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Abstract—We consider a multi-link and multi-input-multi- mutual information. In [1], the existence of Nash equilitori
output (MIMO) interference system in which each link wishes  associated with the multi-link game is established and-suffi
to minimize its own power by choosing its own signal vector jant conditions for the uniqueness of equilibrium are give

subject to an information theoretic Quality-of-Service (QoS) . . .
requirement. Our setup leads to a multi-link game, referred to Decentralized algorithms are suggested as update seategi

as a “power game’, in which the feasible strategy set of an t0 determine the link parameters using only local infororati

individual link depends on the strategies of the other links. We and reasonable computational burden. Since an equilibrium
characterize the rates for which an equilibrium solution exists  state does not necessarily maximize the total mutual infor-
in a power game in terms of the equilibria of “capacity games” 440 g stream control approach is introduced to achieve

introduced in our earlier work [1]. We provide an example S . - .
where the set of equilibrium rates is properly contained in the a system-level coordination based on link negotiationghWi

set of achievable rates. We provide a conservative estimate of the stream control approach, the system-wide efficiency of
the region of equilibrium rates using a minmax approach. We equilibrium is improved by imposing limits on the number
discuss the uniqueness of equilibrium as well as the convergence of independent data streams of each link.

of best response dynamics (a.k.a. iterative water-filling) for all

rates when the interference is sufficiently small and some other In this paper, we consider a MIMO interference network
mild conditions are met. Finally, we extend our results to the , \which the objective of each link is to satisfy a certain
case where the QoS requirements are softened. . . . . .

Index Terms—Power control, MIMO systems, Co-channel Quality _Of Service (QoS) requw_ement_, defl_n_ed In terms_ of
interference, Ad-hoc networks, Game theory, Generalized Nash the achievable data rate of the link, with minimum possible
equilibrium. total radiated power. In [8], an iterative method is used to

determine link parameters at equilibrium for such a MIMO
|. INTRODUCTION network. It is shown that the converged state does not

Multiple-Input Multiple-Output (MIMO) links use antenna necessarily yield the best network throughput. Previoukwo
arrays at both ends of a link to transmit multiple parallebuch as [9]-[11] have considered joint optimization of sets
streams in the same time and frequency channel [2], [3]. Sigf co-channel links assuming that the base-station has an
nals transmitted and received by array elements at differearray antenna. However, the models considered in these
physical locations are spatially separated by array pedegs papers involve the set of scalar power levels as the decision
algorithms. Depending on the channel scattering conditionparameters in contrast to the model considered in this paper
MIMO links can vyield large gains in capacity of wirelesswhere the decision parameters are the covariance matfices o
systems. the transmitted signals.

Using antenna arrays at both ends of the links can also ) ) ) o
allow the network to accommodate multiple nearby links to W& model the interactions among the links within the
transmit in the same time and frequency channel, i.e. throudf@mework of noncooperative game .thefory and present a
spatial multiplexing. In this scheme, multiple links, eagith ~ Multi-link power game where each link's strategy has an

different transmitter-receiver pairs, are allowed to graitin ~ €ff€Ct on the strategy sets of the other links. As in [1],
a given range possibly through multiple streams per link. W& follow a dgcentrall_zed gpproach_and assume availability
Such a multi-access network with MIMO links is referred®f ©nly local information; i.e. one link has knowledge of
to as a MIMO interference system and has been consider8glY its own channel and received interference conditions.
in previous studies including [1], [4]-[7], with the focu$ o We dlscqss the eX|ste.nce, uniqueness, .and. decentrgllzed

finding the achievable rates of the links given their powefOmputation of generalized Nash equilibrium in multi-link

and interference levels. Our earlier work [1] uses a multiPOWer games.

link game framework to analyze the MIMO interference e rest of this paper is organized as follows. Section I

system where each link selfishly wishes to maximize its OWpgsents the system model. Section Il introduces the power
Research supported by NSF Grant #ECCS-0547692. game setup. Section IV discusses the relationship between

the power games and the so-called capacity games introduced
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A. Notation by choosing the distribution of;,, independently of the other

.— stands for “defined as”. links, subject to a QoS constraint

— = stands for “identically e_qual to”. I(Xk;yk) > Tk Q)

— EJ.] denotes the expectation. _ : . :

— + denotes the conjugate transpose. wherel(xy;yx) is the mutual information between the input

— 1 denotes an identity matrix of an appropriate dimen@nd the output of the channel characterizedhyy, andr <
sion. [0,00) is a given constant. The—th link, not knowing the

— |A| denotes the determinant of a square matrix. distributions of the signal vethors chosen by t_he othgrsl,mk

— tr(A) denotes the trace of a square mathix models the total |r_1terferengezlgz¢',C Hy, ox, atits receiver

— _k denotes the set of indices other than as a zero-mean circularly symmetric complex Gaussian noise

_ R denotes the set of real numbe®” denotes the VECtor. Under the modeling assumptions delineated above,
n—dimensional Euclidian vector space. the k—th link’s powerE[xka] is minimized by a zero-

— ' denotes the Hilbert space of x m complex Hermi- Mean circularly symmetric complex Gaussian distribution
tian matrices (wheren will be clear from the context). Salisftying the QoS constraint (1); see [2]. Note that if all

— ‘H, denotes the closed convex cone of positive sem|inks make the same modeling assumptions then the links
definite matrices ir; 1’ denotes the—times product can choose their optimal distributions in a manner that is

Hy x - x Hy mutually consi_st(_-:-nt with their modeling assumptions. We
— diaga,as,...) denotes the diagonal matrix whose@Ssume that this is the case, and note from [2] that the mutual
diagonal entries are the scalarg as, . . .. information of each link can now be written as
= [a]t = max{a,Q} f_or a reala. _ I(xp;yr) = log, ]I + R,;l/sz,kaHL kR,:W . @
- F : X = Y indicates thatF is a correspondence ’
mappingX into the set of subsets Af. k=1,..,L, whereQy := E[xkxz] is a Hermitian positive
— gr(F) denotes the graph of a correspondefice X =  semi-definite matrix, and
Voie, g(F) ={X,Y) e A x)Y :Xe X, Y€ L .
F(X)}. Ry =1+ Z H; (Q/H, (3
=104k

Il. SYSTEM MODEL . . . . .
is the covariance matrix of the total interference and noise

We consider arL-link communication system where eachat thek—th receivet. We furthermore assume that both the
link is associated with a transmitter-receiver pair. Eaahd- transmitter and receiver nodes of tihe-th link have the
mitter and receiver are equipped wilfy and N, antennas, knowledge of the whitened channel matfbngHk,,C once
respectively. We assume link, for k£ = 1,..., L, transmits the other links choose their signal vectors. Now, from the
a complex signal vectax;, of dimensionN;. Consequently, perspective of each link, the problem amounts to choosing an
a complex baseband signal vector of dimensigndenoted appropriate covariance matrix with minimum trace satisgyi
by y is received at thé—th receiver. The received signal its own QoS constraint in the presence of the other links that
vectors are related to the transmitted signal vectors by  also want to minimize their own powers satisfying their own
QoS constraints.

L
yie =Hipxi+ Y Hypxo+ny, [1l. A POWER GAME AND GENERALIZED NASH
L=10#£k EQUILIBRIUM
where The setup introduced in the previous section leads us to

— H,, is the complex channel matrix of dimensiof. x an L—link noncooperative game with cost functions

N, for the link between the—th transmitter and the JP(Qp) = tr(Qy),
k—th receiver,

— n,, denotes the zero-mean circularly symmetric com@nd feasible strategy sets

plex GTaussian noise vector at tte-th receiver with FUQ k) :={Qx € Hy : 1 — I(xp;yx) <0}, (4)
Engn;] =1 N
To avoid trivialities, we make the following assumptionW ere .
throughout the paper. = Qe :={Q1,.. ., Qr-1,Qr41,-.-, QL
— I(xx;yk) is as in (2),
Assumption 2.1: — ri € [0,00) is a given constant,
for k = 1,..., L. We call the above game a power game
Hy #0, forall k=1,..., L. and denote it byr?(H, r) whereH := {H ¢ }1 <k ¢<1, and

. .. . . . r.=ir .
We now consider a scenario in which theth link wishes {rehisese

to minimize its power lIn the remainder of the paper, we often suppress the depemdenc

t of the mutual information/(xx;yx) on the link covariance matrices
E[kak] Q1,...,QL.



A selfish link in such a strategic engagement would not be(i) C; is nhonempty, convex and compact,
satisfied with its choice unless its cost is minimized giver(ii) g is continuous irC,
the choices of the other links. A steady state situation ifiii) for any fixed Q_;, € C_, gx(-, Q_x) iS convex inCy,
which all link costs are mutually minimized is called a(iv) for any fixedQ_; € C_;, there exists @, € C; such
generalized Nash equilibriimFor a more precise definition that gx (Qr, Q_x) < 0,
of equilibrium, let BR, denotek—th link's best response (v) Jj is continuous in giFy),
function, i.e., (vi) for any fixed Q_r € C_j, Jix(-,Q_k) is convex in

BR(Q-y) = argming, e xp(q /i (Qr),  (8) Fr(Q-x).

Then, there exists an equilibrium.
and let BR? := {BR.}1<i<; denote the composite best
response function; see Proposition 1.1 in Appendix for the Remark 3.1: Theorem 4.3.1 of [13] allowsF; to be
fact that, for any givenQ € H%, BRP(Q) is nonempty arbitrary provided it is nonempty, closed, and convex value

and single-valued. Now, a profile of link strategi€s = in C__k as _vveII as_it is both upper semi Contin_u_ous _and lower
{Qz,...,Q; } is called an equilibrium of?(H, r) if semi continuous i€_. In Theorem 3.1, conditions imposed
on g;, are sufficient forF; to satisfy such requirements. In

Q" = BRP(Q"). particular, see Theorem 2.2.3 of [13] for the upper semi

An equilibrium represents a steady-state situation in whicCONtinuity requirement, and see Theorem 12 of [14] for the
lower semi continuity requirement. Finally, if,(.) = F

no link has an incentive to unilaterally change its strateg fived losed q Rt
As such, equilibrium is a particularly useful notion when it or some fixed nonempty, closed, and convex su _em
forall k =1,..., L, then assumptions (ii), (iii), (iv) of

is not practical to obtain and/or implement a system-widgk"
optimal solution. For example, an equilibrium can emergdneorem 3.1 are superfluous.

out of local optimizations performed by autonomous links in |+ ,rns out that Theorem 3.1 is not immediately applicable
an ad-hoc wireless network without centralized coorderati 4 4 power gamd”(H, r). Note that, if we seCy = M,
Therefore, it is important to address the issue of existemﬁ = 1y — I(xp;ye), and J, = JP, the assumptions

and uniqueness of an eq_whbnum In a power game. (iiy through (vi) of Theorem 3.1 are satisfied, however,
One approach used in [12] to establish the existencgsymption (i) is not satisfied. The main difficulty stems

of equilibrium in single-input-single-output (SISO) PAWE from the fact that link feasible strategy set&(Q_y), given

games is the framework of supermodular games which relierﬁ, (4), are unbounded. Moreover, imposing bounds on link

on the monotonicity of best response function. Howeves, thigyategies in a way that is consistent with the assumptions
approach is not readily applicable to the MIMO case. FOgt Thegrem 3.1 is not straightforward. For example, it is

instance BR” is nlot alw2ays no2n-declreasir£g with respect 19,4t clear how to impose some additional power limitations
the partial ordeQ” < Q° < Q° - Q' e Hy, i.e, P1,...,pr, such that the modified strategy sets
1 2 1 2
Q =Q # BRIQ) < BRY(Q). {Qr € Hy - tr(Qu) < Py 7h — I(Xk57%) <0}
An example is provided below.

are nonempty for allk = 1,...,L. This prompts us to
Example 3.1: Consider a power gam&”(H,r) where follow alternative routes towards establishing the exisée
L=2 N,=N,=2 H,, =I1H,=dag1,0), r, = ©f equilibrium in power games. We first observe a useful

1. We haveBR? (I/2) = diag(y/3 — 3/2,v/3 — 1), whereas relationship with a capacity game.
Py

BR;(I) = diag(0, 1). IV. RELATIONSHIP WITH A CAPACITY GAME

Another approach to establish the existence of an equilib- et p := {pr}1<k<1 be a collection of positive scalars.
rium in noncooperative games is based on Kakutani’'s welEonsider an—link noncooperative game with utility func-
known fixed point theorem. Towards this end, we state a furmions
damental existence theorem specialized from Theorem 4.3.1 I(x;y6)(Q), (6)
of [13] to our context.

and feasible strategy sets
Theorem 3.1 (Theorem 4.3.1 of [13]): Let us consider an

L—player noncooperative game where theth player's {Qr € Hy 1 tr(Qx) < pr}, (7)
strategyQy; belongs to a subse}, of a Euclidan space. Let ¢, . — 1 [ where Q = {Q,...,Qr}, and

ch::f X‘fgf andC_j := X#’“Cfa Let f}f : Cl_k — Chk Ee I(xy;y%) is as in (2). Here, each link wishes to maximize its
the feasible strategy correspondence for playesuch that utility (6) by choosing a strateg®;. from its feasible strategy

Fi(-) = {Qx € Ck : gx(Qs,-) < 0} for somegy, : C +— R. 7) We call thi ] i
Let Ji : gr(Fx) — R be the cost function for playek. ;St(r(l )p).e call this game eapacity game and denote it by

Assume, for alle =1,..., L, that The equilibria of capacity games have been studied in [1].

2We henceforth refer to a generalized Nash equilibrium singsyan !n particular, the existence of an ?qu”ibrium in every aapa
equilibrium. ity gamel'“(H, p) has been established using the framework



of concave games [1%] The following proposition, whose
proof is revealed by a little thought, relates the equidilbof
power games and capacity games.

Proposition 4.1: Fix H. ConsidejQ € Hi, and letp :=
{70 (Qr) hr<r<r, T = {I(xx;y%)(Q) }1<r<r. Then,
Q is an equilibrium of°(H, p)
< (8)
Q is an equilibrium of?(H, 7).

This implies that a power gani®’(H, r) would possess an
equilibrium if and only if the rate profile can be achieved
at an equilibrium of a capacity gamie‘(H, p) for some R.(H)
power profilep. This leads us to the question of how we
can characterize the set of rate profiles that can be achieved
at an equilibrium ofl'*(H, p) for somep.

For a fixedH, define the set oéquilibrium rates as

Fig. 1. An illustration of R.(H) in Example 4.1 for the casg = 1/2.
Re(H) = {{I(xx;yx)(Q")h<k<r: Q" is an
equilibrium of '“(H, p) for somep},

and the set obchievable rates as V. A CONSERVATIVE ESTIMATE OF R (H)

Ra(H) := {{I(xk; y4)(Q)}r<her : Q € HE} . Here, we present an estimate of the set of equilibrium
- rates, which is conservative but relatively easier to campu
Clearly, R.(H) C R.(H). Moreover, in some special cases,We _rgcgll th_at Theorem 3.1 is qot applicable to gstablish an
we haveR.(H) = R, (H). equilibrium in a power game mainly because feasible styateg
sets are unbounded. To work around this issue, consider a
Proposition 4.2; If N, = N, = 1, thenR.(H) = R,(H). nonempty, convex and compact subSet 7/ of the form

Proof: It follows from the fact that, in the SISO case, C=Cix-xCp, )
p is the unique equilibrium of*°(H, p). where, fork = 1.....L,
It is possible, however, to find sontd for which R (H) _ ) < !
is a proper subset ok, (H), i.e., Cr = {Qk € Hy : tr(Qx) < py for some fixedp, < oo} .

Let C_j := X4,C,. We now define a set of minmax rates
Re(H) C Ru(H).
Rm(H) = U {{Tk}lgkgL :V 1 S k S L,

Example 4.1: Consider the setud. = 2, N, = N, = c
2, Hiy =Hyp =1, Hi» = Hy; = /71, for somen > 0. 0<ry < min max I(xx;y%)(Qr Q-r)}
Any given rate profile{r, > 0}?_, can be achieved by Q-rECk Qe
Q, = diag2™ —1,0), Q; = diag(0,2™ — 1). Therefore, where the union is taken with respect to subgets 1 of
Ro(H) = [0,00)*. the form (9). Loosely speakings.,,, represents the rates that

However, if n < 1, then the unique equilibrium of are achievable irrespective of the interference when tiie i
I'“(H, p) for a givenp = {p,, > 0}3_, is {pxI/2}7_, with  strategies belong tsome nonempty, convex and compact set.
the corresponding rate profil%log2 (1 + %) }k:l.
This implies that, fom < 1, Proposition 5.1:

Re(H) = {{Thrg} L (VT - 1) (V2 — 1) < 1/172}. Rpn(H) C R.(H) (henceR,,(H) C R.(H) C Ro(H)).

Proof: For a fixed H, consider the power game
I'?(H,r) with r € R,,(H). Let C* € H% be a nonempty,
convex and compact subset of the form (9) such that

Figure 1 illustratesk.(H) for the case wherg = 1/2.

3The existence of an equilibrium in any capacity gafiffH, p) also r. < min max I(xu: 1<k<L.
follows from Theorem 3.1. k= Q_€C", QreCr (xk5y3) (Qi, Qr), 1<k <



It is clear that VI. SOFTENING QOS REQUIREMENTS

Q_r €C", = BRI(Q_;) € CL. We thus far viewec_i j[he _QoS _requi_renjents as _hart_j con-
straints. One of the difficulties with this viewpoint is th&t

Hence, the composite best response functit’ mapsC™  the rates that the links seek to achieve are not achievable
into C*, i.e., BRP : C* — C*. Now, by Theorem 3.1, the at an equilibrium, then the links would not be able to settle
restriction ofl'?(H, r) to C" possesses an equilibrium, whichat any solution. In a practical scenario, an individual link
is also an equilibrium of*”(H, r). Therefore,R,,(H) C  not knowing the entire setup would not be able to easily
Re(H). B determine whether or not its QoS requirement is achievable
at an equilibrium. The lack of an equilibrium would manifest
itself as persistent oscillations when the links contifyual
adjust their covariance matrices using an update algorithm
such as best response dynamics. To overcome this difficulty,
r € R,,(H), and hencea € R.(H). we now soften the QoS requirements by removing the hard

_ constraintQ, € F;(Q-_x) and modifying the link cost
Proof: To see this, choose any= {r;}1<x<z Where fynctions as ’

rp € [0,00), for all k = 1,..., L. First consider the case

Proposition 5.2 Fix {Hj. ;}1<k<z andr € [0,00)L. If
the interference channels are sufficiently weak, ug.;.=
{Hy ¢} e is sufficiently small, then

w +
wheren = 0. Sincel (x4; y)(Q)|n—o depends only 0@y, &' (Q) = tr(Qx) +wlre—I(xx;yx)] ", Qx € Hy, (10)
there is a strategy profil@ e H% such that wherew € [0,00) is the cost of violating the QoS require-
I(x; Yk)(Q)|T[:O = . ments. We refer to a game characterized by the cost functions

Jiv, ..., J and the feasible strategy séts. x --- x H, as
Consider the nonempty, convex and compact subset= 5 “weighted power game” and denote it By (H, r).
Cf" x --- x CF* where We denote thé—th link’s best response function ByRY,

CF={Qu e M, :tr(Qp) <tr(Qw)}, k=1,..., L. €.,

Sincel (x; yx)(Q) is continuous with respect tpatn = 0, BRi/(Q-x) = argminy, 5, Ji' (Qk, Q-1);
for sufficiently smalln, and the composite best response function BRY :=

. BRY}1<k<1; see Proposition 1.1 in Appendix for the fact

e < I(xg; — 1<k<L. {BR }1<i< . .

= Q,Ikngclirk Qr,f?éﬁr (ak; ye) (Qu Q-n), 1<k < that, for any givenQ € H%, BR“(Q) is nonempty and
single-valued. We call a profile of link strategi€y € %
an equilibrium ofI'(H, r) if

The following proposition, whose proof follows from the Q = BR*(Q).
definition of R,,(H) and Proposition 5.1, states that all
sufficiently small rates are equilibrium rates. We are essentially interested in the case wher¢ oo,
since, for largew, the links are expected to strive towards
Proposition 5.3: Fix H. There existy, > 0,k =1,...,L,  achieving their QoS requirements. If it is not possible for a
such that link to achieve its QoS requirement, then this would result
o - _ in a very high power level for the particular link at an
rehshse sme € 0,7 k=1, L} € Re(H). equilibrium, which would perhaps prompt the link to scale
It turns out that, for somé, R,,(H) is a proper subset down its QoS requirement. One advantage of softening the
of R.(H), i.e., QoS requirements is that an equilibrium would always exist
Rm(H) € R.(H). regardless of the rates that the links seek to achieve. &noth

i . . . advantage is that if the target rates are equilibrium rates,
anllmple 5'1.' I(éo?mdelr tge setup in Example 4.1. Simpley,o equilibria of a weighted power game for sufficiently krg
calculations yield, for ally > 0, w contain the equilibria of the corresponding power game

R (H) = {{Tw“z} . (\/27“1 _ 1)(4/27"2 _ 1) < 1/772}. which by definition satisfy the QoS requirements.

In view of Example 4.1, this means that, for < 1, Proposition 6.1: Fix H, r € [0,00)", andw € [0,00).
Rm(H) = R.(H). Then, the following statements are true.

However, forn > 1, the capacity gamd“(H,p) for 1) The weighted power gam&”(H,r) possesses an
some fixedp = {p, > 0}?_, has additional equilibria equilibrium.
(in addition to{p;1/2,p2I/2}). In particular, whenp > 1 2) An equilibrium of I'(H,r) satisfying the QoS re-
andp; = p2 = p for somep > 0, {diag(p,0), diag(0,p)} quirement (1) is also an equilibrium @¥(H,r).
is such an additional equilibrium with the rate profile 3) There exists @ € [0, 00) such that ifw € [w, o) then
{log,(1 + p),log,(1 + p)}. For a sufficiently largep > 0, any equilibrium of'?(H, r) is also an equilibrium of
{logy(1+p),logs(1+p)} € R, (H). As a result, fom > 1, I'“(H,r).
Rm(H) C R.(H). 4) Let {w,},>1 be an increasing positive-valued and

unbounded sequence of scalars. {€Q"},>; be a



corresponding sequenceiy such that, for alh > 1,  shown in Proposition 1.1 in Appendix . Oné&R} (Q_x(t))
Q™ is an equilibrium ofl"*~ (H, r). is obtained, any linkk updates its own covariance matrix

a) If sup,>; 2 p_, tr(Q}) < oo, then there exists according to

ann > 1 such that, for alln > n, Q™ is an w
L n .
b) If r ¢ Re(H), thensup,,», 3, tr(Qy) =00.  where0 < a,(t) < 1is a parameter that represents théh
link's willingness to optimize (in other wordd, — «(¢) is
. the k-th link’s inertia) at steg. The inertia prevents the links
1) We observe that, for an@ , € Hy ", from overreacting and generally helps with the convergence
. . of the updates.
tr(BRy < J(BR} -
(BRY(Qw) < ’;( ¢(Qr). Q) We also consider the case where the links are engaged in
< S (0,Qop) = wry. a power game and therefore update their covariance matrices

Therefore, without loss of generality, we can restricBccording to
the link strategies to
g Qu(t+1) = (1—ax()Qu(t) + ok (t) BRL(Q-k(?)), (13)

w . w w
Fram Il x I (11) where 0 < ai(t) < 1 again represents thé-th link's
where, fork =1,...,L, willingness to optimize at step; see Proposition 1.1 in
w Appendix for the actual computation dBRL(Q_x(t)).

Fi = 1Qk € Hy 1 0(Qu) < wry We should point out that the covariance mat]r'i(ces g(e)n)erated
Clearly, 7 is nonempty, convex and compact. Also,during the iterations of (13) need not satisfy the QoS resguir
Ji is continuous inF¥, and.J*(-,Q_) is convex in ments of the links. More preciself),(t) need not belong
Fv for each fixedQ_j, € F¥), := X .. F. Now, the 10 F7(Q_k(t)) even thoughQy(t) € FP(Q-x(t — 1))
existence of an equilibrium follows from Theorem 3.1.by construction. However, if best response dynamics (13)

2) Obvious. converge to some limiting covariance matrio®s then Q

3) Consider any equilibriuniQ; } ~_, of the power game must be an equilibrium (and satisfy all QoS requirements).
I'?(H,r). Proposition 1.1 in Appendix shows that Best response dynamics (12)-(13) can be generalized by
there exists a € [0, co) such that, for allw € [w,o0), allowing the links to update intermittently as long as they
do not completely stop updating until convergence. In our
BRy(QL,) = BRi(QL,) = Qj, numerical simulations, both best response dynamics (12)-

forall k=1,..., L. (13) typically converge. Moreover, we believe that, for
4) a) Since{Q"},>; belongs to a compact subset ofsufficiently _smaII interferer_nc_:e, convergence can b_e proven

ML, there exists av > 0 such that, for all along the lines of Erop05|t|on 4.1 in [1] by showing that

w >, BRY(Q",) = BRY(Q",), n > 1, k= best response functions are contractions.

1,...,L; see Proposition 1.1 in Appendix . This

implies that there exists am > 1, such that, for

alln >, Qp = BRY™(Q",) = BRY(Q",),

Proof:

Conjecture 7.1: Fix {Hy. ; }1<k<r, T € [0,00)L, andw €
[0,00). Assume

k=1,..., L. (i) rank(Hy ) = Ny, forall k=1,..., L,

b) Suppose thaﬁuPny Z}?:l tr(Qk> < 0. Then, (II) limy o Ozk(t) =0 and ZI;“;O Oék(t) = oo, forall k =
part a) implies that, for a sufficiently large Q" Lo L.
is an equilibrium off'* (H, r), which contradicts If the interference channels are sufficiently weak, i.e.,
r ¢ R.(H). {H ¢ }re is sufficiently small, then the following state-

ments are true.

1) Best response dynamics (12)obally converge to
VIl. BEST RESPONSEDYNAMICS ?e(:lniq)ue equilibrium of the weighted power game
“(H,r).
2) Best response dynamics (1i®)cally converge to the
unique equilibrium of the power gani& (H,r).

Here, we consider a situation in which the links are iter-
atively adjusting their covariance matrices to minimizeith
cost functions in a weighted power game. During iteration

t + 1, any individual link k& knows nothing about the setup Remark 7.1: Note that, in addition to convergence, Con-
except it can compute its own best respos;’ (Q-1(t))  jecture 7.1 states the existence of a unique equilibrium

to the decisionsQ_(¢) made by the other links at the i, \yeighted power games and power games under certain
previous iteratiort. For this, it is sufficient for an individual conditions.

link % to know its own channel matri¥l, ;, its own QoS

requirementr;, and to measure the covariance mafiy, We now provide some examples of nonconvergent cases
of the total noise and interference correspondinto.(t). when the conditions of Proposition 7.1 are not met.

The actual computation aBR}’(Q_(t)) can be done as



Example 7.1: Best-response dynamics witty,(t) = 1

starting from0 may diverge even if an equilibrium exists.

Consider the setup =2, N, = N; =2, Hy; =Hy, =
I, Hi» = Hy; = /7L, for somen > 0, andr; =ry = 1.
We fist compute that, for any > 0, BRY (pI) = v(1+pn)1,

wherey := v/2—1. Therefore, starting frorf, best-response

dynamics would generate
0 = H{LI} = y(1+yn){L 1}
— 1+ m+ )L} — ..,

which diverges whenn > 1.

(3]

(4]

(5]

(6]

(7]

Example 7.2: Best-response dynamics may not convergelg]

even if the initial condition is feasible and arbitrarilyosk

to an equilibrium. Consider the setup given in the previous

example withn = 1, in which (diag(1, 0), diag(0,1)) is an
equilibrium. We first compute that, for arfy> 0 and small
e >0,
BR}(diag(d,0 + 1 —¢))
BRP(diag0 + 1 —¢,0)) =

diagf + 1 —¢,0)
diagd,0 + 1 —¢),

for somef > 0. Now, consider the initial conditioQ® =
(diag(1,€),diag(0,1 + €)) for some smalk > 0. Note that
QU is feasible, i.e.J(xx;y%)(Q") > 1. Starting fromQ?,
best-response dynamics would generate

Q' = {diag(1,0),diag#*,0' +1—¢€)}
Q? = {diag#* +1 —¢,6%), diag0,1)}
Q® = [{diag1,0),diag6? 6> +1 —¢)}

for somef' >0, 62 >0, 62 >0,....

VIII. CONCLUSIONS

We studied a power control problem in MIMO interference
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APPENDIX |
BEST RESPONSEFUNCTIONS

Proposition 1.1: Fix H, r € [0,00), andw € [0, 00).

systems within the framework of multi-link games. We es- 1) Thek—thlink's best response ifi*(H, r) to any fixed
tablished a relationship between power control and capacit
control problems from a game theoretic perspective. We
illustrated on an example that equilibrium may not exist for
all achievable rates. Using a minmax approach, we obtained
a conservative estimate of the rate region for which an
equilibrium exists in a power game. We discussed some suf-
ficient conditions for the uniqueness of equilibrium as well
as for the convergence of best-response process (iterative
water-filling). We extended our results to the case where
QoS requirements are softened. Improving the efficiency
of equilibrium using stream control as in [1] remains as a

significant future work.
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Q- € H4 is unique and given as

BRy(Q-x)
:deiag(qi’l,...,qgk’"’“,O,...,O) \
=D a'vi(vi)
i=1
where

are eigenvalues ofll , R;'H; ; (o} > 0 due to
Assumption 2.1, and < n; < min{N,, N;}),

— V. is a unitary matrix such that its columns
Vi, ... ,v{fﬁ are a set of orthonormal eigenvectors
of Hz’kRngM corresponding tas}, ..., o0,
respectively,

- qzz = [min {w/an,uk} — 1/0,@]4_, for all i =
1, ey Mgy

-y is such thatr, = Y7 [log, (ko] T



2) Thek—th link’s best response ifi*(H, r) to any fixed
Q_x € H, is unique and given as

BR(Q-r)
— V,diag (q*,jl, L0, ,0) \

U2

i i it
=1

where ;' = [uk—l/UZ]Jr,i = 1,...ny, and

Ohyeeyont, Vi = [V}, ..., V], ux are as in the first

part. Note thatBR?(Q_;) = BR}'(Q-x) whenever
w/In2 > .

Proof:

To avoid trivialities, we assume > 0 andr; > 0.

1) LetX :=diag(s},...,0.*,0,...,0). Using the deter-
minant identity|I + AB| = [T+ BA|, we write

T (Qr, Qop) = r(VEQLVy)

+
[~ logy [T+ =2 ViQuviE?|]

We can equivalently perform the minimization over

Qk = V;;kak, i.e.,

BRY(Q-x) = {ViQ V] :
Qi € argming, 5, {tr(Qx) +
w[rk — log, |I + 211/2ka11!2‘]+}}'

Letg,',...,q, """ be the diagonal entries @. By

equality if and only if I + X}/°Q,X,/* is diago-
nal. This implies that the minimum above can be
achieved only by diagonal matrices iH, of the
form diag(q,”', .. ., ¢/*"™,0,...,0). Accordingly, we
focus on

Nk -
min @’ (14)
4 20, K >0 |
ngk o +
+w |rg — Z log, (1 + qz,za,i)]
i=1

Ignoring [.]T in (14) leads to a strictly convex cost
function over the positive orthant with the unique
minimizer

gt =[w/m2-1/0}]", i=1,...,n.  (15)

Since ignoring[.]T in (14) lower bounds the cost, if
e > D% logy (14, o), then the unique minimizer
of (14) is given by (15). On the other hand,if <
Sk logy(1 + ¢'o}), then the unique minimizer of
(14) is given as

Q" = [ —1/0},
whereyu, is such thatry, = 327, log,(1+¢.'0l) <

e = Y0 [logy (ukol)] . Finally, for the uniqueness
of BRY(Q-_y), note that, even though the choice of
the eigenvectorsvy,...,vy* is not unique, for an
m—repeated eigenvalue, say = --- = o" > 0,
the matrix>""" | vi (v}‘c)T is unique, i.e., independent

of the choice of the eigenvectoss, ..., v}

1" i=1,...,m,  (16)

Hadamard's inequality for Hermitian positive definite ) opvious from the first part.

matrices,‘I + Ei/QQkE,lc/Z‘ <TI0, (1 4-g k) with



