
On Games with Coupled Constraints
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Abstract— We study the problem of cost minimization in
competitive resource allocation problems, motivated by our
previous work on power minimization in MIMO interference
systems. Our setup leads to a general cost minimization game
in which each player wishes to minimize the cost of its resource
consumption while achieving a target utility level. In general,
the player strategies are coupled through both their cost
functions and their utility functions. Equilibrium exists only
for a certain set of target utility levels which in general is a
proper set of all achievable utility levels. To characterize the
set of equilibrium utility levels, we introduce the dual of a cost
minimization game called a utility maximization game in which
each player wishes to maximize its utility while keeping the cost
of its resource consumption below a cost threshold. We associate
the set of equilibrium utility levels with the set of equilibrium
of the dual game corresponding to all cost thresholds, and
show that the dual game always possesses an equilibrium. We
also obtain an inner estimate of the set of equilibrium utility
levels in the case of decoupled cost functions by a minimax
approach. We then relax the hard constraint on achieving a
target utility level, and introduce a weighted cost minimization
game which always possesses an equilibrium. We recover the
original equilibria through the equilibria of the weighted cost
minimization game as the penalty on not achieving the target
utility levels increases.

I. NOTATION

– := stands for “defined as”.
– ≡ stands for “identically equal to”.
– † denotes the conjugate transpose.
– I denotes an identity matrix of proper dimension.
– ℝ denotes the set of real numbers.
– ℝn denotes the n−dimensional Euclidian vector space.
– ℝn

+ = {x ∈ ℝn : xi ≥ 0, for all i ∈ {1, . . . , n}}.
– ℝn

++ = {x ∈ ℝn : xi > 0, for all i ∈ {1, . . . , n}}.
– −k denotes the set of indices other than k; for example,

for x ∈ ℝn, x−k = (x1, . . . , xk−1, xk+1, . . . , xn).
– ℋ+ denotes the set of positive semi-definite matrices of

proper dimension.
– (a)+ = max{a, 0}, for a real a.
– ℱ : X ⇉ Y indicates that ℱ is a correspondence (a

set-valued mapping) from X to the set of subsets of Y .
– cl(⋅) denotes the closure.
– co(⋅) denotes the convex hull.
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II. INTRODUCTION
We introduce a problem of power optimization in MIMO

interference systems, studied in our previous work [1], as a
motivating application for this paper. A MIMO interference
system consists of L communication links where each link
has a transmitter and a receiver; see [2], [3] for further
analysis and a literature review. There are nt antennas in
each transmitter site, and nr antennas in each receiver site.
The user of each link k sends an nt dimensional complex
signal vector xk. As a result, an nr dimensional complex
signal vector yk is received at the receiver of link k. The
received signal vector yk is given as

yk = Hk,kxk +
∑

ℓ ∕=k

Hk,ℓxℓ + nk

where Hk,ℓ is the complex channel matrix between the ℓ−th
transmitter and the k−th receiver, and nk is the circularly
symmetric complex Gaussian noise vector at the k−th re-
ceiver with E(nk) = 0 and E(nkn

†
k) = I. The user of each

link k decides on the distribution of xk to satisfy a Quality
of Service (QoS) requirement

I(xk; yk) ≥ rk (1)

with minimum power consumption E(x†kxk) where I(xk; yk)
is the mutual information for the link k and rk ∈ ℝ+ is a
target rate. The user of each link k views its total interference∑

ℓ∕=k Hk,ℓxℓ as a zero-mean circularly symmetric complex
Gaussian noise vector. In this case, the power consumption
E(x†kxk) is minimized by a zero-mean circularly symmetric
complex Gaussian distribution satisfying (1); see [2]. More-
over, the mutual information for link k takes the form

I(xk; yk) = log2 det
(
I + R

−1/2
k Hk,kQkH

†
k,kR

−1/2
k

)

Rk := I +
∑

ℓ∕=k

Hk,ℓQℓH
†
k,ℓ

where Qk := E(xkx
†
k) ∈ ℋ+; see [2].

Therefore, the power minimization problem for the user
of each link k reduces to choosing a covariance matrix Qk

from the set of feasible strategies

ℱp
k (Q−k) := {Qk ∈ ℋ+ : rk − I(xk; yk) ≤ 0}

in order to minimize the cost trace(Qk). Note that, the set
ℱp

k (Q−k) of feasible strategies for each link k depends on
the decisions Q−k of the other links, even though the cost
trace(Qk) of each link k depends only on its own decision
Qk. This means that the users of L links are engaged in a
noncooperative game with coupled constraints [4], [5], which
motivates us to introduce a general cost minimization game
in the next section.



III. A COST MINIMIZATION GAME

Motivated by the power optimization problem introduced
in Section II, we abstract out a general cost minimization
game. We start with a finite player set P := {1, . . . , P}.
Each player p ∈ P has a strategy set Sp which is a nonempty
closed convex cone (with the vertex at 0) in ℝnp where
np ≥ 1 is a finite integer. It is convenient to think of Sp

as the set of resources available to player p. Hence, for any
non-zero sp ∈ Sp, the semi-infinite ray {®sp : ® ∈ ℝ+} can
be interpreted as the set of resources of the same type as that
of sp but with different intensities. Whereas, if s1p, s

2
p ∈ Sp

are linearly independent, then s1p and s2p can be interpreted
as different types of resources. In our cost minimization
game, all players choose their strategies simultaneously and
their collective choices are represented by some profile of
strategies s ∈ S where S := ×p∈PSp. For any s ∈ S
and p ∈ P , sp ∈ Sp denotes the strategy chosen by player
p, i.e., p−th entry in s, whereas s−p ∈ S−p denotes the
profile of strategies chosen by all players other than player
p, where S−p :=×q∈P−{p}Sq . We sometimes write s ∈ S
as s = (sp, s−p), for some p ∈ P .

If all players choose the strategy profile s ∈ S , then each
player p ∈ P incurs the cost cp(s) and receives the utility
up(s) where cp : S 7→ ℝ+ and up : S 7→ ℝ+ denote player
p’s cost and utility functions, respectively. We make the
following assumption throughout the paper without further
mention.

Assumption 1: For all p ∈ P , (sp, s−p) ∈ S with sp ∕= 0,

(i) cp, up are continuous in S
(ii) cp(⋅, s−p) is convex in Sp, up(⋅, s−p) is concave in Sp

(iii) cp(0, s−p) = up(0, s−p) = 0
(iv) cp(®sp, s−p), up(®sp, s−p) are (strictly) increasing in

® ∈ ℝ+

(v) for some M ≥ 0, inf ŝ∈S:∥ŝp∥≥M cp(ŝ) > 0.

Part (i) and (ii) of Assumption 1 are for technical reasons.
Part (iii) means that using no resources has no cost and yields
no utility. Part (iv) ensures sensible behavior expected of cost
and utility functions in a resource allocation problem. Part
(v) requires that the cost of any resource ŝp ∈ Sp with large
enough intensity is uniformly higher than a certain nonzero
level for all ŝ−p ∈ S−p. Clearly, Assumption 1 holds in
the problem of power optimization in MIMO interference
systems1.

We note that, under Assumption 1, the following are true:
for all p ∈ P , (sp, s−p) ∈ S with sp ∕= 0,

– 0 ∈ Sp is the unique global minimizer of cp(⋅, s−p) and
up(⋅, s−p)

– sup®∈ℝ+
cp(®sp, s−p) = ∞.

Given the setup above, the objective of each player p ∈ P
is to choose a strategy sp ∈ Sp with minimal cost while
achieving a certain utility level ūp ∈ ℝ+. More precisely,

1If any channel matrix Hk,k is rank deficient, then the set of strategies
need to be restricted in such a way that part (iv) of Assumption 1 is satisfied.

each player p ∈ P is to solve the following cost minimization
problem for some target utility level ūp ∈ ℝ+:

min
sp∈Cp(s−p)

cp(sp, s−p) (2)

where Cp(s−p) := {š ∈ Sp : up(š, s−p) ≥ ūp} (without
the knowledge of s−p ∈ S−p, in actuality!). Note that, for
any s−p ∈ S−p, Cp(s−p) is closed and convex; moreover,
Cp(s−p) is unbounded, whenever it is nonempty.

Lemma 1: For any s−p ∈ S−p, if Cp(s−p) ∕= ∅, then the
minimum in (2) is achieved by some ŝp ∈ Cp(s−p) such that
up(ŝp, s−p) = ūp.

Proof: Clearly, if the minimum in (2) is achieved by
some ŝp ∈ Cp(s−p), then up(ŝp, s−p) = ūp. To show that
the minimum in (2) is achieved by some ŝp ∈ Cp(s−p), let

cp(s−p) := inf
sp∈Cp(s−p)

cp(sp, s−p).

We have cp(s−p) ∈ ℝ+. There exists a sequence {snp}n≥1

in Cp(s−p) such that cp(snp , s−p) → c(s−p).
Suppose that supn≥1 ∥snp∥ = ∞. Then {snp}n≥1 has a

subsequence {snk
p }k≥1 such that ∥snk

p ∥ ≥ k. Since cp(⋅, s−p)
is convex in Sp, we have

0 ≤ cp
(
snk
p /∥snk

p ∥, s−p

) ≤ 1

k
cp(s

nk
p , s−p) → 0.

The properties of cp implies that snk
p /∥snk

p ∥ → 0, which is
false. Therefore, supn≥1 ∥snp∥ < ∞.

Since supn≥1 ∥snp∥ < ∞, {snp}n≥1 has a subsequence
{snℓ

p }ℓ≥1 converging to some ŝp ∈ Cp(s−p). Since cp is
continuous in S , we have

cp(s
nℓ
p , s−p) → cp(ŝp, s−p) = c(s−p).

We will refer to the cost minimization game corresponding
to the target utility levels ū ∈ ℝP

+ as Γc(ū). A profile
of strategies s∗ ∈ S that mutually solves each player’s
cost minimization problem (2) is called a generalized Nash
equilibrium2. In other words, a profile of strategies s∗ ∈ S
is an equilibrium if and only if, for all p ∈ P ,

cp(s
∗
p, s

∗
−p) = min

sp∈Cp(s∗−p)
cp(sp, s

∗
−p).

An equilibrium can also be regarded as a fixed point of the
best response correspondence BRc : S ⇉ S , where BRc =
(BRc

1, . . . , BRc
P ) is given by: for all p ∈ P and s−p ∈ S−p,

BRc
p(s−p) := argmin

sp∈Cp(s−p)

cp(sp, s−p).

With this notation, a profile of strategies s∗ ∈ S constitutes
an equilibrium if and only if

s∗ ∈ BRc(s∗).

At equilibrium, no player has an incentive to unilaterally
deviate to an alternative strategy. Hence, the concept of

2We henceforth refer to a generalized Nash equilibrium simply as an
equilibrium.



equilibrium is quite relevant in situations where optimiz-
ing the overall system is not feasible. In the context of
power optimization in MIMO interference systems, a group
of selfish links interested in minimizing their own power
consumptions may settle only at an equilibrium. Hence, it
is of interest to study the properties of equilibrium, starting
with its existence.

A. Existence of Equilibrium

In noncooperative games, a well-known method for
showing the existence of equilibrium is to use the
various fixed point theorems available in the literature. A
specialization of an existence result from the literature,
namely Theorem 4.3.1 in [6], which relies on Kakutani’s
fixed point theorem, is given below using our own notation.

Theorem 1 (A specialization of Theorem 4.3.1 in [6]):
Consider a noncooperative game with the set P = {1, ..., P}
of players in which each player p ∈ P chooses xp ∈ Xp to
solve maxxp∈ℱp(x−p) fp(xp, x−p) where

(i) Xp is a nonempty convex compact subset of ℝnp

(np ≥ 1 is a finite integer)
(ii) ℱp : X−p ⇉ Xp is both upper semi-continuous3

(u.s.c.) and lower semi-continuous4 (l.s.c.) in X−p

(X−p :=×q∈P−{p}Xq)
(iii) for all x−p ∈ X−p, ℱp(x−p) is nonempty, closed, and

convex
(iv) fp : X 7→ ℝ is continuous in X (X :=×p∈PXp)
(v) for all x−p ∈ X−p, fp(⋅, x−p) is quasi-concave in Xp.

The game described above possesses an equilibrium.

Remark 1: If, for all p ∈ P , ℱp ≡ ℱ̄p where ℱ̄p is some
nonempty closed convex subset of Xp, then condition (ii)
and (iii) of Theorem 1 are satisfied.

It is tempting to apply Theorem 1 to a cost minimization
game Γc(ū) by letting

Xp = Sp, fp = −cp, ℱp = Cp, for all p ∈ P.

The main difficulty is that condition (i) of Theorem 1 is
not satisfied, because S1, . . . ,SP are not compact (although
they are nonempty, closed, and convex, by assumption). This
difficulty, namely the unboundedness of S1, . . . ,SP , can be
circumvented, if there are nonempty convex compact subsets
S̄p ⊂ Sp, for all p ∈ P , such that S̄ :=×p∈P S̄p is stable
under BRc, i.e.,

BRc(S̄) := {s ∈ S : s ∈ BRc(s̄), s̄ ∈ S̄} ⊂ S̄.
If this is indeed the case and the other conditions of Theo-
rem 1 are satisfied, then the restriction of Γc(ū) to S̄ would

3ℱp is called upper semi-continuous if for every sequence {xn
−p}n in

X−p converging to an arbitrary x̄−p, and for every neighborhood G of
ℱp(x̄−p) in Xp, there exists n0 such that ℱp(xn

−p) ⊂ G for all n ≥ n0.
4ℱp is called lower semi-continuous if for every sequence {xn

−p}n in
X−p converging to an arbitrary x̄−p, and for every open subset G of Xp

for which ℱp(s̄−p)∩ G ∕= ∅, there exists n0 such that ℱp(xn
−p)∩ G ∕= ∅

for all n ≥ n0.

possess an equilibrium which would also be an equilibrium
of Γc(ū).

However, finding such subsets S̄1, . . . , S̄P itself requires
an equilibration process, which is not necessarily an easier
task than establishing the existence of an equilibrium strategy
profile. For instance, there is no obvious way of accomplish-
ing this for the problem of power optimization in MIMO
interference systems, in general. To overcome this obstacle,
we explore a duality relation with a utility maximization
game introduced in the next section.

IV. A UTILITY MAXIMIZATION GAME

Using the same setup as in the previous section, a utility
maximization game is introduced as a noncooperative game
in which each player p ∈ P is to maximize its utility while
keeping its cost below a certain level. More precisely, each
player p ∈ P is to solve the following utility maximization
problem for some target cost level c̄p ∈ ℝ+:

max
sp∈Up(s−p)

up(sp, s−p) (3)

where Up(s−p) := {šp ∈ Sp : cp(šp, s−p) ≤ c̄p}. Note
that Up(s−p) is nonempty, convex, and compact. Hence, the
maximum in (3) is always achieved by some ŝp ∈ Up(s−p)
such that cp(ŝp, s−p) = c̄p.

We will refer to the utility maximization game correspond-
ing to the target cost levels c̄ ∈ ℝP

+ as Γu(c̄). The concept
of equilibrium and the best response correspondence BRu

for Γu(c̄) are defined in a completely analogous way as in
the case of a cost minimization game Γc(ū).

A. A Duality Relation

The relevance of a utility maximization game in the
context of this paper is due to the following duality relation.

Proposition 1: Fix s̄ ∈ S , and let

c̄ := (c1(s̄), . . . , cP (s̄)) and ū := (u1(s̄), . . . , uP (s̄)) .

Let ℰc(ū) and ℰu(c̄) denote the sets of equilibria for the
games Γc(ū) and Γu(c̄), respectively. Then,

s̄ ∈ ℰc(ū) ⇔ s̄ ∈ ℰu(c̄).

Proof: Suppose that s̄ ∕∈ ℰu(c̄). Hence, for some p ∈ P ,
there exists an ŝp ∈ Sp such that

up(ŝp, s̄−p) > up(s̄p, s̄−p) and cp(ŝp, s̄−p) ≤ c̄p.

Because of the strict inequality above, we must have ŝp ∕= 0.
This implies that, for some ® ∈ (0, 1),

cp(®ŝp, s̄−p) < cp(s̄p, s̄−p) and up(®ŝp, s̄−p) ≥ ūp

which means that s̄ ∕∈ ℰc(ū). Therefore, s̄ ∈ ℰc(ū) implies
s̄ ∈ ℰu(c̄). The proof of the reversed implication is similar.

This duality relation reveals that a cost minimization game
Γc(ū) possesses an equilibrium if and only if the target
utility levels ū can be achieved at an equilibrium of the
corresponding utility maximization game Γu(c̄) for some



target cost levels c̄. Therefore, it is of interest to characterize
the set of equilibrium utility levels defined as

Ue :=
{
(u1(s̄), . . . , uP (s̄)) ∈ ℝP

+ : s̄ ∈ ℰu(c̄), c̄ ∈ ℝP
+

}
.
(4)

Prior to characterizing Ue, however, we first address the issue
of the existence of equilibrium in utility maximization games.

B. Existence of Equilibrium

Applying Theorem 1 to a utility minimization game to
establish the existence of an equilibrium results in the same
difficulty as in the case of cost minimization game Γc(ū), that
is, S1, . . . ,SP are not compact. Similarly, the unboundedness
of S1, . . . ,SP , can be circumvented, if there are nonempty
convex compact subsets S̄p ⊂ Sp, for all p ∈ P , such that
S̄ :=×p∈P S̄p is stable under BRu, i.e.,

BRu(S̄) := {s ∈ S : s ∈ BRu(s̄), s̄ ∈ S̄} ⊂ S̄.
It turns out that the existence of such subsets S̄1, . . . , S̄P

can be shown for any utility maximization game.

Lemma 2: For all p ∈ P , c̄p ∈ ℝ+, the set S̄p defined as

S̄p := co (cl (Up (S−p))) (5)
= co (cl ({sp ∈ Sp : cp(sp, s−p) ≤ c̄p, s−p ∈ S−p}))

is nonempty, convex, and compact.

Proof: It suffices to show that, for all p ∈ P , Up (S−p)
is bounded. Suppose that, for some p ∈ P , Up (S−p) is
unbounded. There must be a sequence {sn}n≥1 in S such
that, cp(sn) ≤ c̄p and ∥snp∥ ≥ n. Let M be as in part (v)
of Assumption 1. Since cp(⋅, sn−p) is convex in Sp, we have,
for all n ≥ M ,

0 ≤ cp

(
snp

M

∥snp∥
, sn−p

)
≤ M

∥snp∥
cp(s

n) → 0.

This implies that inf ŝ∈S:∥ŝp∥≥M cp(ŝ) = 0 which contradicts
part (v) of Assumption 1.

This leads us to the following result.

Proposition 2: For any c̄ ∈ ℝP
+, the utility maximization

game Γu(c̄) possesses an equilibrium.

Proof: If c̄p = 0, for any p ∈ P , then BRu
p (S−p) =

Up(S−p) = {0}. Therefore, we can remove any such player
p ∈ P with c̄p = 0 by substituting 0 into sp throughout
and obtain a reduced utility maximization game with fewer
players. Hence, we only consider the case where c̄ ∈ ℝP

++,
without loss of generality.

Let S̄p be as in (5), for all p ∈ P . Consider the restriction
Γu(c̄)∣S̄ of Γu(c̄) to S̄ := S̄1×, . . . ,×S̄P . By definition, we
have BRu(S̄) ⊂ S̄ . Hence, an equilibrium of Γu(c̄)∣S̄ , if
exists, is also an equilibrium of Γu(c̄).

We now apply Theorem 1 to Γu(c̄)∣S̄ by letting

Xp = S̄p, fp = up∣S̄ , ℱp = Up∣S̄−p
, for all p ∈ P.

Since S̄p is a nonempty convex compact subset of ℝnp , for
all p ∈ P , condition (i) of Theorem 1 is satisfied.

Condition (ii) of Theorem 1 is satisfied because Up∣S̄−p

is both u.s.c. and l.s.c. in S̄−p. To see the u.s.c. property, we
note that the graph of Up∣S̄−p{

(s−p, sp) ∈ S̄−p × S̄p : cp(sp, s−p) ≤ c̄p
}

is closed in S̄−p×S̄p. This together with the compactness of
S̄p implies that Up∣S̄−p

is u.s.c. in S−p; see Theorem 2.2.3 in
[6]. The l.s.c. property follows from the assumed properties
of cp, Sp, S−p, and the fact that, for each s−p ∈ S̄−p,
there exists some sp ∈ S̄p such that cp(sp, s−p) < c̄p; see
Theorem 12 in [7].

Finally, conditions (iii), (iv), and (v) of Theorem 1 are
readily satisfied due to Assumption 1. Hence, Γu(c̄)∣S̄ pos-
sesses an equilibrium which is also an equilibrium of Γu(c̄).

C. The Set of Equilibrium Utility Levels
We now deal with the issue of characterizing the set of

equilibrium utility levels Ue defined in (4). Clearly, Ue ⊂ Ua

where Ua denotes the set of achievable utility levels, i.e.,

Ua := {(u1(s), . . . , uP (s)) : s ∈ S} .
The next proposition shows a simple case where Ue = Ua.

Proposition 3: If, for all p ∈ P , there exists ŝp ∈ Sp such
that Sp = {®ŝp : ® ∈ ℝ+}, then Ue = Ua.

Proof: Fix s̄ ∈ S and let ū = (u1(s̄), . . . , uP (s̄)).
Then, s̄ ∈ ℰu(c̄) where c̄ := (c1(s̄), . . . , cP (s̄)). To see this,
consider the problem

max
sp∈Sp:cp(sp,s̄−p)≤c̄p

up(sp, s̄−p).

Clearly, the maximum above is uniquely achieved by s̄p.

In general, however, Ue is a proper subset of Ua, i.e.,
Ue ⊊ Ua.

V. THE CASE OF DECOUPLED COST FUNCTIONS
In this section, we consider the special case of decoupled

cost functions where each player’s cost function depends
only on its own strategy. In other words, we assume that,
for all p ∈ P , (sp, s−p) ∈ S ,

cp(sp, s−p) = cp(sp)

where, by a slight abuse of notation, cp(sp) denotes player
p’s cost for using the resource sp ∈ Sp regardless of
the strategies of the other players. The problem of power
optimization in MIMO interference systems falls into this
special case.

In the case of decoupled cost functions, it is possible to
obtain an inner estimate of the set of equilibrium utility
levels, without resorting to an equilibration process. For this,
we define the set of minimax utility levels as

Um :=
∪

c̄∈ℝP
+

{
ū ∈ ℝP

+ : for all p ∈ P,

ūp < min
s−p∈S̄−p(c̄−p)

max
sp∈S̄p(c̄p)

up(sp, s−p)

}



where, for all p ∈ P , S̄p(c̄p) = {sp ∈ Sp : cp(sp) ≤ c̄p}.
Note that, for all cp ∈ ℝ+, S̄p(c̄p) is nonempty, convex, and
compact.

Proposition 4: In the case of decoupled cost functions,

Um ⊂ Ue.

Proof: Let (ū, c̄) ∈ Um × ℝP
+ be such that, for all

p ∈ P ,

ūp < min
s−p∈S̄−p(c̄−p)

max
sp∈S̄p(c̄p)

up(sp, s−p).

This means that, for all p ∈ P , s−p ∈ S̄−p(c̄−p), there exists
some sp ∈ S̄p(c̄p) such that

ūp < up(sp, s−p) and cp(sp) ≤ c̄p.

Consider the game Γc(ū). It is straightforward to see that

s−p ∈ S̄−p(c̄−p), sp ∈ BRc
p(s−p) ⇒ cp(sp) ≤ c̄p

⇒ sp ∈ S̄p(c̄p).

Therefore, S̄(c̄) := ×p∈P S̄p(c̄p) is stable under BRc(ū).
Applying Theorem 1 to the restriction Γc(ū)∣S̄(c̄) of Γc(ū)

to S̄(c̄) leads to the existence of an equilibrium of Γc(ū).
Therefore, ū ∈ Ue.

An immediate consequence of Proposition 4 is that all
target utility levels that are sufficiently small are minimax
(hence equilibrium) utility levels.

Proposition 5: If the player cost functions are decoupled,
then there exists some û ∈ ℝP

++ such that
{
ū ∈ ℝP

+ : ū ≤ û (elementwise)
} ⊂ Um.

In some cases, it is possible to obtain the entire set of
equilibrium utility levels through the set of minimax utility
levels, i.e., Um = Ue. However, in general, Um can be a
proper set of Ue, i.e., Um ⊊ Ue.

A. The Case of Weakly Coupled Utility Functions

As a final application of the minimax approach, we
consider the case of weakly coupled utility functions (in
the context of decoupled cost functions). We formalize the
concept of weak coupling in terms of a coupling coefficient
´ ∈ ℝ+. We consider an ´−parameterized family of cost
minimization and utility maximization games with some cost
functions of the form cp(sp) and some utility functions of
the form up(sp, ´s−p). Thus, if ´ = 0, then both the utility
and the cost functions are decoupled; whereas, if ´ > 0 is
small, then the utility functions are weakly coupled and the
cost functions are decoupled. We will refer to the achievable,
minimax, and the equilibrium utility levels corresponding to
´ as U´

a, U´
m, and U´

e , respectively. The following result
states that essentially all utility levels achievable in the
case of complete decoupling (´ = 0) are minimax (hence
equilibrium) utility levels in the case of weak decoupling of
the utility functions.

Proposition 6: If 0 ≤ ū < û ∈ U´=0
a (elementwise), then

there exists some ¯́ > 0 such that, for all ´ ∈ [0, ¯́],

ū ∈ U´
m ⊂ U´

e .

Proof: Suppose that 0 ≤ ū < û ∈ U´=0
a . There exists

some ŝ ∈ S such that, for all p ∈ P , ûp = up(ŝp, 0). For all
p ∈ P , let ĉp := cp(ŝp) and Ŝp := {sp ∈ Sp : cp(sp) ≤ ĉp}.
The subsets Ŝp, for all p ∈ P , are nonempty, convex, and
compact. Since up is continuous, for some ¯́ > 0, for all ´ ∈
[0, ¯́], for all p ∈ P , we have ūp < mins−p∈Ŝ−p

up(ŝp, ´s−p)
which implies that

ūp < min
s−p∈Ŝ−p

max
sp∈Ŝp

up(sp, ´s−p).

Therefore, for all ´ ∈ [0, ¯́], ū ∈ U´
m ⊂ U´

e .

VI. AN EXACT PENALTY APPROACH

In the cost minimization problem, each player considers
the achievement of a certain utility level as a hard constraint
on itself. However, if the target utility levels are not equi-
librium utility levels, then the players would not be able to
agree on any resource allocation profile. In a realistic cost
minimization game, a particular player would not know if
its target utility level together with the other players’ target
utility levels constitute a profile of equilibrium utility levels.
If the target utility levels are not equilibrium utility levels,
then players may be caught up in an everlasting process of
updating their strategies with no possibility of reaching an
equilibrium solution.

To alleviate this issue, we relax each player’s hard con-
straint by incorporating a penalty term into each player’s
cost function, which penalizes the deviations from achieving
its target utility level. More precisely, using the notation of
Section III, we introduce a weighted cost minimization game,
referred to as Γw(ū), in which each player p ∈ P is to solve

min
sp∈Sp

cp(sp, s−p) + wp (ūp − up(sp, s−p))
+

where wp ∈ ℝ+ is player p’s unit cost of not achieving the
target utility level ūp ∈ ℝ+. It will be clear shortly that the
minimum above always exists; see Proposition 7.

A strategy profile s∗ ∈ S is called an equilibrium of Γw(ū)
if and only if

s∗ ∈ BRw(s∗)

where BRw = (BRw
1 , . . . , BRw

p ) denotes the best response
correspondence for Γw(ū). We will denote the set of equilib-
ria in a weighted cost minimization game Γw(ū) by ℰw(ū).

Our primary interest is in the case where wp ↑ ∞, for all
p ∈ P . As wp ↑ ∞, player p would be expected to achieve
its target utility level, if at all possible, since otherwise
player p would be penalized heavily. If a player p’s target
utility level is “too high” to achieve, then player p would
incur a very “high cost” as wp ↑ ∞. In a practical scenario,
a player who cannot achieve its target utility level despite
incurring a very high cost may be encouraged to downgrade
its target utility level to a more “reasonable” level. However,
regardless of the target utility levels ū ∈ ℝP

+, a weighted



cost minimization game Γw(ū) always possesses equilibria,
whose relationship with the equilibria of the corresponding
cost minimization game Γc(ū) is established next.

Proposition 7: For any ū ∈ ℝP
+, w ∈ ℝP

+, we have:
1) Γw(ū) possesses an equilibrium
2) {s ∈ ℰw(ū) : up(s) ≥ ūp, for all p ∈ P} ⊂ ℰc(ū)
3) For some w̄ ∈ ℝP

+, w ≥ w̄ ⇒ ℰc(ū) ⊂ ℰw(ū).

Proof:
1) Note that sp = 0 achieves the cost wpūp. Therefore,

for all p ∈ P , s−p ∈ S−p, s̄p ∈ BRw
p (s−p), we have

cp(s̄p, s−p) ≤ wpūp. Hence, BRw maps S into the
subsets of the set S̄ :=×p∈P S̄p where, for all p ∈ P ,
S̄p is given by

co (cl ({sp ∈ Sp : cp(sp, s−p) ≤ wpūp, s−p ∈ S−p})) .
By Lemma 2, S̄ is nonempty, convex, and compact.
By Theorem 1, the restriction Γw(ū)∣S̄ of Γw(ū) to S̄
possesses an equilibrium which is also an equilibrium
of Γw(ū); see Remark 1.

2) Let ŝ ∈ ℰw(ū) be such that up(ŝ) ≥ ū, for all p ∈ P .
We have, for all p ∈ P , sp ∈ Sp,

cp(ŝ) ≤ cp(sp, ŝ−p) + wp (ūp − up(sp, ŝ−p))
+
.

Hence, we have, for all p ∈ P , sp ∈ Sp,

up(sp, ŝ−p) ≥ ūp ⇒ cp(ŝ) ≤ cp(sp, ŝ−p).

3) Let s∗ ∈ ℰc(ū). Note that each player p’s problem is
convex and, for some s̄p ∈ Sp, the regularity condition
ūp−up(s̄p, s

∗
−p) < 0 is satisfied. Hence, by Theorem 1

on page 217 of [8], there exists a vector of Lagrange
multipliers ¸∗ ∈ RP

+, such that, for all p ∈ P ,

cp(s
∗) = min

sp∈Sp

cp(sp, s
∗
−p) + ¸∗

p

(
ūp − up(sp, s

∗
−p)

)
.

This results in, for all p ∈ P and wp ≥ ¸∗
p,

cp(s
∗) = min

sp∈Sp

cp(sp, s
∗
−p)+wp

(
ūp − up(sp, s

∗
−p)

)+
.

Therefore, for all w ≥ ¸∗, s∗ ∈ ℰw(ū); see also [9].

Below, we provide a converse to part 3) of Proposition 7.
Since cp(⋅, s−p), −up(⋅, s−p) are convex, the one-sided di-
rectional derivatives

c′p((sp, s−p); ŝp) := lim
¸↓0

cp(sp + ¸ŝp, s−p)− cp(sp, s−p)

¸

u′
p((sp, s−p); ŝp) := lim

¸↓0
up(sp + ¸ŝp, s−p)− up(sp, s−p)

¸

exist, for all p ∈ P , (sp, s−p) ∈ S , ŝp ∈ Sp. We make the
following additional assumption for the rest of the paper.

Assumption 2: For all p ∈ P , ®, ¯ ∈ ℝ+,

sup
(sp,s−p)∈S:∥sp∥=1,∥s−p∥≤¯

c′p((®sp, s−p); sp)

u′
p((®sp, s−p); sp)

< ∞.

Proposition 8: Let {wn}n≥1 be such that, for all p ∈ P ,
0 ≤ w1

p ≤ w2
p ≤ ⋅ ⋅ ⋅ → ∞. For some ū ∈ ℝP

+, let {sn}n≥1

be such that, for all n ≥ 1, sn ∈ ℰwn

(ū).
1) supn≥1 ∥sn∥ < ∞ ⇒ sn ∈ ℰc(ū), for all large n ≥ 1.
2) ū ∕∈ Ue ⇒ supn≥1 ∥sn∥ = ∞.

Proof:
1) For all p ∈ P , let Np := {n ≥ 1 : up(s

n
p , s

n
−p) < ūp}.

If snp ∕= 0, let ŝnp := snp/∥snp∥; otherwise, let ŝnp ∈ S be
arbitrary except ∥ŝnp∥ = 1. We have, for all n ∈ Np,

wn
p ≤ c′p((∥snp∥ŝnp , sn−p); ŝ

n
p )/u

′
p((∥snp∥ŝnp , sn−p); ŝ

n
p ).

In view of Assumption 2, this implies that Np is finite.
Therefore, there exists an n̄ ≥ 1 such that, for all
p ∈ P , n ≥ n̄, we have up(s

n
p , s

n
−p) ≥ ūp. Hence,

for all n ≥ n̄, we have sn ∈ ℰc(ū).
2) Assume that supn≥1 ∥sn∥ < ∞. Part (a) implies that,

for large enough n, sn ∈ ℰc(ū). This leads to ū ∈ Ue,
which contradicts the hypothesis.

VII. CONCLUSIONS

This paper attempts to extend our previous work on power
minimization in MIMO interference systems to general com-
petitive resource allocation problems. Our extension involves
a cost minimization and a utility maximization game, which
are dual to each other. In the most generalized case, both the
objective function and the strategy set of each player depend
on the strategies of the other players. We obtain satisfactory
counterparts of our previous results in our generalized setting
by exploiting, in particular, a duality relation.

Obtaining less conservative estimates of the set of equilib-
rium utility levels is left for future work. Developing learning
dynamics with a universally convergent behavior is another
future research problem. Finally, improving the efficiency
of equilibrium without requiring centralized coordination
remains as yet another future research problem.
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