

the encoded value qn−1 to the controller through the finite capacity channel. Based
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on this information, we allow the controller to apply control actions in time stages n

to 2n− 1. This is standard (see for example [24]) and we do not describe it in detail.

We then have the system of equations

x2n = A2nx0 + ũ0 +
2n−1∑

i=0

A2n−1−iwi, ŷ0 = x0 +
n−2∑

i=0

ξiwi +
n−1∑

i=0

ζivi,

where at time n − 1, the estimate ŷ0 is known by the sensor and the action ũ0 is

chosen arbitrarily by the controller.

Let us define the sampled variables x̃s = x2ns and ỹs = ŷ2ns. We define the noise

processes

w̃s =
2n−1∑

i=0

A2n−1−iw2ns+i, ṽs =
n−2∑

i=0

ξiw2ns+i +
n−1∑

i=0

ζiv2ns+i,

and note that they are both sequences of i.i.d. multivariate Gaussian random vectors

with zero mean. Then, by repeating our procedure every 2n time stages, we obtain

the system

x̃s+1 = A2nx̃s + ũs + w̃s, ỹs = x̃s + ṽs.

Finally, we apply a real Jordan transformation to the above system. We define x̄s =

Px̃s, Ā = PA2nP−1, ūs = Pũs, w̄s = Pw̃s, ȳs = Pỹs and v̄s = Pṽs where P is the

Jordan transform matrix. This gives the system

x̄s+1 = Āx̄s + ūs + w̄s, ȳs = x̄s + v̄s.

Note that the matrix Ā has eigenvalues λ2n
1 , . . . , λ

2n
n . ut

Remark 2.5.1. The estimate used in Lemma 2.4.1 may appear naive. At first glance,

it would seem better to apply the Kalman filter. In this case, a new system is formed

with the estimate as the state. The problem is that the noise for this system is not

independent across time. We must obtain a new bound on the noise using the stability

of the Kalman filter. That is, using the fact that the covariance matrix of the noise

process converges.
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Furthermore, the noise is orthogonal to the state in the sense that they are un-

correlated. In the Gaussian case, the state and noise are thus independent, but this

does not hold for a more general class of noise distributions and we lose the Markov

property.

Proof of Lemma 2.4.3: Note that under our control policy we can write us =

g(xs,vs,∆s) and ∆s+1 = f(xs,vs,∆s) for some functions g and f .

Let B(Rn × Rn+) be the Borel σ-field on Rn × Rn+. It follows that

P ((xs+1,∆s+1) ∈ (C ×D) | (xs,∆s), . . . , (x0,∆0))

= P (xs+1 ∈ C | ∆s+1 ∈ D, (xs,∆s), . . . , (x0,∆0))

P (∆s+1 ∈ D | (xs,∆s), . . . , (x0,∆0))

= P (Axs + us + ws ∈ C | ∆s+1 ∈ D, (xs,∆s), . . . , (x0,∆0))

P (f(xs,vs,∆s) ∈ D | (xs,∆s), . . . , (x0,∆0))

= P (Axs + g(xs,vs,∆s) + ws ∈ C | ∆s+1 ∈ D, (xs,∆s), . . . , (x0,∆0))

P (f(xs,vs,∆s) ∈ D | (xs,∆s), . . . , (x0,∆0))

= P (Axs + g(xs,vs,∆s) + ws ∈ C | ∆s+1 ∈ D, (xs,∆s))

P (f(xs,vs,∆s) ∈ D | (xs,∆s))

= P ((xs+1,∆s+1) ∈ (C ×D) | (xs,∆s)) ,

for all (C ×D) ∈ B(Rn × Rn+). ut

Proof of Lemma 2.4.4: This follows immediately from the scalar case, as pre-

sented in the proof of Theorem 2.4 of [17]. We can choose ρ, ε and η such that

log2(Q̄i(qs,∆s)), where Q̄i(qs,∆s) ∈ {ρ|λ|, βi(∆i
s)} is the ith component of Q̄(qs,∆s),

takes values in integer multiples of ` and the integers taken are relatively prime. By

setting each ∆i
0 to be an integer multiple of `, it follows from the equation

log2(∆i
s+1)/` = log2(Q̄i(qs,∆s))/`+ log2(∆i

s)/`

that log2(∆i
s) is an integer multiple of ` for all s ∈ N. The above construction, coupled

with the assumption that the noise process {ws} is drawn from a distribution which

is positive on every open set, gives irreducibility.
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As is [17], the chain is aperiodic since the bin sizes can take their smallest value

for any finite number of consecutive time stages with positive probability. ut

To prove Theorem 2.4.5, we need the following simple Gaussian bound. Recall that

Λ(·) denotes the set of eigenvalues of its argument. Let us define λmin(A) = min Λ(A)

and λmax(A) = max Λ(A).

Lemma 2.5.2. Let X ∼ N (0,Σ) be a multivariate normal random vector with mean

zero and covariance matrix Σ ∈ Rn×n. For ∆ ∈ Rn+, the following bound holds.

P (X � ∆) ≤ 2

√
λn+1

max(Σ)

2πdet(Σ)

n∑

i=1

exp

{
− (∆i)2

2λmax(Σ)

}
.

Proof of Lemma 2.5.2: Let X ∼ N (0,Σ) be a multivariate normal random

vector with mean zero and covariance matrix Σ ∈ Rn×n. We avoid the degenerate

case and assume that Σ is positive-definite. Let ∆ ∈ Rn+. Then

P (X � ∆) = P (∪ni=1{|xi| > ∆i}) ≤
n∑

i=1

P (|xi| > ∆i)

=
n∑

i=1

∫

|xi|>∆i

1√
(2π)ndet(Σ)

exp

{
−1

2
xTΣ−1x

}
dx

≤
n∑

i=1

∫

|xi|>∆i

1√
(2π)ndet(Σ)

exp

{
−1

2
λmin(Σ−1)xTx

}
dx

=
1√

2πdet(Σ)λn−1
min (Σ−1)

n∑

i=1

2

∫ ∞

∆i

exp

{
−1

2
λmin(Σ−1)(xi)2

}
dxi

≤ 2√
2πdet(Σ)λn−1

min (Σ−1)

n∑

i=1

∫ ∞

∆i

xi

∆i

exp

{
−1

2
λmin(Σ−1)(xi)2

}
dxi

=
2√

2πdet(Σ)λn−1
min (Σ−1)

n∑

i=1

1

∆i

[
−exp

{
−1

2
λmin(Σ−1)(xi)2

}

λmin(Σ−1)

]∞

∆i

= C
n∑

i=1

1

∆i
exp

{
−1

2
λmin(Σ−1)(∆i)2

}
≤ C

n∑

i=1

exp

{
−1

2
λmin(Σ−1)(∆i)2

}
,

where the last line follows when ∆i ≥ 1 for all 1 ≤ i ≤ n. We will see later that

we can ensure this condition is met in our application of the above bound. We
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have also defined the constant C = 2/(
√

2πdet(Σ)λn+1
min (Σ−1)). The definition of an

eigenvalue shows that eigenvalues of Σ−1 are the inverse eigenvalues of Σ and thus

λmin(Σ−1) = 1/λmax(Σ). This gives the desired bound. ut

Proof of Theorem 2.4.5: i) Exponential Bound. Note that

P (τz+1 − τz > k | xτz ,∆τz) = P

(
k⋂

s=1

{
|xτz+s + vτz+s| �

K

2
∆τz+s

}∣∣∣∣∣xτz ,∆τz

)

= P

(
|xτz+k + vτz+k| �

K

2
∆τz+k

∣∣∣∣
k−1⋂

s=1

{
|xτz+s + vτz+s| �

K

2
∆τz+s

}
,xτz ,∆τz

)

P

(
k−1⋂

s=1

{
|xτz+s + vτz+s| �

K

2
∆τz+s

}∣∣∣∣∣xτz ,∆τz

)

≤ P

(
|xτz+k + vτz+k| �

K

2
∆τz+k

∣∣∣∣
k−1⋂

s=1

{
|xτz+s + vτz+s| �

K

2
∆τz+s

}
,xτz ,∆τz

)

= P

(
|xτz+k + vτz+k| �

K

2
∆τz+k

∣∣∣∣ τz+1 − τz > k − 1,xτz ,∆τz

)
. (2.9)

Let λ ∈ R. The case of λ ∈ C is similar and we omit it. Let us define the noise

vector wτz ,k = Ak

λk
(−vτz +

∑k−1
s=0 A−1−swτz+s) +

vτz+k
λk

and note that it is multivariate

Gaussian. Before obtaining our bound, we define ξ = d|λ| + εe/(|λ| + ε − η) > 1.

We let N denote the nilpotent matrix with ones on the upper diagonal and all other

entries zero of appropriate size. Note that N s = 0 for all s ≥ n. Under our control

policy, as described in Section 2.3, we know that |(xτz + vτz) − x̂τz | ≤ 1
2
∆τz . It then

follows that

P

(
|xτz+k + vτz+k| �

K

2
∆τz+k

∣∣∣∣ τz+1 − τz > k − 1,xτz ,∆τz

)

= P

(∣∣∣∣∣A
kxτz + Ak−1uτz +

k−1∑

s=0

Ak−1−swτz+s + vτz+k

∣∣∣∣∣

�
K

2
∆τz+k

∣∣∣∣∣τz+1 − τz > k − 1,xτz ,∆τz

)

= P

(∣∣∣∣∣A
k(xτz − x̂τz + vτz − vτz) +

k−1∑

s=0

Ak−1−swτz+s + vτz+k

∣∣∣∣∣
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�
K

2
∆τz+k

∣∣∣∣∣τz+1 − τz > k − 1,xτz ,∆τz

)

= P

(∣∣∣∣∣(λI +N)k(xτz + vτz − x̂τz) + Ak

(
−vτz +

k−1∑

s=0

A−1−swτz+s

)
+ vτz+k

∣∣∣∣∣

�
K

2
∆τz+k

∣∣∣∣∣τz+1 − τz > k − 1,xτz ,∆τz

)

≤ P

(∣∣∣∣∣

{
λk +

k∑

s=1

(
k

s

)
λk−sN s

}
(xτz + vτz − x̂τz) + λkwτz ,k

∣∣∣∣∣

�
K

2
ρk−1|λ|k−1 |λ|

|λ|+ ε− η∆τz

∣∣∣∣∣xτz ,∆τz

)

≤ P

({
|λ|k +

n−1∑

s=1

(
k

s

)
|λ|k−sN s

}
|xτz + vτz − x̂τz |+ |λ|k|wτz ,k|

� ρk−1|λ|kξ 1

2
∆τz

∣∣∣∣∣xτz ,∆τz

)

≤ P

(
|λ|k

{
1

2
∆τz + δ

1

2
∆τz

n−1∑

s=1

(
k

s

)
|λ|−s + |wτz ,k|

}
� ρk−1|λ|kξ 1

2
∆τz

∣∣∣∣∣xτz ,∆τz

)

(2.10)

≤ P

(
1

2
∆τz + δ

1

2
∆τznk

n + |wτz ,k| � ρk−1ξ
1

2
∆τz

∣∣∣∣∣xτz ,∆τz

)

≤ P

(
|wτz ,k| � (ρk−1ξ − 1− δnkn)

1

2
∆τz

∣∣∣∣∣xτz ,∆τz

)
(2.11)

≤ P

(
|wτz ,k| � (ρ′)k−1 1

2
∆τz

∣∣∣∣∣xτz ,∆τz

)
≤ 2

√
λn+1

max(Στz ,k)

2πdet(Στz ,k)

n∑

i=1

exp

{
−(ρ′)2(k−1)(∆i

τz)
2

8λmax(Στz ,k)

}
,

(2.12)

where (2.10) follows from our bin ordering. Equations (2.11) and (2.12) hold for all

k ≥ H for some H sufficiently large and in the special case of k = 1. In the case k = 1

we choose δ sufficiently small such that ξ−1−δn > 0. Equation (2.12) holds for some

1 < ρ′ < ρ since we need only show that ρk−1ξ−1−δnkn > (ρ′)k−1 for sufficiently large

k and this follows since limk→∞ ρ
k−1/(ρ′)k−1 =∞ and limk→∞(−1−δnkn)/(ρ′)k−1 = 0
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by L’Hôpital’s rule. In (2.12), we have used Lemma 2.5.2 with the zero mean Gaussian

vector wτz ,k and denoted its covariance matrix by Στz ,k. From (2.11) with k = 1, we

can see that (b) of Theorem 2.4.5 holds.

In order to bound (2.12) further, we define the covariance matrices Σv = E[vsv
T
s ],

Σv,w = E[vsw
T
s ] and Σw = E[wsw

T
s ]. Then

Στz ,k = E[wτz ,kw
T
τz ,k] = E

{
Ak

λk

(
−vτz +

k−1∑

s=0

A−1−swτz+s

)
+

vτz+k

λk

}

{
Ak

λk

(
−vτz +

k−1∑

s=0

A−1−swτz+s

)
+

vτz+k

λk

}T

=
Ak

λk

{
Σv − Σv,w(A−1)T −A−1ΣT

v,w +
k−1∑

s=0

A−1−sΣw(A−1−s)T

}
(Ak)T

λk
+

Σv

λ2k
,

where we have used the independence of {ws}, {vs} across time and the independence

of vs1 and ws2 for s1 6= s2. Since both processes are zero mean, the cross terms are

zero.

Recall that

Ak =




λk
(
k
1

)
λk−1 · · ·

(
k

n−1

)
λk−n+1

λk
. . .

...

0
. . .

(
k
1

)
λk−1

λk




and let Tr(·) denote the trace of its argument. We get that

Tr(Ak(Ak)T ) =
n−1∑

`=0

∑̀

s=0

(
k

s

)2

λ2(k−s) ≤ n

n−1∑

s=0

(
k

s

)2

λ2(k−s) ≤ nλ2k

n−1∑

s=0

(
k

s

)2

≤ λ2kn2k2n.

Similarly, we can see that Tr(Ak−1−s(Ak−1−s)T ) ≤ λ2kn2k2n for all 0 ≤ s ≤ k − 1.

Define

Σ1 = E[(−vτz + A−1wτz)(−vτz + A−1wτz)
T ]

= Σv −Σv,w(A−1)T −A−1ΣT
v,w + A−1Σw(A−1)T .
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For symmetric matrices, there exists a basis of eigenvectors. Thus, for Στz ,k, there

exists a vector of unit length e ∈ Rn such that

λmax(Στz ,k) = eTΣτz ,ke =
1

λ2k
(eTAk)Σ1((Ak)Te)

+
1

λ2k

k−1∑

s=1

(eTAk−1−s)Σw((Ak−1−s)Te) +
1

λ2k
eTΣve

≤ 1

λ2k
λmax(Σ1)eTAk(Ak)Te

+
1

λ2k
λmax(Σw)

k−1∑

s=1

eTAk−1−s(Ak−1−s)Te +
1

λ2k
λmax(Σv)eTe

≤ 1

λ2k
λmax(Σ1)λmax(Ak(Ak)T )eTe

+
1

λ2k
λmax(Σw)λmax(Ak−1−s(Ak−1−s)T )

k−1∑

s=1

eTe + λmax(Σv)

≤ 1

λ2k
λmax(Σ1)Tr(Ak(Ak)T ) + k

1

λ2k
λmax(Σw)Tr(Ak−1−s(Ak−1−s)T ) + λmax(Σv)

≤ n2k2n+1(λmax(Σ1) + λmax(Σw) + λmax(Σv)).

Note that for any matrix A ∈ Rn×n and any vector x ∈ Rn that

xTATAx = (Ax)TAx > 0

and thus ATA is positive definite and has all eigenvalues positive. Thus, in the above

we are justified in claiming that λmax(Ak(Ak)T ) ≤ Tr(Ak(Ak)T ).

Recall Minkowski’s Determinant Theorem (see for example [25]). For nonnegative

definite n× n matrices A and B, it follows that det(A + B) ≥ det(A) + det(B).

Using the above bound and the identity det(A) = detAT we get

det(Στz ,k) ≥
1

λ2nk
det(Ak)2det

(
Σ1 +

k−1∑

s=1

A−1−sΣw(A−1−s)T

)
+

1

λ2nk
det(Σv)

≥ det(Σ1) + det

(
k−1∑

s=1

A−1−sΣw(A−1−s)T

)
≥ det(Σ1) +

k−1∑

s=1

det(A−1−sΣw(A−1−s)T )
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= det(Σ1) + det(Σw)
k−1∑

s=1

(λ−1−s)2n ≥ det(Σ1).

Defining the constants c1 = n2(λmax(Σ1) + λmax(Σw) + λmax(Σv)) and c2 = det(Σ1)

we have obtained the bounds

λmax(Στz ,k) ≤ c1k
2n+1, det(Στz ,k) ≥ c2. (2.13)

Combining (2.9), (2.12) and (2.13) we get that

P (τz+1 − τz > k | xτz ,∆τz) ≤ 2

√
(c1k2n+1)n+1

2πc2

n∑

i=1

exp

{
−(ρ′)2(k−1)(∆i

τz)
2

8c1k2n+1

}

≤ Ckn
2+ 3

2
n+ 1

2 exp

{
−(ρ′)2(k−1)

8c1k2n+1

}
, (2.14)

for k > H, where C is the appropriate constant. Note that the last line follows since

∆i
τz > 1 and thus our bound holds for any initial condition ∆τz .

ii) Geometric Bound. Note that in (2.14) we have a double exponential in k

since (ρ′)2(k−1) = e(k−1)2 log(ρ′). Let a, b, c > 0 and recall that limk→∞ e
k/((a+b)kc+1) =

∞ by L’Hôpital’s rule. This means that for all L > 0 there exists an N such that

ek/((a + b)kc+1) > L, for all k ≥ N . Thus, ek/kc > L(a + b)k, for all k ≥ N .

Then choosing N large enough so that (a+ b)N > 1 and subtracting (a+ b)k we get

ek/kc − (a + b)k > (L − 1)(a + b)k > L − 1, for all k ≥ N . Therefore, we have that

limk→∞ e
k/kc − (a+ b)k =∞. Since log(k) ≤ k for k ≥ 1, comparing with the above

we find that limk→∞ e
k/kc − a log(k)− bk =∞.

Let Q(k) be a polynomial of finite degree m. We can write Q(k) = a0 + a1k +

· · ·+ amk
m, for some coefficients a0, . . . , am ∈ R. Let r > 1 and consider

lim
k→∞

rkQ(k)exp

{
−e

k

kc

}
= lim

k→∞

m∑

i=0

aik
irkexp

{
−e

k

kc

}

= lim
k→∞

m∑

i=0

aiexp

{
−e

k

kc
+ i log(k) + log(r)k

}
= 0. (2.15)

Combining (2.14) and (2.15) gives the result. ut
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Proof of Lemma 2.4.6: We take λ ∈ R. The proof for λ ∈ C is identical. We

use the abbreviations:

Pz(k) = P (τz+1 − τz = k | xτz ,∆τz),

Pz(k | Y ) = P (τz+1 − τz = k | Y,xτz ,∆τz),

P̄z(k) = P (τz+1 − τz > k | xτz ,∆τz),

P̄z(k | Y ) = P (τz+1 − τz > k | Y,xτz ,∆τz).

Put r > ρ2|λ|2. Note that P (τz+1−τz = k | xτz ,∆τz) ≤ P (τz+1−τz > k−1 | xτz ,∆τz).

Then using Theorem 2.4.5, we can bound the first term in (2.7) using the law of

iterated expectations as follows

E

[
τz+1−1∑

s=τz

(∆1
s)

2

∣∣∣∣∣xτz ,∆τz

]
=
∞∑

k=1

Pz(k)
k−1∑

s=0

E[(∆1
τz+s)

2|τz+1 − τz = k,∆1
τz ]

≤
∞∑

k=1

Pz(k)
k−1∑

s=0

ρ2s|λ|2s(∆1
τz)

2 ≤ (∆1
τz)

2

∞∑

k=1

kP̄z(k − 1)ρ2k|λ|2k

≤ (∆1
τz)

2

(
H∑

k=1

kP̄z(k − 1)ρ2k|λ|2k +
∞∑

k=H+1

r

(
ρ2|λ|2
r

)k)
= (∆1

τz)
2G1. (2.16)

We have defined

G1 =
H∑

k=1

kP̄z(k − 1)|λ|2k + r
∞∑

k=H+1

(ρ2|λ|2/r)k <∞

and used

kPz(k) ≤ kP̄z(k − 1) ≤ r−(k−1)

for k > H. The series on the right converges since it is geometric. Similarly, we can

bound the term E[(∆1
τz+1

)2 | xτz ,∆τz ]. Using the law of iterated expectations, we get

E[(∆1
τz+1

)2 | xτz ,∆τz ] = Pz(1)E[(∆1
τz+1

)2 | τz+1 − τz = 1,∆τz ]

+ P̄z(1)E[(∆1
τz+1

)2 | τz+1 − τz > 1,xτz ,∆τz ] = Pz(1)E[(∆1
τz+1

)2 | τz+1 − τz = 1,∆τz ]

+ P̄z(1)E[E[(∆1
τz+1

)2 | τz+1 − τz > 1, τz+1 − τz,xτz ,∆τz ] | τz+1 − τz > 1,xτz ,∆τz ]
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≤ Pz(1)E[(∆1
τz+1

)2 | τz+1 − τz = 1,∆τz ] + P̄z(1)
∞∑

k=2

Pz(k | τz+1 − τz > 1)ρ2k|λ|2k(∆1
τz)

2

= Pz(1)E[(∆1
τz+1

)2 | τz+1 − τz = 1,∆τz ] + P̄z(1)G2(∆1
τz)

2, (2.17)

where we have defined

G2 =
∞∑

k=2

Pz(k | τz+1 − τz > 1)ρ2k|λ|2k <∞.

Convergence comes from the geometric decay, as in the previous bound. Note that

the geometric bound in Theorem 2.4.5 still holds with Pz(k | τz+1 − τz > 1) in place

of Pz(k) since we obtain our bound by looking only at the τz +k term, as can be seen

in (2.9).

There exists a ζ such that 0 < ζ < 1− (|λ|/(|λ|+ε−η))2. We know from Theorem

2.4.5 that lim∆τz→∞ P̄z(1) = 0. Recall that ∆i
s ≥ L̄i for all t ∈ N. Then, we choose L

large enough to get an appropriate L̄ such that P̄z(1)G2 < ζ. We put

γ =
1−

(
|λ|

|λ|+ε−η

)2

− ζ
G1

,

so that γ > 0. Note that since our bound in Theorem 2.4.5 (a) does not depend on

∆τz and P̄z(1)G2 < ζ holds for all ∆τz by our choice of L̄, it follows that G1, ζ and

hence γ have no dependence on ∆τz , as required. Now, if ∆τz /∈ S∆ then we have that

∆1
τz ≥ F since ∆1

s ≥ ∆2
s ≥ · · · ≥ ∆n

s for all t ∈ N by construction. Since F > L1, the

bin size shrinks and

E[(∆1
τz+1

)2 | τz+1 − τz = 1,∆τz ] =

( |λ|
|λ|+ ε− η

)2

(∆1
τz)

2.

If ∆τz ∈ S∆ then we use the simple bound E[(∆1
τz+1

)2 | τz+1 − τz = 1,∆τz ] ≤
ρ2|λ|2(∆1

τz)
2.

From the above, we have the following bounds. If ∆τz /∈ S∆ then

E[(∆1
τz+1

)2 | xτz ,∆τz ] ≤ (∆1
τz)

2

{( |λ|
|λ|+ ε− η

)2

+ ζ

}
. (2.18)
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If ∆τz ∈ S∆ then

E[(∆1
τz+1

)2 | xτz ,∆τz ] ≤ (∆1
τz)

2{ρ2|λ|2 + ζ}. (2.19)

In the case ∆τz /∈ S∆ we apply (2.16), (2.17) and (2.18) to get

γE

[
τz+1−1∑

s=τz

(∆1
s)

2

∣∣∣∣∣xτz ,∆τz

]
≤ (∆1

τz)
2γG1

= (∆1
τz)

2

{
1−

( |λ|
|λ|+ ε− η

)2

− ζ
}
≤ (∆1

τz)
2 − E[(∆1

τz+1
)2|xτz ,∆τz ].

In the case ∆τz ∈ S∆ we apply (2.16), (2.17) and (2.19) to get

γE

[
τz+1−1∑

s=τz

(∆1
s)

2

∣∣∣∣∣xτz ,∆τz

]
≤ (∆1

τz)
2γG1 = (∆1

τz)
2

{
1−

( |λ|
|λ|+ ε− η

)2

− ζ
}

= (∆1
τz)

2 − (∆1
τz)

2{ρ2|λ|2 + ζ}+ (∆1
τz)

2

{
ρ2|λ|2 −

( |λ|
|λ|+ ε− η

)2
}

≤ (∆1
τz)

2 − E[(∆1
τz+1

)2 | xτz ,∆τz ] + F 2

{
ρ2|λ|2 −

( |λ|
|λ|+ ε− η

)2
}
.

We set b = F 2{ρ2|λ|2−(|λ|/(|λ|+ε−η))2}. Since ∆τz ∈ S∆ if and only if (xτz ,∆τz) ∈ S,

we obtain Lemma 2.4.6. ut

Proof of Theorem 2.4.7: Let λ ∈ R and let xn+1
s = 0. For λ ∈ C, the proof is

similar and we omit it. Using the law of total expectation we get

E

[
τz+1−1∑

s=τz

(xis)
2

∣∣∣∣∣xτz ,∆τz

]
= E

[
E
[
(xiτz)

2 +

τz+1−1∑

s=τz+1

(λxis−1 + xi+1
s−1 + uis−1 + wis−1)2

∣∣∣τz+1 − τz,xτz ,∆τz

]∣∣∣xτz ,∆τz

]

=
∞∑

k=1

Pz(k)E

[
(xiτz)

2 +
k−1∑

s=1

(
λsxiτz + λs−1xi+1

τz − λs−1uiτz +
s−1∑

j=1

λs−1−jxi+1
τz+j

+
s−1∑

j=0

λs−1−jwiτz+j

)2∣∣∣∣∣xτz ,∆τz

]
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=
∞∑

k=1

Pz(k)E

[
(xiτz)

2 +
k−1∑

s=1

(
λs(xiτz + viτz − x̂iτz) + λs−1(xi+1

τz + vi+1
τz − x̂i+1

τz )

+
s−1∑

j=1

λs−1−jxi+1
τz+j − λsviτz − λs−1vi+1

τz +
s−1∑

j=0

λs−1−jwiτz+j

)2∣∣∣∣∣xτz ,∆τz

]

≤
∞∑

k=1

Pz(k)E

[
(xiτz)

2 + 6
k−1∑

s=1

(
λ2s(xiτz + viτz − x̂iτz)2 + λ2(s−1)(xi+1

τz + vi+1
τz − x̂i+1

τz )2

+

(
s−1∑

j=1

λs−1−jxi+1
τz+j

)2

+ λ2s(viτz)
2 + λ2(s−1)(vi+1

τz )2

+

(
s−1∑

j=0

λs−1−jwiτz+j

)2 )∣∣∣∣∣xτz ,∆τz

]
(2.20)

≤ 6
∞∑

k=1

Pz(k)E

[
K2

4
(∆i

τz)
2 +

k−1∑

s=1

(
λ2s

(
1

2
∆i
τz

)2

+ λ2(s−1)

(
1

2
∆i+1
τz

)2

+ s
s−1∑

j=1

λ2(s−1−j)(xi+1
τz+j)

2 + λ2s(viτz)
2 + λ2(s−1)(vi+1

τz )2

+ s
s−1∑

j=0

λ2(s−1−j)(wiτz+j)
2
)∣∣∣∣∣xτz ,∆τz

]
(2.21)

≤ 6
∞∑

k=1

Pz(k)

(
K2

4
(∆1

τz)
2 +

k−1∑

s=1

(
λ2s1

2

(
∆1
τz

)2
+ s2λ2sM i+1

+ λ2sσ2
v,i + λ2sσ2

v,i+1 + s2λ2sσ2
w,i

))

≤ (∆1
τz)

26
∞∑

k=1

Pz(k)

{
K2

4
+

k−1∑

s=1

λ2s

(
1

2
+ s2M i+1 + σ2

v,i + σ2
v,i+1 + s2σ2

w,i

)}
.

(2.22)

In (2.20) and (2.21) we have used Jensen’s inequality. Line (2.22) follows since we

can bound ∆i
s > 1 for all s ∈ N. We have defined M i = sups∈NE[(xis)

2] < ∞,

σ2
v,i = E[(vis)

2] and σ2
w,i = E[(wis)

2]. The fact that M i is finite for 2 ≤ i ≤ n−1 follows

from induction in the proof of Theorem 2.2.1. By convention we put Mn+1 = 0. Now,
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we apply Theorem 2.4.5 with Q(k) = k3 and r > λ2 to yield

∞∑

k=1

Pz(k)
k−1∑

s=1

λ2ss2 ≤
H∑

k=1

k−1∑

s=1

Pz(k)λ2ss2 +
∞∑

k=H+1

k−1∑

s=1

λ2sP̄z(k − 1)s2

≤ G+
∞∑

k=H+1

λ2kP̄z(k − 1)k3 ≤ G+ r
∞∑

k=H+1

(
λ2

r

)k
<∞.

The last series converges since it is geometric. We have defined

G =
H∑

k=1

k−1∑

s=1

Pz(k)λ2ss2 <∞.

Therefore we can set

κ = 6
∞∑

k=1

Pz(k)(K2/4 +
k−1∑

s=0

λ2s
(
1/2 + s2M i+1 + σ2

v,i + σ2
v,i+1 + s2σ2

w,i

)
<∞

to get the result. ut



Chapter 3

Extension to a Larger Class of

Noise Distributions

In Chapter 2, we considered single-station systems driven by Gaussian noise. In this

chapter, we extend our results to a larger class of noise distributions.

Consider the setup from Section 2.1, except that we now allow the noise processes

{wt} and {vt} to be i.i.d. sequences of random variables with distribution Z, not

necessarily of zero mean. That is, for any t we have wt,vt ∼ Z.

Theorem 3.0.3. If Z admits a density which is positive on every open set and there

exists an ε > 0 such that E[|z|2+ε] <∞ where z ∼ Z, then Theorem 2.2.1 holds with

the new noise distribution. The exponent 2 + ε is applied component-wise and thus

our requirement is that every component of z has a finite 2 + ε moment. The rate

remains identical to the Gaussian case.

Proof of Theorem 3.0.3:

We continue with (2.12) from the proof of Theorem 2.4.5. Recall that P̄z(k) :=

P (τz+1 − τz > k | xτz ,∆τz). There exists an H such that for k > H we obtain

P̄z(k) ≤ P (|wτz ,k| � (ρ′)k−1∆τz/2 | xτz ,∆τz)

= P (|wτz ,k|2+ε � ((ρ′)k−1∆τz/2)2+ε | xτz ,∆τz) (3.1)

≤ P ((wT
τz ,kwτz ,k)

2+ε
2 > ((ρ′)k−1∆n

τz/2)2+ε | xτz ,∆τz) (3.2)

35
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≤
E[(wT

τz ,k
wτz ,k)

2+ε
2 | xτz ,∆τz ]

((ρ′)k−1∆n
τz/2)2+ε

(3.3)

≤
E(wT

τz ,k
wτz ,k)

2+ε
2

((ρ′)2+ε)k−1
. (3.4)

We apply the exponent 2 + ε component-wise in equation (3.1). We obtain (3.2)

since the event being measured contains the event in the previous line. More precisely,

n⋃

i=1

{|wi
τz ,k|2+ε > ((ρ′)k−1∆i

τz/2)2+ε} ⊆
{( n∑

i=1

(wi
τz ,k)

2
) 2+ε

2
> ((ρ′)k−1∆n

τz/2)2+ε
}
,

since we have ordered the bins ∆1
t ≥ ∆2

t ≥ · · · ≥ ∆n
t ≥ 1. In (3.3) we apply Markov’s

inequality.

We now proceed to bound the numerator in (3.4):

E[(wT
τz ,kwτz ,k)

2+ε
2 ] = E[(‖wτz ,k‖2)2+ε]

= E
[(∥∥∥Ak

λk
(−vτz +

k−1∑

s=0

A−1−swτz+s) +
vτz+k

λk

∥∥∥
2

)2+ε]

≤ E
[(∥∥∥Ak

λk
vτz

∥∥∥
2

+
k−1∑

s=0

∥∥∥Ak−1−s

λk
wτz+s

∥∥∥
2

+
∥∥∥vτz+k

λk

∥∥∥
2

)2+ε]
(3.5)

≤ 31+εE
(∥∥∥Ak

λk
vτz

∥∥∥
2+ε

2
+ k1+ε

k−1∑

s=0

∥∥∥Ak−1−s

λk
wτz+s

∥∥∥
2+ε

2
+
∥∥∥vτz+k

λk

∥∥∥
2+ε

2

)
(3.6)

≤ 31+εE
(
n2+ 3

2
εkn(2+ε)

n∑

i=1

|viτz |2+ε + n2+ 3
2
εk2n+nε+ε+1

k−1∑

s=0

n∑

i=1

|wiτz+s|2+ε

+
n
ε
2

|λ|k(2+ε)

n∑

i=1

|viτz+k|2+ε
)

(3.7)

≤ Ck(n+1)(ε+2) <∞, (3.8)

where C > 0 is some constant. The last line follows since {wt} and {vt} are i.i.d.

sequences of random variables. In (3.5), we have applied the triangle inequality.

Equation (3.6) follows from Jensen’s inequality. The constant C is finite since each

of the components of the noise have a finite 2 + ε moment by assumption.
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There is one subtlety above worth noting. Each term in the sequences {wt} and

{vt} is actually a finite sum of raw random variables with distribution Z. This is

described by our sampling method in Lemma 2.4.1. However, a simple application of

Jensen’s inequality shows that, if the raw random variables have a finite 2+ε moment,

then so do a finite linear combinition of such random variables.

The bound (3.7) follows from basic properties of symmetric, positive definite ma-

trices and Jensen’s inequality. Let us derive this bound for one of the terms explicitly.

Note that, for any matrix A ∈ Rn×n and any vector x ∈ Rn, we have

xTATAx = (Ax)TAx > 0.

Thus, (Ak−1−s)TAk−1−s is positive definite and has all eigenvalues positive. It must

be that the largest eigenvalue of this matrix is less than it’s trace. More explicitly,

λmax((Ak−1−s)TAk−1−s) ≤ Tr((Ak−1−s)TAk−1−s) ≤ λ2kn2k2n

where the last bound was derived in the proof of Theorem 2.4.5. It then follows that

k−1∑

s=0

∥∥∥Ak−1−s

λk
wτz+s

∥∥∥
2+ε

2

=
k−1∑

s=0

( 1

λ2k
wT
τz+s(A

k−1−s)TAk−1−swτz+s

) 2+ε
2

≤
k−1∑

s=0

( 1

λ2k
wT
τz+swτz+sλmax((Ak−1−s)TAk−1−s)

) 2+ε
2

≤
k−1∑

s=0

(n2k2nwT
τz+swτz+s)

2+ε
2

= n2+εkn(2+ε)

k−1∑

s=0

( n∑

i=1

(wiτz+s)
2
) 2+ε

2

≤ n2+εkn(2+ε)

k−1∑

s=0

n
ε
2

n∑

i=1

|wiτz+s|2+ε (3.9)

= n2+ 3
2
εkn(2+ε)

k−1∑

s=0

n∑

i=1

|wiτz+s|2+ε.
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In (3.9) we have again used Jensen’s inequality and this gives the desired bound.

Now, combining (3.4) with (3.8) gives the bound

P̄z(k) ≤ C
k(n+1)(ε+2)

((ρ′)2+ε)k−1
. (3.10)

Note that to obtain Theorems 2.4.6 and 2.4.7, we require for some H that

Q(k)P̄z(k)ρ2k|λ|2k ≤ dk, (3.11)

for all k > H where Q(k) is any finite polynomial in k and d < 1. We also see from

the proof of Theorem 2.4.5 that for any 1 < ρ′ < ρ there exists an H such that (3.10)

holds for all k > H. Let us write ρ′ = ζρ where 0 < ζ < 1 and note that ζ can be

made arbitrarily close to 1. It then follows that

Q(k)P̄z(k)ρ2k|λ|2k ≤ Q(k)C
k(n+1)(ε+2)

((ρ′)2+ε)k−1
ρ2k|λ|2k = C ′Q′(k)

( ρ2|λ|2
ζ2+ερ2ρε

)k

= C ′Q′(k)
( |λ|2
ζ2+ερε

)k
,

where we have defined C ′ = C(ρ′)2+ε and Q′(k) = Q(k)k(n+1)(ε+2). Thus, given an

ε > 0, we can choose ρ sufficiently large so that ρε > |λ|2 and ζ close enough to 1 so

that

d′ =
|λ|2
ζ2+ερε

< 1.

Now, to obtain (3.11), we need only show that there exists an H such that

C ′Q′(k)
(d′
d

)k
< 1

holds for all k > H and for some d < 1. Pick any d′ < d < 1. Then, as in the

proof of Theorem 2.4.5, L’Hôpital’s rule shows that the left term above goes to zero

as k → ∞. Thus, (3.11) holds for some d < 1. All supporting results from Chapter

2 now follow the proofs in the Gaussian case identically and we obtain the result. In

particular, the fact that the noise distributions have finite second moments implies

Theorem 2.4.7. The assumption that Z admits a density which is positive on every
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open set gives irreducibility and allows the application of our drift criteria. ut



Chapter 4

Multi-Sensor Systems

In this chapter, we consider multi-sensor, single-controller systems.

4.1 Problem Statement

Consider the class of multi-sensor LTI discrete-time systems with both plant and

observation noise. The system equations are given by

xt+1 = Axt + But + wt, yjt = Cjxt + vjt , 1 ≤ j ≤M, (4.1)

where xt ∈ Rn and ut ∈ Rm are the state and control action variables at time t ∈ N
respectively. The observation made by sensor j at time t is denoted by yjt ∈ Rpj . The

matrices A, B,Cj and random vectors wt,v
j
t are of compatible size.

We require that {wt} and each {vjt} be sequences of i.i.d. random vectors drawn

from a distribution Z, with finite 2 + ε moments in each component for some ε > 0,

which admits a probability density that is positive on every open set. At time t, wt

and each vjt are independent of each other and the state xt. The initial state, x0, is

drawn from the Z distribution.

Assumption 4.1.1. We require controllability and joint observability. That is, the

pair (A,B) is controllable and the pair ([(C1)T · · · (CM)T ]T ,A) is observable but

the individual pairs (Cj,A) may not be observable.

40



CHAPTER 4. MULTI-SENSOR SYSTEMS 41

The setup is depicted in Figure 4.1. The observations are made by a set of M

sensors and each sensor sends information to the controller through a finite capacity

channel. At each time stage t, we allow sensor j ∈ {1, . . . ,M} to send an encoded

value qjt ∈ {1, 2, . . . , N j
t } for some N j

t ∈ N. In addition, the controller can send a

feedback value bt ∈ {0, 1} at times t = Ts, where T is the period of our coding policy

and s ∈ N. The value bt is seen by all sensors at time t. We define the rate at time

t as Rt =
∑M

j=1 log2(N j
t ). The coding scheme is applied periodically with period T

and so the rate for all time stages is specified by {N j
0 , . . . , N

j
T−1 : 1 ≤ j ≤ M}. The

average rate is

Ravg =
1

T

(
M +

T−1∑

t=0

Rt

)
, (4.2)

accounting for the encoded and feedback values.

q1t q2t qMt

bt

. . .

ut

. . .Sensor 2Sensor 1 Sensor M

Controller

Plant

. . .
y1
t y2

t yM
t

. . .

Figure 4.1: A multi-sensor system with finite-rate communication channels.

The controllability matrix of the controller is C(A,B) =
[
B AB · · · An−1B

]
.

We denote the controllable subspace of the controller by K, which is the range space

of C(A,B). The observability matrix of sensor j is

O(Cj ,A) =
[
(Cj)T (CjA)T · · · (CjAn−1)T

]T
,
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the null space is N j = Ker(O(Cj ,A)) and the observable subspace is defined to be

Oj = (N j)⊥ for 1 ≤ j ≤M .

Information structure. For a process {xt} we define x[a,b] = {xa,xa+1, . . . ,xb}.
At time t, each sensor j maps its information I

sj
t := {yj[0,t], b[0,t−1]} → qjt ∈ {1, . . . , N j

t }.
The controller maps its information Ict := {q1

[0,t], . . . , q
M
[0,t]} → (ut, bt) ∈ Rm × {0, 1}.

4.2 Main Result

Let V1, . . . , V` denote the generalized eigenspaces of A. We state the following as-

sumption. In Section 4.3 we will remove this assumption and consider the general

case.

Assumption 4.2.1. Each eigenspace is observed by some sensor. That is, for each

1 ≤ i ≤ ` there exists a 1 ≤ j ≤M such that Vi ⊆ Oj.

We label the eigenvalues of A as λ1, . . . , λn. Without loss of generality, we assume

that |λi| > 1 for all 1 ≤ i ≤ n. Our main result for multi-sensor systems is the

following:

Theorem 4.2.2. Under Assumption 4.2.1, there exists a coding and control policy

with average rate Ravg ≤ 1/(T2n)(M +
∑n

i=1 log2(d|λi|T2n + εe + 1)) for some ε > 0

which gives:

(a) the existence of a unique invariant distribution for {x2nt};

(b) limt→∞E[‖x2nt‖2
2] <∞.

Theorem 4.2.3. The average rate in Theorem 4.2.2 achieves the minimum rate (1.9)

asymptotically for large sampling periods. That is, limT→∞Ravg = Rmin.

Proof of Theorem 4.2.3: Follows from the proof of Theorem 2.2.2. ut

The proof of Theorem 4.2.2 is basically an application of the Jordan normal form

together with Assumption 4.2.1.

Proof of Theorem 4.2.2: Under Assumption 4.2.1, we can assign each eigenspace

Vi ⊆ Oj to some sensor j. Let Vj,1, . . . , Vj,mj denote the eigenspaces assigned to sen-

sor j and let us write Vj,i = span{vj,i,1, . . . ,vj,i,dj,i} where each vj,i,h ∈ R1×n is a



CHAPTER 4. MULTI-SENSOR SYSTEMS 43

generalized eigenvector. We put

Qj,i =
[
(vj,i,1)T · · · (vj,i,dj,i)

T
]T
,

Qj =
[
QT
j,1 · · · QT

j,mj

]T
,

Q =
[
(QM)T · · · (Q1)T

]T
.

We apply the similarity transform x̄t = Qxt to (4.1) and define Ā = QAQ−1,

B̄ = QB and w̄t = Qwt to get the system

x̄t+1 = Āx̄t + B̄ūt + w̄t. (4.3)

We now look at the estimation of the state by the sensors. For convenience, let

us write

x̄t =
[
(x̄Mt )T · · · (x̄1

t )
T
]T
,

x̄jt =
[
(x̄j,1t )T · · · (x̄

j,mj
t )T

]T
,

x̄j,it =
[
x̄j,i,1t · · · x̄

j,i,dj,i
t

]T
,

with x̄j,i,ht ∈ R. Let us write

O(Cj ,A) =
[
(oj,1)T · · · (oj,npj)

T
]T

where each oj,i ∈ R1×n.

With our construction above, under Assumption 4.2.1, we have, for each j, i, h,

that vj,i,h =
∑npj

`=1 k
j,i,h
` oj,` for some real coefficients {kj,i,h` }. Consider the first n time

stages. By putting kj,i,h =
[
kj,i,h1 · · · kj,i,hnpj

]
, it follows that

kj,i,h
[
(yj0)T · · · (yjn−1)T

]T
= kj,i,hO(Cj ,A)x0 + v̄j,i,h0

=

npj∑

`=1

kj,i,h` oj,`x0 + v̄j,i,h0 = vj,i,hx0 + v̄j,i,h0 = x̄j,i,h0 + v̄j,i,h0 ,
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where v̄j,i,h0 is some noise term. We will use the same notation for v̄j0 that we use for

x̄jt .

As in Lemma 2.4.1 for the single-station case, we can use the next n times stages

to apply a control action. We then apply the above scheme repeatedly and sample

every 2n time stages.

Furthermore, since Q is the Jordan normal transformation matrix, it follows that

Ā2n = diag(J̄2n
1 , . . . , J̄

2n
` ) where each J̄i ∈ Rdi×di is a Jordan block. Since we can

apply another Jordan transformation to this sampled system, we can assume without

loss of generality that Ā2n is actually in Jordan form and each J̄2n
i is actually a Jordan

block.

To simplify notation, we write A := Ā2n = diag(J1, . . . ,J`) where each Ji ∈
Rdi×di is a Jordan block, xs =

[
(x1

s)
T · · · (x`s)

T
]T

where xis ∈ Rdi and similarly for

us,ws,ys and vs. From the above, we can also see that for each i, there exists a j

such that xis + vis is known by sensor j at time s.

Thus our system is equivalent to the following subsystems:

xis+1 = Jix
i
s + uis + wi

s, yis = xis + vis, 1 ≤ i ≤ `,

where, for each 1 ≤ i ≤ `, there exists a sensor j which knows yis at time s and uis is

chosen arbitrarily by the controller.

As in Section 2.3, we let ∆s be the vector of bin sizes at time s and define the

sequence of stopping times

τ0 = 0, τz+1 = min{s > τz : |ys| = |xs + vs| ≤ ∆s}.

The feedback value b2ns is chosen as

b2ns =





1, if s = τz for some z ∈ N,
0, otherwise,

so that the coding and control policy as in Section 2.3 is implementable at the sensors

and at the controller. This reduces the problem to the single-station case and we

obtain the result. ut
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4.3 Sufficient Conditions for the General Multi-

Sensor Case

The following theorem extends the classical observability canonical decomposition to

the decentralized case. For a detailed proof in the centralized case, see [24]. The more

general multi-agent setup, where each agent makes observations and applies a control

action, can be found in [15]. We are not aware of an explicit proof for our case and

we give a proof of Theorem 4.3.1 in this section for the convenience of the reader.

Theorem 4.3.1. Under Assumption 4.1.1, there exists a matrix Q such that if we

define Ā = QAQ−1 and C̄j = CjQ−1, then

Ā =




ĀM ∗ · · · ∗
ĀM−1 · · · ∗

. . .

0 Ā1



, (4.4a)




C̄M

C̄M−1

...

C̄1




=




C̄M
O ∗ · · · ∗

C̄M−1
O · · · ∗

. . .

0 C̄1
O



, (4.4b)

where the ∗’s denote irrelevant submatrices, each Āj ∈ Rnj×nj and each C̄j
O ∈ Rpj×nj .

Proof of Theorem 4.3.1: We define n1 = dim(O1), and nj = dim(Oj)−dim(Oj∩
(∪j−1

i=1O
i)), for 2 ≤ j ≤ M . We choose n1 linearly independent row vectors from

O(C1,A) and label them q1
1, . . . ,q

1
n1

. Proceeding by induction, we choose {qj1, . . . ,qjnj}
from O(Cj ,A) such that

{q1
1, . . . ,q

1
n1
,q2

1, . . . ,q
2
n2
, . . . ,qj1, . . . ,q

j
nj
}

is a set of linearly independent vectors.

We define

Qj =
[
(qj1)T · · · (qjnj)

T
]T
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for all 1 ≤ j ≤ M and concatenate these matrices to choose our transformation

matrix

Q =
[
(QM)T · · · (Q1)T

]T
.

It will also be convenient to denote the rows of Q by q1, . . . ,qn so that Q =[
(q1)T · · · (qn)T

]T
.

From the Cayley–Hamilton Theorem, we know that for all m ≥ n there exist

α0, . . . , αn−1 such that Am =
∑n−1

i=0 αiA
i. Since {qj1, . . . ,qjnj} are rows of O(Cj ,A),

this implies that qjiA is in the row space of O(Cj ,A) for all 1 ≤ i ≤ nj. Let us define

the sets

Sj := {q1
1, . . . ,q

1
n1
,q2

1, . . . ,q
2
n2
, . . . ,qj1, . . . ,q

j
nj
}, 1 ≤ j ≤M.

From our construction, it is then clear that

qj1A, . . . ,q
j
nj

A ∈ span(Sj). (4.5)

We write Ā in terms of its column vectors as Ā =
[
ā1 · · · ān

]
where āi ∈ Rn×1 for

each 1 ≤ i ≤ n. Our similarity transform gives

ĀQ = QA. (4.6)

Recall from linear algebra that we can write the left side of (4.6) as
∑n

i=1 āiqi where

āiqi ∈ Rn×n for each 1 ≤ i ≤ n. Now, to return to our earlier notation, each

vector qjiA is a linear combination of {qk` : 1 ≤ k ≤ j, 1 ≤ ` ≤ nk} and is linearly

independent of the remaining rows of Q. Since QA =
[
(q1A)T · · · (qnA)T

]T
, we

see from (4.6) that the ith row of Ā is the representation of qiA with respect to

q1, . . . ,qn. More precisely, we write āi =
[
āi,1 · · · āi,n

]T
with each āi,h ∈ R so that

(4.6) gives the system of equations

n∑

i=1

āi,hqi = qhA, 1 ≤ h ≤ n. (4.7)

Combining (4.5) and (4.7) gives the desired form.
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We next turn our attention to the form of C̄j. Since each Cj is a submatrix of

O(Cj ,A), it is clear that the rows of Cj are in the span of Sj. Since C̄jQ = Cj, by

writing C̄j in terms of its column vectors we obtain the desired form. ut

Remark 4.3.2. In the proof of Theorem 4.3.1, we give one construction for the

triangular decomposition in (4.4). This transformation is not unique. There may be

many ways to achieve a block upper triangular form and it is not necessary to place

the sensors in order M, . . . , 1.

In Section 4.2, Assumption 4.2.1 allowed us to reduce the system to a set of

subsystems. Without this assumption, the lower components of the state act as noise

for the upper components. In particular, we need to bound these lower modes when

all quantizers are perfectly-zoomed to achieve Theorem 2.4.5. To do this, we must

have that the bin sizes of the lower modes are small compared with the upper ones as

is needed in equation (4.11) for example. With many different eigenvalues, we cannot

guarantee this in the general case. Below, we give a sufficient rate and an alternative

assumption for stability.

For Theorem 4.3.3 below, let us write Λ(Āj) = {λj,1, . . . , λj,nj} where Āj is given

in (4.4).

Theorem 4.3.3. There exists a coding and control policy which gives:

(a) the existence of a unique invariant distribution for {x2nt};

(b) limt→∞E[‖x2nt‖2
2] <∞,

and with average rate in the limit of large sampling periods

lim
T→∞

Ravg =
M∑

j=1

nj∑

i=1

log2(max{|λj,i|, |λh,`| : h < j, 1 ≤ ` ≤ nh}).

Clearly, we could also achieve (a) and (b) in Theorem 4.3.3 with limT→∞Ravg =

n log2(λabsmax) where λabsmax = maxj,i{|λj,i|}.
Informally, Theorem 4.3.3 tells us that in order to stabilize a component, we must

apply a rate capable of stabilizing any mode that is driving that component.

For Theorem 4.3.4 below, recall that we have some flexibility in the decomposition

given by Theorem 4.3.1. See the proof of Theorem 4.3.1 and Remark 4.3.2.
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Theorem 4.3.4. If the eigenvalues of ĀM , . . . , Ā1 in (4.4) are ordered in decreasing

magnitude then Theorem 4.2.2 holds without Assumption 4.2.1. That is, the theorem

holds if for λi ∈ Λ(Āi) and λj ∈ Λ(Āj) we have that |λi| ≤ |λj| when i < j.

4.4 Coding and Control Policy for the General

Multi-Sensor Case

Consider the system (4.1). Sampling, observing and controlling as in the proof of The-

orem 2.2.1 and applying the transformation x̄t = Qxt where Q is given in Theorem

4.3.1, we obtain the system

xs+1 = Axs + us + ws, ys = xs + vs.

We do not relabel the variables (for example x̄s) by a slight abuse of notation and for

the sake of reasonable presentation.

In the above, A is block upper triangular with the blocks AM , . . . ,A1 descending

along the diagonal and each Aj ∈ Rnj×nj as in (4.4a) of Theorem 4.3.1. Since we

can always apply a block transformation to A in which each of the blocks is the

Jordan tranformation of Aj, we can assume without loss of generality that each Aj

is in real Jordan normal form and we write Aj = diag(Aj,1, . . . ,Aj,mj) where each

Aj,i ∈ Rdj,i×dj,i is a Jordan block.

Let us write xs =
[
(xMs )T · · · (x1

s)
T
]T

where xjs =
[
(xj,1s )T · · · (x

j,mj
s )T

]T
and

xjs ∈ Rnj with xj,is =
[
xj,i,1s · · · x

j,i,dj,i
s

]T
and each xj,i,hs ∈ R. We will use the same

notational convention for all relevant vectors in this section. Namely, we will follow

this convention for us, ws, ys, vs and for ∆s, x̂s, L which will be specified.

From the proof of Theorem 4.3.1, we know that the rows of Q are taken from the

row spaces of {O(Cj ,A)} and we can see how yjs is known by sensor j at time s.

Let us denote the eigenvalue of Aj,i by λj,i. We define

|λ′j,i| = max{|λj,i|, |λh,`| : 1 ≤ h < j, 1 ≤ ` ≤ mh}.

Let Kj,i = d|λ′j,i| + δ + εe for some δ, ε > 0. Let Kj = diag(Kj,1I, . . . , Kj,mjI) where
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each I is the identity matrix of appropriate size so that Kj,iI ∈ Rdj,i×dj,i . Let K =

diag(KM , . . . ,K1).

Let ∆j,i,h
s be the bin size corresponding to the component xj,i,hs at time s. We let

qj,i,hs = E∆j,i,h
s

Kj,i
(yj,i,hs ). Let our fixed rate for sensor j be N j = (

∏mj
i=1K

dj,i
j,i ) + 1 for all

s ∈ N. Choose any invertible function fj :
∏mj

i=1{1, . . . , Kj,i}dj,i → {1, . . . ,
∏mj

i=1K
dj,i
j,i }.

We then choose the encoded value

qjs =




fj(q

j,1,1
s , . . . , q

j,mj ,dj,mj
s ), if qj,i,hs 6= 0 for all 1 ≤ i ≤ mj, 1 ≤ h ≤ dj,i,

0, otherwise.

Upon receiving qjs 6= 0, the controller knows

{qj,i,hs : 1 ≤ i ≤ mj, 1 ≤ h ≤ dj,i}.

The controller forms the estimate x̂js as

x̂js =
[
(x̂j,1s )T · · · (x̂

j,mj
s )T

]T
,

where

x̂j,is =
[
x̂j,i,1s · · · x̂

j,i,dj,i
s

]T

and

x̂j,i,hs =




D∆j,i,h

s
Kj,i

(qj,i,hs ), if q1
s , . . . , q

M
s 6= 0,

0, otherwise.

Recall that the feedback bit bs is used to coordinate the sensors, making our control

policy implementable. It is chosen as

bs =





1, if q1
s , . . . , q

M
s 6= 0,

0, otherwise.

The update equations are

∆j,i
s+1 = Q̄j,i

(
bs,∆

j,i
s

)
∆j,i
s , Q̄j,i

(
bs,∆

j,i
s

)
=




ρ(|λ′j,i|+ δ), if bs = 0,

βj,i(∆
j,i
s ), otherwise,

(4.8)
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for some ρ > 1 and with

βj,i(∆
j,i
s ) = diag(βj,i,1(∆j,i,1

s ), . . . , βj,i,dj,i(∆
j,i,dj,i
s )), (4.9a)

βj,i,h(∆
j,i,h
s ) =





1, if ∆j,i,h
s ≤ Lj,i,h ,

|λ′j,i|+δ
|λ′j,i|+δ+ε−η

, otherwise,
(4.9b)

for some 0 < η < ε and Lj,i ∈ Rdj,i+ . Note that if we define L̄j,i = Lj,i(|λ′j,i|+δ)/(|λ′j,i|+
δ + ε− η) then ∆s > L̄ for all s ∈ N.

Bin ordering. From (4.4a) of Theorem 4.3.1, we can write

A =
[
(AR

M)T · · · (AR
1 )T
]T

where each AR
j ∈ Rnj×n. We can further write AR

j =
[
0 Aj Mj

]
where

Aj = diag(Aj,1, . . . ,Aj,mj)

and

Mj =
[
(Mj,1)T · · · (Mj,mj)

T
]T

with

Mj,i =
[
Mj,i,j−1 · · · Mj,i,1

]

and each Mj,i,h ∈ Rdj,i,nh . Recall from the proof of Theorem 4.3.1 that nh =

dim(Oh) − dim(Oh ∩ (∪h−1
i=1 O

i)). While the notation is complicated, the decompo-

sition is simple and we illustrate the above in Figure 4.2.

Let us denote the entries of Mj,i,h by {mk,`
j,i,h}. We define the entry of maximum

absolute value as

κj,i,h = max
k,`
{|mk,`

j,i,h|}.

We set L = c∆0, for some 0 < c ≤ 1. For any δ > 0, by our coding and control

policy (and in particular the choice of {|λ′j,i|}) given above, we can choose ∆0 such

that the following ordering is maintained for all s ∈ N:

∆j,i,h+1
s ≤ δ

j
∆j,i,h
s , (4.10a)
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1 ≤ j ≤M , 1 ≤ i ≤ mj, 1 ≤ h ≤ dj,i − 1,

∆j,k,1
s ≤ ∆j,i,1

s , (4.10b)

1 ≤ j ≤M , 1 ≤ i ≤ mj − 1, i < k ≤ mj,

∆k,`,h
s ≤ δ

jnkκj,i,k
∆j,i,dj,i
s , (4.10c)

2 ≤ j ≤M , 1 ≤ i ≤ mj, 1 ≤ k ≤ j − 1, 1 ≤ ` ≤ mk, 1 ≤ h ≤ dk,`.

Informally, we order the bins within Jordan blocks Aj,i, within sensor blocks Aj and

between sensor blocks Aj.

A∆s =




AM MM

AM−1 MM−1

. . .

A2 M2

0 A1







∆M
s

∆M−1
s
...

∆1
s




[
Aj Mj

]




∆j
s

∆j−1
s
...

∆1
s


 =




Aj,1 Mj,1

. . .
...

Aj,i · · ·Mj,i,h · · ·
. . .

...
Aj,mj

Mj,mj







∆j
s

∆j−1
s
...

∆h
s

...
∆1

s




Figure 4.2: Illustration of the notation used to describe A.

Control action. We choose the control action

us = −Ax̂s.

We define the sequence of stopping times

τ0 = 0, τz+1 = min

{
s > τz : |ys| = |xs + vs| ≤

1

2
K∆s

}
.

Proof of Theorem 4.3.3: Let λ ∈ R. The proof is similar for λ ∈ C. Let us

define

Ãj,i =
[
(ÃR

j,i)
T (ÃR

j−1)T · · · (ÃR
1 )T
]T
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where

ÃR
j,i =

[
Aj,i Mj,i,j−1 · · · Mj,i,1

]

and each ÃR
j is just AR

j with a sufficient number of leading zero columns removed to

make Ãj,i a valid rectangular matrix.

We will define x̃j,is =
[
(xj,is )T (xj−1

s )T · · · (x1
s)
T
]T

. We make analogous defin-

tions for ṽj,is , ˜̂xj,is and ∆̃j,i
τz .

For a matrix, let the absolute value operation | · | be applied component-wise.

Let N denote the nilpotent matrix with ones on the super-diagonal and all other

entries zero of appropriate dimension. Let 1 be the column vector with all entries 1

of appropriate dimension. Note that

|ÃR
j,i(x̃

j,i
τz + ṽj,iτz − ˜̂xj,iτz )| ≤ |ÃR

j,i||x̃j,iτz + ṽj,iτz − ˜̂xj,iτz |

≤
[
|Aj,i| |Mj,i,j−1| · · · |Mj,i,1|

] 1

2
∆̃j,i
τz

=
1

2
(|λj,i|I +N)∆j,i

τz +

j−1∑

h=1

1

2
|Mj,i,h|∆h

τz

≤ 1

2

(
|λj,i|+

δ

j

)
∆j,i
τz +

j−1∑

h=1

1

2
|Mj,i,h|

δ

jnhκj,i,h
∆j,i,dj,i
τz 1 (4.11)

≤ 1

2

(
|λj,i|+

δ

j

)
∆j,i
τz +

j−1∑

h=1

1

2
nhκj,i,h

δ

jnhκj,i,h
∆j,i,dj,i
τz 1

=
1

2

(
|λj,i|+

δ

j

)
∆j,i
τz +

1

2

δ(j − 1)

j
∆j,i,dj,i
τz 1

≤ (|λj,i|+ δ)
1

2
∆j,i
τz , (4.12)

where we have used the bin ordering (4.10) throughout and in particular for equation

(4.11). Let Ej,i = |λj,i| + δ. Let Ej = diag(Ej,1I, . . . , Ej,mjI) where each I is the

identity matrix of appropriate size so that Ej,iI ∈ Rdj,i×dj,i . Applying (4.12), we get

|Ãk
j,i(x̃

j,i
τz + ṽj,iτz − ˜̂xj,iτz )| ≤ |Ãk

j,i||x̃j,iτz + ṽj,iτz − ˜̂xj,iτz |

≤ |Ãk
j,i|

1

2
∆̃j,i
τz



CHAPTER 4. MULTI-SENSOR SYSTEMS 53

≤ |Ãj,i|k−1




(|λj,i|+ δ)1
2
∆j,i
τz

Ej−1
1
2
∆j−1
τz

...

E1
1
2
∆1
τz




≤ |Ãj,i|k−1(|λ′j,i|+ δ)
1

2
∆̃j,i
τz

...

≤ (|λ′j,i|+ δ)k
1

2
∆̃j,i
τz . (4.13)

Let us define

zτz ,k = |Ak(xτz + vτz − x̂τz)|.

From (4.13), we have

zj,iτz ,k ≤ (|λ′j,i|+ δ)k
1

2
∆j,i
τz , for all 1 ≤ j ≤M and 1 ≤ i ≤ mj, (4.14)

where we apply our usual notational convention for vectors in Rn.

Let Dj,i = |λ′j,i|+ δ. Let Dj = diag(Dj,1I, . . . , Dj,mjI), where each I is the identity

matrix of appropriate size so that Dj,iI ∈ Rdj,i×dj,i . Let D = diag(DM , . . . ,D1).

Then we can write (4.14) more compactly as

|Ak(xτz + vτz − x̂τz)| ≤ Dk 1

2
∆τz . (4.15)

Now, consider the proof of Theorem 2.4.5. We wish to obtain a similar geometric

bound on the difference between stopping times.

Let K̄j,i = 1/(|λ′j,i| + δ + ε − η). Let K̄j = diag(K̄j,1I, . . . , K̄j,mjI) where each

I is the identity matrix of appropriate size so that K̄j,iI ∈ Rdj,i×dj,i . Let K̄ =

diag(K̄M , . . . , K̄1).

We put

ξ = min
j,i

Kj,iK̄j,i = min
j,i

d|λ′j,i|+ δ + εe
|λ′j,i|+ δ + ε− η > 1.
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Let us define the noise vector

wτz ,k = D−kAk
(
− vτz +

k−1∑

s=0

A−1−swτz+s

)
+ D−kvτz+k. (4.16)

It then follows that

P

(
|xτz+k + vτz+k| �

1

2
K∆τz+k

∣∣∣∣ τz+1 − τz > k − 1,xτz ,∆τz

)

= P

(∣∣∣∣∣A
kxτz + Ak−1uτz +

k−1∑

s=0

Ak−1−swτz+s + vτz+k

∣∣∣∣∣

�
1

2
K∆τz+k

∣∣∣∣∣τz+1 − τz > k − 1,xτz ,∆τz

)

= P

(∣∣∣∣∣A
k(xτz − x̂τz + vτz − vτz) +

k−1∑

s=0

Ak−1−swτz+s + vτz+k

∣∣∣∣∣

�
1

2
K∆τz+k

∣∣∣∣∣τz+1 − τz > k − 1,xτz ,∆τz

)

≤ P

(
|Ak(xτz + vτz − x̂τz)|+

∣∣∣∣∣A
k

(
−vτz +

k−1∑

s=0

A−1−swτz+s

)
+ vτz+k

∣∣∣∣∣

�
1

2
Kρk−1Dk−1DK̄∆τz

∣∣∣∣∣xτz ,∆τz

)

≤ P

(
Dk 1

2
∆τz + Dk|wτz ,k| � Dk 1

2
ρk−1KK̄∆τz

∣∣∣∣∣xτz ,∆τz

)

≤ P

(
|wτz ,k| �

1

2
(ρk−1ξ − 1)∆τz

∣∣∣∣∣xτz ,∆τz

)
,

where we have used (4.15) and the commutativity of diagonal matrices with each

other.

As in the proof of Theorem 2.2.1, by choosing appropriate values of ρ, ε and η

we can form a countable state space S for the bin sizes and ensure that the Markov

process (xs,∆s) is irreducible and aperiodic on Rn × S.

A brief review of the proof of Theorems 2.2.1 and 3.0.3 then shows that we obtain
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the result provided that we can bound Tr((D−kAk)TD−kAk) by a polynomial in k.

This new term comes from the form of (4.16).

Let G,H ∈ Rn×n and let Gi,j,Hi,j denote the component at row i and column j

for G and H respectively. In the following, we will write G ≤ H when Gi,j ≤ Hi,j

for all i, j.

By reordering the vectors in our Jordan transformation, we can reorder the blocks

arbitrarily. Thus, we can assume without loss of generality that |λj,i| ≤ |λj,k| for i > k.

For convenience, we relabel the eigenvalues λM,1, . . . , λ1,m1 as λn, . . . , λ1. Similarly,

we relabel |λ′M,1|, . . . , |λ′1,m1
| as |λ′n|, . . . , |λ′1|. Thus, we have:

λi ≤ λ′i, for all 1 ≤ i ≤ n, (4.17)

|λ′1| ≤ · · · ≤ |λ′n|. (4.18)

We define F = diag(λn, . . . , λ1) and F′ = diag = (|λ′n|, . . . , |λ′1|). Then we can write

A = F + M where M is some upper triangular nilpotent matrix. Letting {mi,j}, we

define

α = max{1, |mi,j| : 1 ≤ i ≤ n, 1 ≤ j ≤ n}.

We define the absolute value operation | · | component-wise for matrices. It then

follows that

|A| = |F|+ |M| ≤ F′ + αN,

where N is the matrix with all entries on and below the diagonal zero and all entries

above the diagonal equal to one. That is, N is the nilpotent upper triangular matrix

where all nonzero entries are one. Let Ā = F′ + αN. Applying (4.18), it can easily

be verified by induction that

Āk ≤




|λ′n|k
(
k
1

)
α|λ′n|k−1

(
k+1

2

)
α2|λ′n|k−1 · · ·

(
k+n−2
n−1

)
αn−1|λ′n|k−1

|λ′n−1|k
(
k
1

)
α|λ′n−1|k−1 · · ·

(
k+n−3
n−2

)
αn−2|λ′n−1|k−1

|λ′n−2|k
. . .

...
. . .

(
k
1

)
α|λ′2|k−1

|λ′1|k



.
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Let us define

Ãk =




1
(
k
1

)
α
(
k+1

2

)
α2 · · ·

(
k+n−2
n−1

)
αn−1

1
(
k
1

)
α · · ·

(
k+n−3
n−2

)
αn−2

1
. . .

...
. . .

(
k
1

)
α

1



.

The above then shows that

|A|k ≤ Āk ≤ (F′)kÃk.

Finally, using (4.18), we obtain

Tr((D−kAk)TD−kAk) ≤ Tr((D−k|A|k)TD−k|A|k)
≤ Tr((D−k(F′)kÃk)TD−k(F′)kÃk) ≤ Tr((Ãk)T Ãk)

=
n−1∑

j=0

j∑

i=0

(
k + i− 1

i

)2

α2i ≤ n
n−1∑

i=0

(
k + i− 1

i

)2

α2i

≤ nα2n

n−1∑

i=0

(k + i− 1)2i ≤ n2α2n(k + n)2n.

Thus, the bound is polynomial in k and we are done. ut

Proof of Theorem 4.3.4: The proof follows directly from that of Theorem

4.3.3. Since the eigenvalues are ordered in decreasing magnitude, we can maintain

the ordering of the bin sizes given in (4.10) without increasing the rate. Specifically, in

the Proof of Theorem 4.3.3 we see that |λ′j,i| = |λj,i| for all 1 ≤ j ≤M , 1 ≤ i ≤ mj.�



Chapter 5

Multi-Controller Systems

In this chapter, we consider single-sensor, multi-controller systems.

5.1 Problem Statement

Consider the system

xt+1 = Axt +
M∑

j=1

Bjujt + wt, yt = Cxt + vt, (5.1)

where xt ∈ Rn, yt ∈ Rp are the state and sensor observation at time t ∈ N. The

control action exerted by controller j at time t is denoted by ujt ∈ Rmj . The matrices

A, Bj,C and random vectors wt,vt are of compatible size. The initial state, x0, is

drawn from the Z distribution.

We require that {wt} and {vt} be sequences of i.i.d. random vectors drawn from

a distribution Z, with finite 2 + ε moments in each component for some ε > 0, which

admits a probability density that is positive on every open set. At time t, wt and vt

are independent of each other and the state xt.

Assumption 5.1.1. We require joint controllability and observability. That is, the

pair (A, [B1 B2 · · · BM ]) is controllable but the individual pairs (A,Bj) may

not be controllable. The pair (C,A) is observable.

The setup is depicted in Figure 5.1. The observations are made by a single sensor

57
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which sends information to a set of M controllers through finite capacity channels. At

each time stage t, we allow the sensor to send an encoded value qjt ∈ {1, 2, . . . , N j
t } to

controller j for some N j
t ∈ N. No feedback value bt is needed in the multi-controller

case since the sensor quantizes the entire state and knows when all quantizers are

perfectly-zoomed. We define the rate at time t as Rt =
∑M

j=1 log2(N j
t ). The coding

scheme is applied periodically with period T and so the rate for all time stages is

specified by {N j
0 , . . . , N

j
T−1 : 1 ≤ j ≤M}. The average rate is

Ravg =
1

T

T−1∑

t=0

Rt. (5.2)

u1
t

yt

Plant

Controller 2 Controller MController 1

u2
t uM

t. . .

. . .

Sensor

. . .
q1t q2t qMt

Figure 5.1: A multi-controller system with finite-rate communication channels.

Information structure. For a process {xt} we define x[a,b] = {xa,xa+1, . . . ,xb}.
At time t, the sensor maps its information

Ist := y[0,t] → (q1
t , · · · , qMt ) ∈

M∏

j=1

{1, . . . , N j
t }.

Each controller j maps its information I
cj
t := qj[0,t] → ujt ∈ Rmj .
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The controllability matrix of controller j is

C(A,Bj) =
[
Bj ABj · · · An−1Bj

]
.

We denote the controllable subspace of controller j by Kj, which is the range space

of C(A,Bj). The observability matrix of the sensor is

O(C,A) =
[
(C)T (CA)T · · · (CAn−1)T

]T
,

the null space is N = Ker(O(C,A)) and the observable subspace is defined to be

O = N⊥.

5.2 Main Result

Let V1, . . . , V` denote the generalized eigenspaces of A. We state the following as-

sumption. In Section 5.3 we will remove this assumption and consider the general

case.

Assumption 5.2.1. Each eigenspace is controlled by some controller. That is, for

each 1 ≤ i ≤ ` there exists a 1 ≤ j ≤M such that Vi ⊆ Kj.

We label the eigenvalues of A as λ1, . . . , λn. Without loss, we assume that |λi| > 1

for all 1 ≤ i ≤ n. Our main result for multi-controller systems is the following:

Theorem 5.2.2. Under Assumption 5.2.1, there exists a coding and control policy

with average rate Ravg ≤ 1/(T2n)(
∑n

i=1 log2(d|λi|T2n + εe+ 1)) for some ε > 0 which

gives:

(a) the existence of a unique invariant distribution for {x2nt};

(b) limt→∞E[‖x2nt‖2
2] <∞.

Theorem 5.2.3. The average rate in Theorem 5.2.2 achieves the minimum rate (1.9)

asymptotically for large sampling periods. That is, limT→∞Ravg = Rmin.

Proof of Theorem 5.2.3: Follows from the proof of Theorem 2.2.2. ut
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The proof of Theorem 5.2.2 is basically an application of the Jordan normal form

together with Assumption 5.2.1.

Proof of Theorem 5.2.2: The proof follows that of Theorem 4.2.2. Instead

of working with left eigenvectors, however, we now work with right eigenvectors.

Under Assumption 5.2.1, we can assign each eigenspace Vi ⊆ Kj to some controller

j. Let Vj,1, . . . , Vj,mj denote the eigenspaces assigned to controller j and let us write

Vj,i = span{vj,i,1, . . . ,vj,i,dj,i} where each vj,i,h ∈ Rn×1 is a generalized eigenvector.

We put

Qj,i =
[
vj,i,1 · · · vj,i,dj,i

]
,

Qj =
[
Qj,1 · · · Qj,mj

]

Q =
[
QM · · · Q1

]
.

Consider the first n time stages of our control policy. The basic recursion for LTI

systems applied to (5.1) yields

xn = Anx0 +
M∑

j=1

n−1∑

t=0

An−1−tBjujt +
n−1∑

t=0

An−1−twt.

By our controllability assumption, it follows that we can choose uj0, . . . ,u
j
n−1 such

that
n−1∑

t=0

An−1−tBjujt =

mj∑

i=1

dj,i∑

h=1

ūj,i,h0 vj,i,h,

where each ūj,i,h0 ∈ R is chosen arbitrarily by controller j. Now, let us define

ūj,i0 =
[
ūj,i,10 · · · ū

j,i,dj,i
0

]T
,

ūj0 =
[
(ūj,10 )T · · · (ū

j,mj
0 )T

]T
,

ū0 =
[
(ūM0 )T · · · (ū1

0)T
]T
.



CHAPTER 5. MULTI-CONTROLLER SYSTEMS 61

Our recursion then becomes

xn = Anx0 + Qū0 +
n−1∑

t=0

An−1−twt.

We apply the similarity transform x̄t = Q−1xt and define Ā = Q−1AQ and w̄0 =

Q−1
∑n−1

t=0 An−1−twt. Our recursion is thus

x̄n = Ānx̄0 + ū0 + w̄0.

In the above, we apply our control action over the first n time stages. Suppose that

instead we allow the sensor to make observations in the first n time stages and apply a

control in the second n time stages, as in the proof of Theorem 2.2.1. Then we apply

our control policy repeatedly, every 2n time stages. By a slight abuse of notation, we

can define xs = x̄2ns, us = ū2ns, ws = w̄2ns to get the system

xs+1 = Ā2nxs + us + ws, ys = xs + vs

The vector ys is known by the sensor at time s through periodic observations and

{ws}, {vs} are i.i.d. sequences of random vectors with 2 + ε moments for some ε > 0.

Furthermore, since Q is the Jordan normal transformation matrix, it follows that

Ā2n = diag(J̄2n
1 , . . . , J̄

2n
` ) where each J̄i ∈ Rdi×di is a Jordan block. Since we can

apply another Jordan transformation to this sampled system, we can assume without

loss of generality that Ā2n is actually in Jordan form and each J̄2n
i is actually a Jordan

block.

To simplify notation, we write A := Ā2n = diag(J1, . . . ,J`) where each Ji ∈
Rdi×di is a Jordan block, xs =

[
(x1

s)
T · · · (x`s)

T
]T

where xis ∈ Rdi and similarly for

us,ws,ys and vs. From the above, we can also see that, for each i, there exists a j

such that uis is determined arbitrarily by controller j at time s.

Thus our system is equivalent to the following subsystems:

xis+1 = Jix
i
s + uis + wi

s, yis = xis + vis 1 ≤ i ≤ `

where for each 1 ≤ i ≤ `, there exists a controller j which can choose uis arbitrarily.
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We apply a policy similar to that in Section 2.3. At each time stage s, the sensor

sends an estimate of yis encoded in accordance with our modified uniform quantizer

and sent to controller j through qjt . The problem is thus reduced to the single-station

case and we are done. ut

5.3 Sufficient Conditions for the General Multi-

Controller Case

The following theorem extends the classical controllability canonical decomposition

to the decentralized case. For a detailed proof in the centralized case, see [24]. The

more general multi-agent setup, where each agent makes observations and applies a

control action, can be found in [15].

Theorem 5.3.1. Under Assumption 5.1.1, there exists a matrix Q such that, if we

define Ā = Q−1AQ and B̄j = Q−1Bj, then

Ā =




Ā1 ∗ · · · ∗
Ā2 · · · ∗

. . .

0 ĀM



, (5.3a)

[
B̄1 B̄2 · · · B̄M

]
=




B̄1
C ∗ · · · ∗

B̄2
C · · · ∗

. . .

0 B̄M
C



, (5.3b)

where the ∗’s denote irrelevant submatrices, each Āj ∈ Rnj×nj and each B̄j
C ∈ Rnj×mj .

Proof of Theorem 5.3.1: The proof follows that of Theorem 4.3.1 from the

multi-sensor case. We define n1 = dim(K1), and nj = dim(Kj)−dim(Kj∩(∪j−1
i=1K

i)),

for 2 ≤ j ≤ M . We choose n1 linearly independent column vectors from C(A,B1) and

label them q1
1, . . . ,q

1
n1

. Proceeding by induction, we choose {qj1, . . . ,qjnj} from C(A,Bj)

such that

{q1
1, . . . ,q

1
n1
,q2

1, . . . ,q
2
n2
, . . . ,qj1, . . . ,q

j
nj
}
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is a set of linearly independent vectors.

We define Qj =
[
qj1 · · · qjnj

]
for all 1 ≤ j ≤M and concatenate these matrices

to choose our transformation matrix Q =
[
Q1 · · · QM

]
. It will also be convenient

to denote the columns of Q by q1, . . . ,qn so that Q =
[
q1 · · · qn

]
.

From the Cayley–Hamilton Theorem, we know that for all m ≥ n there exist

α0, . . . , αn−1 such that Am =
∑n−1

i=0 αiA
i. Since {qj1, . . . ,qjnj} are columns of C(A,Bj),

this implies that Aqji is in the column space of C(A,Bj) for all 1 ≤ i ≤ nj. Let us

define the sets

Sj := {q1
1, . . . ,q

1
n1
,q2

1, . . . ,q
2
n2
, . . . ,qj1, . . . ,q

j
nj
}, 1 ≤ j ≤M

From our construction, it is then clear that

Aqj1, . . . ,Aqjnj ∈ span(Sj).

Our similarity transform gives

QĀ = AQ. (5.4)

We write Ā in terms of its column vectors as Ā =
[
ā1 · · · ān

]
with āi =

[
āi,1 · · · āi,n

]T

and āi,h ∈ R. If we write AQ =
[
Aq1 · · · Aqn

]
, then the relation (5.4) becomes

n∑

h=1

āi,hqh = Aqi

for 1 ≤ i ≤ n and we can see that the ith column of Ā is the representation of Aqi with

repect to the basis q1, . . . ,qn. This, coupled with the observation that QB̄j = Bj

and Bj is in the column space of C(A,Bj) gives the desired form. ut

Remark 5.3.2. In the proof of Theorem 5.3.1, we give one construction for the

triangular decomposition in (5.3). This transformation is not unique. There may be

many ways to achieve a block upper triangular form and it is not necessary to place

the controllers in order 1, . . . ,M .
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Theorem 5.3.3. There exists a coding and control policy which gives:

(a) the existence of a unique invariant distribution for {x2nt};

(b) limt→∞E[‖x2nt‖2
2] <∞,

and with average rate in the limit of large sampling periods

lim
T→∞

Ravg =
M∑

j=1

nj∑

i=1

log2(max{|λj,i|, |λh,`| : h > j, 1 ≤ ` ≤ nh}).

Clearly, we could also achieve (a) and (b) in Theorem 4.3.3 with limT→∞Ravg =

n log2(λabsmax) where λabsmax = maxj,i{|λj,i|}.
For Theorem 5.3.4 below, recall that we have some flexibility in the decomposition

given by Theorem 5.3.1. See the proof of Theorem 5.3.1 and Remark 5.3.2.

Theorem 5.3.4. If the eigenvalues of Ā1, . . . , ĀM in (4.4) are ordered in decreasing

magnitude then Theorem 5.2.2 holds without Assumption 5.2.1. That is, the theorem

holds if for λi ∈ Λ(Āi) and λj ∈ Λ(Āj) we have that |λi| ≥ |λj| when i < j.

5.4 Coding and Control Policy for the General

Multi-Controller Case

Consider the system (5.1). Sampling, observing and controlling as in the proof of

Theorem 2.2.1 and applying the transform x̄t = Q−1xt where Q−1 is given in Theorem

5.3.1, we obtain the system

xs+1 = Axs + us + ws, ys = xs + vs.

We do not relabel the variables (for example x̄s) by a slight abuse of notation and for

the sake of reasonable presentation.

In the above, A is block upper triangular with the blocks AM , . . . ,A1 descending

along the diagonal and each Aj ∈ Rnj×nj as in (4.4a) of Theorem 5.3.1. Recall

Remark 5.3.2 and that we are free to reorder the block so that AM appears leftmost

in A and A1 appears rightmost. We simply redefine nM = dim(KM), and nj =
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dim(Kj)− dim(Kj ∩ (∪Mi=j+1K
i)), for 1 ≤ j ≤ M − 1 and proceed with the proof of

Theorem 5.3.1 accordingly.

Since we can always apply a block transformation to A in which each of the blocks

is the Jordan tranformation of Aj, we can assume without loss of generality that each

Aj is in real Jordan normal form and we write Aj = diag(Aj,1, . . . ,Aj,mj) where each

Aj,i ∈ Rdj,i×dj,i is a Jordan block.

Let us write

xs =
[
(xMs )T · · · (x1

s)
T
]T

where

xjs =
[
(xj,1s )T · · · (x

j,mj
s )T

]T

and xjs ∈ Rnj with

xj,is =
[
xj,i,1s · · · x

j,i,dj,i
s

]T

and each xj,i,hs ∈ R. We will use the same notational convention for all relevant vectors

in this section. Namely, we will follow this convention for us, ws, ys, vs and for ∆s,

x̂s, L which will be specified.

From the proof of Theorem 5.3.1, we know that the columns of Q are taken from

the column spaces of {C(A,Bj)}. By applying the transform Q−1, we can see by the

usual recursion and the identity Q−1Q = I that each controller j can choose ujs

arbitrarily.

Let us denote the eigenvalue of Aj,i by λj,i. We define

|λ′j,i| = max{|λj,i|, |λh,`| : 1 ≤ h < j, 1 ≤ ` ≤ mh}.

Let Kj,i = d|λ′j,i| + δ + εe for some δ, ε > 0. Let Kj = diag(Kj,1I, . . . , Kj,mjI) where

each I is the identity matrix of appropriate size so that Kj,iI ∈ Rdj,i×dj,i . Let K =

diag(KM , . . . ,K1).

Let ∆j,i,h
s be the bin size corresponding to the component xj,i,hs at time s. We let

qj,i,hs = E∆j,i,h
s

Kj,i
(yj,i,hs ). Let our fixed rate for sensor j be N j = (

∏mj
i=1K

dj,i
j,i ) + 1 for all

s ∈ N. Choose any invertible function

fj :

mj∏

i=1

{1, . . . , Kj,i}dj,i →
{

1, . . . ,

mj∏

i=1

K
dj,i
j,i

}
.
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We then choose the encoded value

qjs =




fj(q

j,1,1
s , . . . , q

j,mj ,dj,mj
s ), if qj,i,hs 6= 0 for all 1 ≤ j ≤M , 1 ≤ i ≤ mj, 1 ≤ h ≤ dj,i,

0, otherwise.

Upon receiving qjs 6= 0, controller j knows

{qj,i,hs : 1 ≤ i ≤ mj, 1 ≤ h ≤ dj,i}.

Each controller j forms the estimate x̂js as

x̂js =
[
(x̂j,1s )T · · · (x̂

j,mj
s )T

]T
,

where

x̂j,is =
[
x̂j,i,1s · · · x̂

j,i,dj,i
s

]T

and

x̂j,i,hs =




D∆j,i,h

s
Kj,i

(qj,i,hs ), if qjs 6= 0,

0, otherwise.

Note that we do not need the feedback bit bs in the multi-controller case since the

sensor recovers xs + vs and chooses qjs 6= 0 only when all quantizers are perfectly

zoomed. Thus, when qjs 6= 0, controller j knows that s = τz for some z ∈ N.

The update equations are

∆j,i
s+1 = Q̄j,i

(
qjs,∆

j,i
s

)
∆j,i
s , Q̄j,i

(
qjs,∆

j,i
s

)
=




ρ(|λ′j,i|+ δ), if qjs = 0,

βj,i(∆
j,i
s ), otherwise,

(5.5)

for some ρ > 1 and with

βj,i(∆
j,i
s ) = diag(βj,i,1(∆j,i,1

s ), . . . , βj,i,dj,i(∆
j,i,dj,i
s )), (5.6a)

βj,i,h(∆
j,i,h
s ) =





1, if ∆j,i,h
s ≤ Lj,i,h ,

|λ′j,i|+δ
|λ′j,i|+δ+ε−η

, otherwise,
(5.6b)
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for some 0 < η < ε and Lj,i ∈ Rdj,i+ . Note that if we define L̄j,i = Lj,i(|λ′j,i|+δ)/(|λ′j,i|+
δ + ε− η) then ∆s > L̄ for all s ∈ N.

Bin ordering. From (5.3a) of Theorem 5.3.1, we can write

A =
[
(AR

M)T · · · (AR
1 )T
]T

where each AR
j ∈ Rnj×n. We can further write AR

j =
[
0 Aj Mj

]
where

Aj = diag(Aj,1, . . . ,Aj,mj)

and

Mj =
[
(Mj,1)T · · · (Mj,mj)

T
]T

with

Mj,i =
[
Mj,i,j−1 · · · Mj,i,1

]

and each Mj,i,h ∈ Rdj,i,nh .

Let us denote the entries of Mj,i,h by {mk,`
j,i,h}. We define the entry of maximum

absolute value as

κj,i,h = max
k,`
{|mk,`

j,i,h|}.

We set L = c∆0, for some 0 < c ≤ 1. For any δ > 0, by our coding and control

policy (and in particular the choice of {|λ′j,i|}) given above, we can choose ∆0 such

that the following ordering is maintained for all s ∈ N:

∆j,i,h+1
s ≤ δ

j
∆j,i,h
s , (5.7a)

1 ≤ j ≤M , 1 ≤ i ≤ mj, 1 ≤ h ≤ dj,i − 1,

∆j,k,1
s ≤ ∆j,i,1

s , (5.7b)

1 ≤ j ≤M , 1 ≤ i ≤ mj − 1, i < k ≤ mj,

∆k,`,h
s ≤ δ

jnkκj,i,kKk,`

∆j,i,dj,i
s , (5.7c)

2 ≤ j ≤M , 1 ≤ i ≤ mj, 1 ≤ k ≤ j − 1, 1 ≤ ` ≤ mk, 1 ≤ h ≤ dk,`,

Informally, we order the bins within Jordan blocks Aj,i, within controller blocks
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Aj and between controller blocks Aj. Note that in (5.7) there is an extra Kk,` =

d|λk,`|+ δ + εe term and thus (5.7) implies (4.10).

Control action. We choose the control actions

ujs = −Ajx̂
j
s,

leading to the joint action

us = −diag(AM , . . . ,A1)x̂s.

We define the sequence of stopping times

τ0 = 0, τz+1 = min

{
s > τz : |ys| = |xs + vs| ≤

1

2
K∆s

}
.

Proof of Theorems 5.3.3 and 5.3.4: Let λ ∈ R. The proof is similar for

λ ∈ C. Let us define Ā = diag(AM , . . . ,A1) and write A = Ā + N where N is the

correct nilpotent matrix.

Let Dj,i = |λ′j,i|+ δ. Let Dj = diag(Dj,1I, . . . , Dj,mjI) where each I is the identity

matrix of appropriate size so that Dj,iI ∈ Rdj,i×dj,i . Let D = diag(DM , . . . ,D1).

Let us define the noise process

wτz ,k = D−kAk
(
− vτz +

k−1∑

s=0

A−1−swτz+s

)
+ D−kvτz+k.

For a matrix, we define the absolute value operation | · | component-wise. It then

follows that

|xτz+k + vτz+k| =
∣∣∣∣∣A

kxτz + Ak−1uτz +
k−1∑

s=0

Ak−1−swτz+s + vτz+k

∣∣∣∣∣

=

∣∣∣∣∣A
k−1(A(xτz + vτz − vτz)− Āx̂τz) +

k−1∑

s=0

Ak−1−swτz+s + vτz+k

∣∣∣∣∣

=

∣∣∣∣∣A
k−1((Ā + N)(xτz + vτz)− Āx̂τz) + Ak

(
− vτz +

k−1∑

s=0

A−1−swτz+s

)
+ vτz+k

∣∣∣∣∣



CHAPTER 5. MULTI-CONTROLLER SYSTEMS 69

=
∣∣Ak−1(Ā(xτz + vτz − x̂τz) + N(xτz + vτz)) + Dkwτz ,k

∣∣

≤ |A|k−1(|Ā||xτz + vτz − x̂τz |+ |N||xτz + vτz |) + Dk|wτz ,k|

≤ Dk 1

2
∆τz + Dk|wτz ,k|. (5.8)

To see the last line we let 1 denote the column vector with all entries one of appropriate

dimension and note that

|Ā||xτz + vτz − x̂τz |+ |N||xτz + vτz | ≤ |Ā|
1

2
∆τz + |N|1

2
K∆τz

Defining zτz = |Ā||xτz + vτz − x̂τz |+ |N||xτz + vτz | we then see that

zj,iτz = Aj,i
1

2
∆j,i
τz +

j−1∑

h=1

|Mj,i,h|
1

2
Kh∆

h
τz

≤
(
|λj,i|+

δ

j

)1

2
∆j,i
τz +

j−1∑

h=1

|Mj,i,h|
1

2
Kh

δ

jnhκj,i,h
K−1
h ∆j,i,dj,i

τz 1

≤
(
|λj,i|+

δ

j

)1

2
∆j,i
τz +

j−1∑

h=1

nhκj,i,h
1

2

δ

jnhκj,i,h
∆j,i,dj,i
τz 1

≤
(
|λj,i|+

δ

j

)1

2
∆j,i
τz +

1

2

δ(j − 1)

j
∆j,i
τz

=
(
|λj,i|+ δ

)1

2
∆j,i
τz , (5.9)

where we have made use of the bin ordering (5.7). Since (5.9) holds for all 1 ≤ j ≤M

and all 1 ≤ i ≤ mj, it follows that

zτz ≤ D
1

2
∆τz .

Equation (5.8) now holds from the arguments in the proof of Theorem 4.3.3. Note

that the bin ordering (5.7) has an extra Kk,` term and thus implies the ordering in

the multi-sensor case (4.10).

The remainder of the proof now follows directly from the proofs for Theorems

4.3.3 and 4.3.4 from the multi-sensor case. ut



Chapter 6

Conclusion

In this report, we have presented a coding and control policy which achieves the

minimum rate asymptotically in the limit of large sampling periods for single-station

systems driven by Gaussian noise. We have extended our results to a more general

class of noise distributions with sufficiently light tails. We have further extended

our results to the multi-sensor (single-controller) case under the assumption that

each eigenspace is observed by some sensor and to the multi-controller (single-sensor)

case under the assumption that each eigenspace is controlled by some controller. In

the absence of these assumptions, we have given sufficient conditions for achieving

stability.

In all cases, we have established the existence of a unique invariant distribution

for the sampled state and a finite second moment of the state. These strong forms of

stability have not been considered in the literature for such systems to our knowledge.

The proofs use random-time drift criteria for Markov chains.

It is hoped that the results obtained in this work will find applications in a variety

of networked control problems.

Part of this report has been submitted to the IEEE Transactions on Automatic

Control and part will appear at the IEEE Conference on Decision and Control 2012

in Hawaii.
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Chapter 7

Future Work

7.1 Possible Extensions

We have shown that the state can be made positive Harris recurrent with a unique in-

variant distribution. By the ergodic theorem, we obtain that the transition probability

distribution converges to the unique invariant distribution. We have not considered

how quickly this convergence takes place. One direction for future work is to study

the rate of convergence under the total variation norm and possibly to show that

convergence is geometric.

Another direction for further study is to formulate an infinite horizon optimal cost

problem. By the ergodic theorem, our stability results show that such cost problems

can be well-defined.

The methods in this report are applicable to a variety of decentralized control

systems. We provide practical results for systems which have fixed-rate constraints

on the communication channels. Noisy channels are significantly more difficult to

analyze due to channel errors. See [22] for a discussion. The extension to multi-sensor

networks with noisy communication channels (for example, binary erasure channels)

linking the sensors to the controller is an open problem.

71
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7.2 Multi-Station Systems

In this section, we give a problem statement for multi-station systems. In the general

case, the controllers must send information to each other through signaling (commu-

nication via the plant). In the noiseless case, this problem is addressed in [1]. In the

noisy case, signaling introduces new complications.

Consider the system

xt+1 = Axt +
M∑

j=1

Bjujt + wt, yjt = Cjxt + vjt , 1 ≤ j ≤M, (7.1)

where xt ∈ Rn is the state at time t ∈ N. The control action exerted by controller

j at time t is denoted by ujt ∈ Rmj . The observation made by sensor j at time t

is denoted by yjt ∈ Rpj . The matrices A, Bj,Cj and random vectors wt,v
j
t are of

compatible size.

We require that {wt} and each {vjt} be sequences of i.i.d. random vectors drawn

from a distribution Z, with finite 2 + ε moments in each component for some ε > 0,

which admits a probability density that is positive on every open set. At time t, wt

and each vjt are independent of each other and the state xt. The initial state, x0, is

drawn from the Z distribution.

Assumption 7.2.1. We require joint controllability and joint observability. That is,

the pair (A, [B1 B2 · · · BM ]) is controllable and the pair ([(C1)T · · · (CM)T ]T ,A)

is observable but the individual pairs (A,Bj) and (Cj,A) may not be controllable and

observable respectively.

The setup is depicted in Figure 7.1. The observations are made by a set of M

sensors and each sensor j sends information to controller j through a finite capacity

channel. At each time stage t, we allow sensor j ∈ {1, . . . ,M} to send an encoded

value qjt ∈ {1, 2, . . . , N j
t } to controller j for some N j

t ∈ N. The feedback value

bt ∈ {0, 1} is now sent by the plant to all sensors and controllers at times t = Ts,

where T is the period of our coding policy and s ∈ N. Note that the plant is a

decision maker in this case and must only allow ujt to be applied to the system

when all controllers send a non-zero desired control action. That is, ujt 6= 0 for all

1 ≤ j ≤M . We define the rate at time t as Rt =
∑M

j=1 log2(N j
t ). The coding scheme
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is applied periodically with period T and so the rate for all time stages is specified

by {N j
0 , . . . , N

j
T−1 : 1 ≤ j ≤M}. The average rate is

Ravg =
1

T

(
2M +

T−1∑

t=0

Rt

)
, (7.2)

accounting for the encoded and feedback values.

q1t q2t qMt

bt

. . .

u1
t

. . .

. . .
y1
t y2

t yM
t

. . .

Sensor 2Sensor 1 Sensor M

Plant

Controller 2 Controller MController 1

u2
t uM

t. . .

. . .

. . .

Figure 7.1: A multi-station system with finite-rate communication channels.

Information structure. For a process {xt} we define x[a,b] = {xa,xa+1, . . . ,xb}.
At time t, each sensor j maps its information I

sj
t := {yj[0,t], b[0,t−1]} → qjt ∈ {1, . . . , N j

t }.
Each controller j maps its information I

cj
t := {qj[0,t], b[0,t−1]} → ujt ∈ Rmj .

Consider, for example, a system with two stations. Each station consists of a

sensor and a controller, let us call them sensors 1, 2 and controllers 1, 2. Sensor

1 receives some information about a component of the state that is controlled by

controller 2. Thus, it must send an estimate of the component through the discrete

noiseless channel to controller 1, which signals to sensor 2. Let us call the message

m. Since the observations of sensor 2 are noisy, it can only recover m′ = m+ v where

v is some noise term. We are interested in the case where the noise is unbounded

and there is no guarantee that m′ is within the granular region of the quantizer being

employed by sensor 2 and controller 2. Thus, we cannot ensure that controller 2 will
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be able to decode the message correctly. Thus, station 2 receives noisy information

and station 1 needs to engage in an information transmission problem over an additive

channel with quantized transmissions. This requires a careful analysis.

This simple example shows that the control policy we present in Section 2.3 is

insufficient to deal with the multi-station case. At the very least, it would be necessary

to introduce a new set of stopping times, to ensure that all messages can be relayed to

all controllers. This complicates the analysis considerably and we leave the problem

for future work.

The setup presented above leads to the study of a joint source-channel coding

problem over an unknown additive channel and the optimality analysis for such prob-

lems is difficult. We refer the reader to [22] for a more thorough discussion of some

of the issues.

It is clear that for such a class of problems, signaling is essential. The interested

reader can find a more in-depth study of signaling in [1] and [10].



Appendix A

Matrices

In this section, we give some simple results from the theory of matrices. We use the

lemmas given below in our analysis of single-station, multi-sensor and multi-controller

systems.

Lemma A.0.2. Let A ∈ Rn be an invertible matrix. If A has eigenvalues λ1, . . . , λn

then A−1 has eigenvalues 1
λ1
, . . . , 1

λn
.

Proof of Lemma A.0.2. If λi is an eigenvalue of A then for some v ∈ Rn,v 6= 0

it satisfies

(A− λiI)v = 0.

Note that

(
− 1

λi
A−1

)
(A− λiI)v = 0

(
A−1 − 1

λi
I

)
v = 0.

Thus, 1
λi

is an eigenvalue of A−1 and this completes the proof. ut

Recall that a matrix A ∈ Rn×n is said to be symmetric if AT = A. Symmetric

matrices have many useful properties. For example, all eigenvalues of a symmetric

matrix are real. Also, if A−1 exists, it is symmetric if and only if A is symmetric.

The spectral theorem states that any real symmetric matrix is diagonalizable by an

orthogonal matrix. More precisely, there exists some orthogonal matrix P ∈ Rn×n
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such that

PTAP = P−1AP = D

where D is a diagonal matrix. Another way to state the spectral theorem is that the

eigenvectors of a symmetric matrix form an orthogonal basis for Rn.

The next lemma follows from the fact that every symmetric matrix has a basis of

orthogonal eigenvectors.

Lemma A.0.3. Let A ∈ Rn×n be a symmetric matrix with eigenvalues λ1, . . . , λn. If

we let λmin = min{λ1, . . . , λn} and λmax = max{λ1, . . . , λn} then λminx
Tx ≤ xTAx ≤

λmaxx
Tx for all x ∈ Rn.

Proof of Lemma A.0.3. From the spectral theorem, there exist a set of or-

thonormal eigenvectors of A which span Rn. We label these

{e1, . . . , en}

where ei is the eigenvector corresponding to λi. Let x ∈ Rn. We can write

x = a1e1 + · · ·+ anen

for some ai ∈ R. It then follows that

xTAx = (a1e
T
1 + · · ·+ ane

T
n )A(a1e1 + · · ·+ anen)

= (a1e
T
1 + · · ·+ ane

T
n )(λ1a1e1 + · · ·+ λnanen)

= λ1a
2
1 + · · ·+ λna

2
n

≤ λmax(a2
1 + · · ·+ a2

n)

= λmaxx
Tx.

This gives one inequality, the other is clear from the above. ut
A symmetric matrix A ∈ Rn×n is said to be positive semidefinite if xTAx ≥ 0 for

all x ∈ Rn. If the inequality is strict for all x then we say A is positive definite. A

matrix is positive semidefinite (positive definite) if and only if all of its eigenvalues

are non-negative (positive). Every positive definite matrix is invertible and its inverse

is also positive definite.



Appendix B

Stochastic Stability and Markov

Chains

We give some basic definitions related to Markov chains and stochastic stability. For

a list of definitions on Markov chains, the reader is referred to [11] and [26]. Let

φ = {φt, t ≥ 0} be a Markov chain defined on a complete separable metric state space

(X,B(X)) with probability space (Ω,F ,P) where B(X) denotes the Borel σ-field on

X, Ω is the sample space, F a sigma field of subsets of Ω and P a probability measure.

Let P (x, D) := P (φt+1 ∈ D|φt = x) denote the transition probability from x to the

set D.

Definition B.0.4. For a Markov chain, a probability measure π is invariant on the

Borel space (X,B(X)) if π(D) =
∫
X P (x, D)π(dx), for all D ∈ B(X).

Definition B.0.5. A Markov chain is µ-irreducible if for any set D ∈ B(X) with

µ(D) > 0 and for all x ∈ X there exists some integer n > 0, possibly depending on

D and x, such that P n(x, D) > 0, where P n(x, D) is the transition probability in n

stages. That is P (φt+n ∈ D|φt = x).

For any set D ∈ B(X), let us define

τD = min{t ≥ 1 : φt ∈ D}.

Definition B.0.6. Let µ denote a σ-finite measure on B(X). A µ-irreducible Markov

chain {φt} is Harris recurrent if P (τD < ∞ | φ0 = x) = 1 for all x ∈ X and any
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D ∈ B(X) satisfying µ(D) > 0. It is positive Harris recurrent if in addition there is

an invariant probability measure π.

Definition B.0.7. A set S ⊂ X is small if there is an integer n ≥ 1 and a positive

measure µ satisfying µ(X) > 0 and P n(x, D) ≥ µ(D), for all x ∈ S and all D ∈ B(X).

In the following, let Ft denote the filtration generated by the random sequence

{φ[0,t]}. Define a sequence of stopping times {Ti : i ∈ N+}, measurable on the filtration

described above, which is assumed to be non-decreasing, with T0 = 0.

Theorem B.0.8. (Theorem 2.1 and Remark 2.1 of [18]) Suppose that we have a µ-

irreducible and aperiodic Markov chain φ. Suppose moreover that there are functions

V : X → [a,∞), β : X → [a,∞), f : X → [a,∞), for some a ≥ 0, a small set C, a

constant b ∈ R and consider:

E[V (φTz+1) | FTz ] ≤ V (φTz)− β(φTz) + b1{φTz∈C}, (B.1)

E
[Tz+1−1∑

k=Tz

f(φk) | FTz
]
≤ β(φTz), z ≥ 0. (B.2)

If a = 1 and (B.1) holds then φ is positive Harris recurrent with some unique invariant

distribution π. If a = 0, (B.1), (B.2) hold and φ is positive Harris recurrent with some

unique invariant distribution π then we get that limt→∞E[f(φt)] <∞.
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[17] S. Yüksel, “Stochastic stabilization of noisy linear systems with fixed-rate limited

feedback,” IEEE Trans. Automatic Control, vol. 55, pp. 2847–2853, 2010.
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