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Abstract. In stochastic control applications, typically only an ideal
model (controlled transition kernel) is assumed and the control design is
based on the given model, raising the problem of performance loss due to
the mismatch between the assumed model and the actual model. In some
further setups, an exact model may be known, but this model may entail
computationally challenging optimality analysis leading to the solution
of some approximate model being implemented. With such a motivation,
we study continuity properties of discrete-time stochastic control prob-
lems with respect to system models and robustness of optimal control
policies designed for incorrect models applied to the true system. We
study both fully observed and partially observed setups under an infi-
nite horizon discounted expected cost criterion. We show that continuity
can be established under total variation convergence of the transition
kernels under mild assumptions and with further restrictions on the dy-
namics and observation model under weak and setwise convergence of
the transition kernels. Using these, we establish convergence results and
error bounds due to mismatch that occurs by the application of a con-
trol policy which is designed for an incorrectly estimated system model
to the actual system, thus establishing results on robustness. These en-
tail implications on empirical learning in (data-driven) stochastic control
since often system models are learned through empirical training data
where typically the weak convergence criterion applies but stronger con-
vergence criteria do not. We finally view and establish approximation as
a particular instance of robustness.

Keywords: Markov decision processes, robust stochastic control, ap-
proximate models, empirical learning, POMDPs
AMS(2020) subject classification: 93E20, 90C40, 90C39.

1 Introduction and Problem Definition

In this article, we study the robustness problem of Markov Decision Processes
(MDPs) and partially observed Markov decision processes (POMDPs) with in-
complete/incorrect characterization, and view learning and approximate mod-
eling as instances of the robustness problem. The article builds on some recent
work of the authors but the models considered here are more general (involving
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changing cost functions also in the MDP models), and the unifying relationship
between robustness and finite model approximations involving standard Borel
models has not been studied elsewhere, to our knowledge.

Let X ⊂ Rm denote a Borel set which is the state space of a partially observed
controlled Markov process. Here and throughout the paper Z+ denotes the set
of non-negative integers and N denotes the set of positive integers. Let Y ⊂ Rn
be a Borel set denoting the observation space of the model, and let the state
be observed through an observation channel Q. The observation channel, Q,
is defined as a stochastic kernel (regular conditional probability) from X to Y,
such that Q( · |x) is a probability measure on the (Borel) σ-algebra B(Y) of Y
for every x ∈ X, and Q(A| · ) : X → [0, 1] is a Borel measurable function for
every A ∈ B(Y). A decision maker (DM) is located at the output of the channel
Q, and hence it only sees the observations {Yt, t ∈ Z+} and chooses its actions
from U, the action space which is a Borel subset of some Euclidean space. An
admissible policy γ is a sequence of control functions {γt, t ∈ Z+} such that γt is
measurable with respect to the σ-algebra generated by the information variables

It = {Y[0,t], U[0,t−1]}, t ∈ N, I0 = {Y0},

where
Ut = γt(It), t ∈ Z+, (1)

are the U-valued control actions and

Y[0,t] = {Ys, 0 ≤ s ≤ t}, U[0,t−1] = {Us, 0 ≤ s ≤ t− 1}.

We define Γ to be the set of all such admissible policies. The update rules of the
system are determined by (1) and the following:

Pr
(
(X0, Y0) ∈ B

)
=

∫
B

P (dx0)Q(dy0|x0), B ∈ B(X× Y),

where P is the (prior) distribution of the initial state X0, and

Pr

(
(Xt, Yt) ∈ B

∣∣∣∣ (X,Y, U)[0,t−1] = (x, y, u)[0,t−1]

)
=

∫
B

T (dxt|xt−1, ut−1)Q(dyt|xt), B ∈ B(X× Y), t ∈ N,

where T is the transition kernel of the model. The objective of the agent (decision
maker) is the minimization of the infinite horizon discounted cost,

Jβ(c, T , γ) = ET ,γP

[ ∞∑
t=0

βtc(Xt, Ut)

]

for some discount factor β ∈ (0, 1), over the set of admissible policies γ ∈ Γ ,

where c : X × U → R is a Borel-measurable stage-wise cost function and ET ,γP

denotes the expectation with initial state probability measure P and transition
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kernel T under policy γ. Note that we write the infinite horizon discounted cost
as a function of the transition kernels and the stage-wise cost function since we
will analyze the cost under the changes on those variables.

We define the optimal cost for the discounted infinite horizon setup as a
function of the stage-wise cost function and the transition kernels as

J∗β(c, T ) = inf
γ∈Γ

Jβ(c, T , γ).

Problem P1: Continuity of J∗
β(c,T ) under the Convergence of the

Models. Let {Tn, n ∈ N} be a sequence of transition kernels which converges
in some sense to another transition kernel T and {cn, n ∈ N} be a sequence of
stage-wise cost functions corresponding to Tn which converge in some sense to
another cost function c. Does that imply that

J∗β(cn, Tn)→ J∗β(c, T )?

Problem P2: Robustness to Incorrect Models. A problem of major practi-
cal importance is robustness of an optimal controller to modeling errors. Suppose
that an optimal policy is constructed according to a model which is incorrect:
how does the application of the control to the true model affect the system per-
formance and does the error decrease to zero as the models become closer to each
other? In particular, suppose that γ∗n is an optimal policy designed for Tn and
cn, an incorrect model for a true model T and c. Is it the case that if Tn → T
and cn → c, then Jβ(c, T , γ∗n)→ J∗β(c, T )?

Problem P3: Empirical Consistency of Learned Probabilistic Models
and Data-Driven Stochastic Control. Let T (·|x, u) be a transition kernel
given previous state and action variables x ∈ X, u ∈ U, which is unknown to the
decision maker (DM). Suppose the DM builds a model for the transition kernels,
Tn(·|x, u), for all possible x ∈ X, u ∈ U by collecting training data (e.g. from
the evolving system). Do we have that the cost calculated under Tn converges to
the true cost (i.e., do we have that the cost obtained from applying the optimal
policy for the empirical model converges to the true cost as the training length
increases)?

Problem P4: Approximation by Finite MDPs as an Instance of Ro-
bustness to Incorrect Models. Can we view the approximation problem of
a continuous space MDP model with a finite model (in particular [22, Theorem
2.2], [22, Theorem 4.1] or [23, Theorem 3.2]) as an instance of the robustness
problem?

Brief Literature Review. Robustness is a desired property for the optimal
control of stochastic or deterministic systems when a given model does not reflect
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the actual system perfectly, as is usually the case in practice. This is a classical
problem, and there is a very large literature on robust stochastic control and its
application to learning-theoretic methods; see e.g. [1, 2, 7, 8, 14, 16, 18, 20, 21, 25,
26]. A rather comprehensive literature review is presented in [18]. The article
builds on [16, 18], but the models considered considered here are more general
(involving changing cost functions also in the MDP models), and the unifying
relationship between robustness and finite model approximations involving stan-
dard Borel models has not been studied elsewhere, to our knowledge.

1.1 Some Examples and Convergence Criteria for Transition
Kernels

Convergence Criteria for Transition Kernels. Before presenting conver-
gence criteria for controlled transition kernels, we first review the convergence
of probability measures. Three important notions of convergences for sets of
probability measures to be studied in the paper are weak convergence, setwise
convergence, and convergence under total variation. For N ∈ N, a sequence
{µn, n ∈ N} in P(RN ) is said to converge to µ ∈ P(RN ) weakly if∫

RN

c(x)µn(dx)→
∫
RN

c(x)µ(dx) (∗)

for every continuous and bounded c : RN → R. {µn} is said to converge setwise
to µ ∈ P(RN ) if (∗) holds for all measurable and bounded c : RN → R. For
probability measures µ, ν ∈ P(RN ), the total variation metric is given by

‖µ− ν‖TV = 2 sup
B∈B(RN )

|µ(B)− ν(B)| = sup
f :‖f‖∞≤1

|
∫
f(x)µ(dx)−

∫
f(x)ν(dx)|,

where the supremum is taken over all measurable real f such that ‖f‖∞ =
supx∈RN |f(x)| ≤ 1. A sequence {µn} is said to converge in total variation to
µ ∈ P(RN ) if ‖µn − µ‖TV → 0. Total variation defines a stringent metric for
convergence; for example, a sequence of discrete probability measures does not
converge in total variation to a probability measure which admits a density func-
tion. Setwise convergence, though, induces a topology on the space of probability
measures which is not metrizable [10, p. 59]. However, the space of probability
measures on a complete, separable, metric (Polish) space endowed with the topol-
ogy of weak convergence is itself complete, separable, and metric [19]. We also
note here that relative entropy convergence, through Pinsker’s inequality [11,
Lemma 5.2.8], is stronger than even total variation convergence, which has also
been studied in robust stochastic control. Another metric for probability mea-
sures is the Wasserstein distance: For compact spaces, the Wasserstein distance
of order 1 metrizes the weak topology and for non-compact spaces convergence
in the W1 metric implies weak convergence. Considering these relations, our re-
sults in this paper can be directly generalized to the relative entropy distance
or the Wasserstein distance. Building on the above, we introduce the following
convergence notions for (controlled) transition kernels.
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Definition 1. For a sequence of transition kernels {Tn, n ∈ N}, we say that

– Tn → T weakly if Tn(·|x, u)→ T (·|x, u) weakly, for all x ∈ X and u ∈ U,
– Tn → T setwise if Tn(·|x, u)→ T (·|x, u) setwise, for all x ∈ X and u ∈ U,
– Tn → T under the total variation distance if Tn(·|x, u) → T (·|x, u) under

total variation for all x ∈ X and u ∈ U.

Examples [18]. Let a controlled model be given as xt+1 = F (xt, ut, wt), where
{wt} is an i.i.d. noise process. The uncertainty on the transition kernel for such
a system may arise from lack of information on F or the i.i.d. noise process wt
or both:

(i) Let {Fn} denote an approximating sequence for F , so that Fn(x, u, w) →
F (x, u, w) pointwise. Assume that the probability measure of the noise is
known. Then, corresponding kernels Tn converge weakly to T : If we denote
the probability measure of w with µ, for any g ∈ Cb(X) and for any (x0, u0) ∈
X× U using the dominated convergence theorem we have

lim
n→∞

∫
g(x1)Tn(dx1|x0, u0) = lim

n→∞

∫
g(Fn(x0, u0, w))µ(dw)

=

∫
g(F (x0, u0, w))µ(dw) =

∫
g(x1)T (dx1|x0, u0).

(ii) Much of the robust control literature deals with deterministic systems where
the nominal model is a deterministic perturbation of the actual model (see
e.g. [24]). The considered model is in the following form: F̃ (xt, ut) = F (xt, ut)
+∆F (xt, ut), where F represents the nominal model and ∆F is the model
uncertainty satisfying some norm bounds. For such deterministic systems,
pointwise convergence of F̃ to the nominal model F , i.e. ∆F (xt, ut)→ 0, can
be viewed as weak convergence for deterministic systems by the discussion
in (i). It is evident, however, that total variation convergence would be too
strong for such a convergence criterion, since δF̃ (xt,ut)

→ δF (xt,ut) weakly

but ‖δF̃ (xt,ut)
− δF (xt,ut)‖TV = 2 for all ∆F (xt, ut) 6= 0 where δ denotes the

Dirac measure.
(iii) Let F (xt, ut, wt) = f(xt, ut) + wt be such that the function f is known

and wt ∼ µ is not known correctly and an incorrect model µn is assumed.
If µn → µ weakly, setwise, or in total variation, then the corresponding
transition kernels Tn converge in the same sense to T . Observe the following:∫

g(x1)Tn(dx1|x0, u0)−
∫
g(x1)T (dx1|x0, u0)

=

∫
g(w0 + f(x0, u0))µn(dw0)−

∫
g(w0 + f(x0, u0))µ(dw0). (2)

(a) Suppose µn → µ weakly. If g is a continuous and bounded function,
then g(·+ f(x0, u0)) is a continuous and bounded function for all (x0, u0) ∈
X×U. Thus, (2) goes to 0. Note that f does not need to be continuous. (b)



8 A. D. Kara and S. Yüksel

Suppose µn → µ setwise. If g is a measurable and bounded function, then
g(·+ f(x0, u0)) measurable and bounded for all (x0, u0) ∈ X× U. Thus, (2)
goes to 0. (c) Finally, assume µn → µ in total variation. If g is bounded, (2)
converges to 0, as in item (b). As a special case, assume that µn and µ admit
densities hn and h, respectively; then the pointwise convergence of hn to h
implies the convergence of µn to µ in total variation by Scheffé’s theorem.

(iv) Suppose now neither F nor the probability model of wt is known perfectly.
It is assumed that wt admits a measure µn and µn → µ weakly. For the
function F we again have an approximating sequence {Fn}. If Fn(x, u, wn)→
F (x, u, w) for all (x, u) ∈ X × U and for any wn → w, then the transition
kernel Tn corresponding to the model Fn converges weakly to the one of F ,
T : For any g ∈ Cb(X),

lim
n→∞

∫
g(x1)Tn(dx1|x0, u0) = lim

n→∞

∫
g(Fn(x0, u0, w))µn(dw)

=

∫
g(F (x0, u0, w))µ(dw) =

∫
g(x1)T (dx1|x0, u0).

(v) Let again {Fn} denote an approximating sequence for F and suppose now
Fx0,u0,n(·) := Fn(x0, u0, ·) : W → X is invertible for all x0, u0 ∈ X × U
and F−1(x0,u0),n

(·) denotes the inverse for fixed (x0, u0). It is assumed that

F−1(x0,u0),n
(x1) → F−1x0,u0

(x1) pointwise for all (x0, u0). Suppose further that

the noise process wt admits a continuous density fW (w). The Jacobian ma-
trix, ∂x1

∂w , is the matrix whose components are the partial derivatives of x1,
i.e. with x1 ∈ X ⊂ Rm and w ∈W ⊂ Rm, it is an m×m matrix with com-

ponents ∂(x1)i
∂wj

, 1 ≤ i, j ≤ m . If the Jacobian matrix of derivatives ∂x1

∂w (w)

is continuous in w and nonsingular for all w, then we have that the density
of the state variables can be written as

fX1,n,(x0,u0)(x1) = fW (F−1x0,u0,n(x1))
∣∣∂x1
∂w

(F−1x0,u0,n(x1))
∣∣−1,

fX1,(x0,u0)(x1) = fW (F−1x0,u0
(x1))

∣∣∂x1
∂w

(F−1x0,u0
(x1))

∣∣−1.
With the above, fX1,n,(x0,u0)(x1) → fX1,(x0,u0)(x1) pointwise for all fixed
(x0, u0). Therefore, by Scheffé’s theorem, the corresponding kernels Tn(·|x0, u0)→
T (·|x0, u0) in total variation for all (x0, u0).

(vi) These examples will be utilized in Section 5.1, where data-driven stochastic
control problems will be considered where estimated models are obtained
through empirical measurements of the state action variables.

1.2 Summary

We now introduce the main assumptions that will be occasionally used for our
technical results in the article.
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Assumption 1 (a) The sequence of transition kernels Tn satisfies the follow-
ing: {Tn(·|xn, un), n ∈ N} converges weakly to T (·|x, u) for any sequence
{xn, un} ⊂ X× U and x, u ∈ X× U such that (xn, un)→ (x, u).

(b) The stochastic kernel T (·|x, u) is weakly continuous in (x, u).
(c) The sequence of stage-wise cost functions cn satisfies the following: cn(xn, un)
→ c(x, u) for any sequence {xn, un} ⊂ X × U and x, u ∈ X × U such that
(xn, un)→ (x, u).

(d) The stage-wise cost function c(x, u) is non-negative, bounded, and continuous
on X× U.

(e) U is compact.

Assumption 2 The observation channel Q(·|x) is continuous in total variation
i.e., if xn → x, then Q( · |xn) → Q( · |x) in total variation (only for partially
observed models).

Assumption 3 (a) The sequence of transition kernels Tn satisfies the following:
{Tn(·|x, un), n ∈ N} converges setwise to T (·|x, u) for any sequence {un} ⊂ U
and x, u ∈ X× U such that un → u.

(b) The stochastic kernel T (·|x, u) is setwise continuous in u.
(c) The sequence of stage-wise cost functions cn satisfies the following: cn(x, un)
→ c(x, u) for any sequence {un} ⊂ U and x, u ∈ X× U such that un → u.

(d) The stage-wise cost function c(x, u) is non-negative, bounded, and continuous
on U.

(e) U is compact.

Assumption 4 (a) The sequence of transition kernels Tn satisfies the following:
‖Tn(·|x, un)−T (·|x, u)‖TV → 0 for any sequence {un} ⊂ U and x, u ∈ X×U
such that un → u.

(b) The stochastic kernel T (·|x, u) is continuous in total variation in u.
(c) The sequence of stage-wise cost functions cn satisfies the following: cn(x, un)
→ c(x, u) for any sequence {un} ⊂ U and x, u ∈ X× U such that un → u.

(d) The stage-wise cost function c(x, u) is non-negative, bounded, and continuous
on U.

(e) U is compact.

In Sections 2 and 3 we study continuity (Problem P1) and robustness (Prob-
lem P2) for partially observed models. In particular we show the following:

(a) Continuity and robustness do not hold in general under weak convergence
of kernels (Theorem 1).

(b) Under Assumptions 1 and 2, continuity and robustness hold (Theorem 4,
Theorem 8).

(c) Continuity and robustness do not hold in general under setwise convergence
of the kernels (Theorem 5).

(d) Continuity and robustness do not hold in general under total variation con-
vergence of the kernels (Example 1).

(f) Under Assumption 4, continuity and robustness hold (Theorem 6, Theorem
7).
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In Section 4, we study continuity (Problem P1) and robustness (Problem P2)
for fully observed models. In particular we show the following

(a) Continuity and robustness do not hold in general under weak convergence
of kernels (Theorem 9, Example 1).

(b) Under Assumption 1, continuity holds (Theorem 10), under Assumption 1,
robustness holds if the optimal policies for every initial point are identical
(Theorem 11).

(c) Continuity and robustness do not hold in general under setwise convergence
of the kernels (Theorem 12, Theorem 14).

(d) Under Assumption 3, continuity holds (Theorem 13), and under Assumption
3, robustness holds if the optimal policies for every initial point are identical
(Theorem 15).

(e) Continuity and robustness do not hold in general under total variation con-
vergence of the kernels (Example 1).

(f) Under Assumption 4, continuity and robustness hold (subsection 4.3).

In Section 5, we study applications to empirical learning (in Section 5.1)
where we establish the positive relevance of Theorem 10, and then applications
to finite model approximations under the perspective of robustness in in Section
5.2. Here, we restrict the analysis to the case with weakly continuous kernels.

2 Continuity of Optimal Cost in Convergence of Models
(POMDP Case)

In this section, we will study continuity of the optimal discounted cost under
the convergence of transition kernels and cost functions.

2.1 Weak Convergence

Absence of Continuity under Weak Convergence. The following shows
that the optimal cost may not be continuous under weak convergence of transi-
tion kernels.

Theorem 1. [18]. Let Tn → T weakly, then it is not necessarily true that
J∗β(c, Tn) → J∗β(c, T ) even when the prior distributions are the same, the mea-
surement channel Q is continuous in total variation, and c(x, u) is continuous
and bounded on X× U.

We prove the result with a counterexample [18]. Letting X = U = Y = [−1, 1]
and c(x, u) = (x − u)2, the observation channel is chosen to be uniformly dis-
tributed over [-1,1], Q ∼ U([−1, 1]), the initial distributions of the state variable
are chosen to be same as P ∼ δ1, where δx(A) := 1{x∈A} for Borel A, and the
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transition kernels are:

T (·|x, u) = δ−1(x)[
1

2
δ1(·) +

1

2
δ−1(·)] + δ1(x)[

1

2
δ1(·) +

1

2
δ−1(·)]

+ (1− δ−1(x))(1− δ1(x))δ0(·)

Tn(·|x, u) = δ−1(x)[
1

2
δ(1−1/n)(·) +

1

2
δ(−1+1/n)(·)] + δ1(x)[

1

2
δ(1−1/n)(·)

+
1

2
δ(−1+1/n)(·)] + (1− δ−1(x))(1− δ1(x))δ0(·).

It can be seen that Tn → T weakly according to Definition 1(i). Note that
the cost function is continuous, and the measurement channel is continuous in
total variation. The optimal discounted costs can be found as

J∗β(c, T ) =
∞∑
k=1

ETP [βkX2
k ] =

∞∑
k=1

βk =
β

1− β

J∗β(c, Tn) =

∞∑
k=1

ETnP [βkX2
k ] = β[

1

2
(1− 1

n
)2 +

1

2
(−1 +

1

n
)2].

Then we have J∗β(c, Tn)→ β 6= β
1−β .

2.2 A Sufficient Condition for Continuity under Weak Convergence

In the following, we will establish and utilize some regularity properties for the
optimal cost with respect to the convergence of transition kernels.

Assumption 5 (a) The stochastic kernel T (·|x, u) is weakly continuous in (x, u),
i.e. if (xn, un)→ (x, u), then T (·|xn, un)→ T (·|x, u) weakly.

(b) The observation channel Q(·|x) is continuous in total variation, i.e., if xn →
x, then Q( · |xn)→ Q( · |x) in total variation.

(c) The stage-wise cost function c(x, u) is non-negative, bounded and continuous
on X× U

(d) U is compact.

It is a well known result that, any POMDP can be reduced to a (completely
observable) MDP, whose states are the posterior state distributions or beliefs of
the observer; that is, the state at time t is Zt( · ) := Pr{Xt ∈ · |Y0, . . . , Yt, U0, . . . ,
Ut−1} ∈ P(X). We call this equivalent MDP the belief-MDP . The belief-MDP
has state space Z = P(X) and action space U. Under the topology of weak
convergence, since X is a Borel space, Z is metrizable with the Prokhorov metric
which makes Z into a Borel space [19]. The transition probability η of the belief-
MDP can be constructed through non-linear filtering equations.

The one-stage cost function c of the belief-MDP is given by c̃(z, u)
:=
∫
X c(x, u)z(dx). Under the regularity of the belief-MDP, we have that the

discounted cost optimality operator T : Cb(Z)→ Cb(Z)

(T (f))(z) = min
u

(c̃(z, u) + βE[f(z1)|z0 = z, u0 = u]) (3)
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is a contraction from Cb(Z) to itself under the supremum norm. As a result, there
exists a fixed point, the value function, and an optimal control policy exists. In
view of this existence result, in the following we will consider optimal policies.

The following result is key to proving the main result of this section whose
detailed analysis can be found in [18].

Theorem 2. Suppose we have a uniformly bounded family of functions {fγn :
X → R, γ ∈ Γ, n > 0} such that ‖fγn‖∞ < C for all γ ∈ Γ and for all n > 0 for
some C <∞.

Further suppose we have another uniformly bounded family of functions {fγ :
X→ R, γ ∈ Γ} such that ‖fγ‖∞ < C for all γ ∈ Γ for some C <∞. Under the
following assumptions,

(i) For any xn → x

sup
γ∈Γ

∣∣fγn (xn)− fγ(x)
∣∣→ 0, sup

γ∈Γ

∣∣fγ(xn)− fγ(x)
∣∣→ 0,

(ii) supγ ρ(µγn, µ
γ)→ 0 where ρ is some metric for the weak convergence topology,

we have

sup
γ∈Γ

∣∣∣∣ ∫ fγn (x)µγn(dx)−
∫
fγ(x)µγ(dx)

∣∣∣∣→ 0.

Theorem 3. Under Assumptions 1 and 2,

sup
γ∈Γ
|Jβ(cn, Tn, γ)− Jβ(c, T , γ)| → 0.

Proof sketch.

sup
γ∈Γ
|Jβ(cn, Tn, γ)− Jβ(c, T , γ)|

= sup
γ∈Γ

∣∣∣∣ ∞∑
t=0

βt
(
ETnP

[
cn
(
Xt, γ(Y[0,t])

)]
− ETP

[
c
(
Xt, γ(Y[0,t])

)])∣∣∣∣
≤
∞∑
t=0

βt sup
γ∈Γ

∣∣∣∣ETnP [cn(Xt, γ(Y[0,t])
)]
− ETP

[
c
(
Xt, γ(Y[0,t])

)]∣∣∣∣.
Recall that an admissible policy γ is a sequence of control functions {γt, t ∈ Z+}.
In the last step above, we make a slight abuse of notation; the sup at the first
step is over all sequence of control functions {γt, t ∈ Z+} whereas the sup at the
last step is over all sequence of control functions {γt′ , t′ ≤ t}, but we will use
the same notation, γ, in the rest of the proof.

For any ε > 0, we choose a K < ∞ such that
∑∞
t=K+1 β

k2‖c‖∞ ≤ ε/2. For
the chosen K, we choose an N <∞ such that

sup
γ∈Γ

∣∣∣∣ETnP [cn(Xt, γ(Y[0,t])
)]
− ETP

[
c
(
Xt, γ(Y[0,t])

)]∣∣∣∣ ≤ ε/2K
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for all t ≤ K and for all n > N . We note that in [18] a fixed c function was
considered, but by considering the additional term

sup
γ∈Γ

∣∣∣ETnP [cn(Xt, γ(Y[0,t])
)]
− ETP

[
cn
(
Xt, γ(Y[0,t])

)]∣∣∣
and noting that supγ |

∫
Q(dy|xn)cn(xn, γ(y)) −

∫
Q(dy|x)c(x, γ(y))| → 0, for

every xn → x, by a generalized dominated convergence theorem as Q is con-
tinuous in total variation, a triangle inequality argument shows that the same
result applies. This follows from a generalized dominated convergence theorem
as stated in Theorem 2 whose detailed analysis can be found in [18]. Thus,
supγ∈Γ

∣∣Jβ(cn, Tn, γ)− Jβ(c, T , γ)→ 0 as n→∞. ut

Theorem 4. Suppose the conditions of Theorem 3 hold. Then
limn→∞ |J∗β(cn, Tn)− J∗β(c, T )| = 0.

Proof sketch. We start with the following bound:

|J∗β(cn, Tn)− J∗β(c, T )| (4)

≤max

(
Jβ(cn, Tn, γ∗)− Jβ(c, T , γ∗), Jβ(c, T , γ∗n)− Jβ(cn, Tn, γ∗n)

)
,

where γ∗ and γ∗n are the optimal policies, respectively, for T and Tn. Both terms
go to 0 by Theorem 3. ut

2.3 Absence of Continuity under Setwise Convergence

We now show that continuity of optimal costs may fail under the setwise con-
vergence of transition kernels. Theorem 12 in the next section establishes this
result for fully observed models, which serves as a proof for this setup also.

Theorem 5. Let Tn → T setwise. Then, it is not true in general that J∗β(c, Tn)
→ J∗β(c, T ), even when X,Y, and U are compact and c(x, u) is continuous and
bounded in X× U.

2.4 Continuity under Total Variation

Theorem 6. Under Assumption 4, J∗β(cn, Tn)→ J∗β(c, T ).

Proof sketch. We start with the following bound:

|J∗β(cn, Tn)− J∗β(c, T )| ≤max

(
Jβ(cn, Tn, γ∗)− Jβ(c, T , γ∗), Jβ(cn, Tn, γ∗n)

− Jβ(c, T , γ∗n)

)
,

where γ∗ and γ∗n are the optimal policies, respectively, for T and Tn.



14 A. D. Kara and S. Yüksel

We now study the following:

sup
γ∈Γ
|Jβ(cn, Tn, γ)− Jβ(c, T , γ)|

= sup
γ∈Γ

∣∣∣∣ ∞∑
t=0

βt
(
ETnP

[
cn
(
Xt, γ(Y[0,t])

)]
− ETP

[
c
(
Xt, γ(Y[0,t])

)])∣∣∣∣
≤
∞∑
t=0

βt sup
γ∈Γ

∣∣∣∣ETnP [cn(Xt, γ(Y[0,t])
)]
− ETP

[
c
(
Xt, γ(Y[0,t])

)]∣∣∣∣.
It can be shown that ([18])

sup
γ∈Γ

∣∣∣∣ETnP [cn(Xt, γ(Y[0,t])
)]
− ETP

[
c
(
Xt, γ(Y[0,t])

)]∣∣∣∣→ 0. (5)

This was shown in [18] for fixed c. The extension to varying cn follows from a
triangle inequality step with the assumption that Tn(·|x, un)→ T (·|x, u) setwise,
and cn(x, un) → c(x, u) for any un → u. Therefore, using identical steps as in
the proof of Theorem 3 we have supγ∈Γ

∣∣Jβ(cn, Tn, γ)− Jβ(c, T , γ)
∣∣→ 0. ut

3 Robustness to Incorrect Models (POMDP Case)

Here, we consider the robustness problem P2: Suppose we design an optimal
policy, γ∗n, for a transition kernel, Tn and a cost function cn, assuming they are
the correct model and apply the policy to the true model whose transition kernel
is T and whose cost function is c. We study the robustness of the sub-optimal
policy γ∗n.

3.1 Total Variation

The next theorem gives an asymptotic robustness result.

Theorem 7. Under Assumption 4

|Jβ(cn, T , γ∗n)− J∗β(c, T )| → 0,

where γ∗n is the optimal policy designed for the kernel Tn.

Proof sketch. We write the following:

|Jβ(c, T , γ∗n)− J∗β(c, T )| ≤ |Jβ(c, T , γ∗n)− J∗β(cn, Tn)|+ |J∗β(cn, Tn)− J∗β(c, T )|.

Both terms can be shown to go to 0 using (5). ut

3.2 Setwise Convergence

Theorem 14 in the next section establishes the lack of robustness under the
setwise convergence of kernels. As we note later, a fully observed system can
be viewed as a partially observed system with the measurement being the state
itself, (see (6)).
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3.3 Weak Convergence

Theorem 8. Under Assumptions 1 and 2, |Jβ(c, T , γ∗n)− J∗β(c, T )| → 0, where
γ∗n is the optimal policy designed for the transition kernel Tn.

Proof sketch. We write

|Jβ(c, T , γ∗n)− J∗β(c, T )| ≤|Jβ(c, T , γ∗n)− Jβ(cn, Tn, γ∗n)|+ |Jβ(cn, Tn, γ∗n)

− Jβ(T , γ∗)|.

The first term goes to 0 by Theorem 3. For the second term we use Theorem 4.
ut

4 Continuity and Robustness in the Fully Observed Case

In this section, we consider the fully observed case where the controller has direct
access to the state variables. We present the results for this case separately, since
here we cannot utilize the regularity properties of measurement channels which
allows for stronger continuity and robustness results. Under measurable selection
conditions due to weak or strong (setwise) continuity of transition kernels [13,
Section 3.3], for infinite horizon discounted cost problems optimal policies can
be selected from those which are stationary and deterministic. Therefore we
will restrict the policies to be stationary and deterministic so that Ut = γ(Xt)
for some measurable function γ. Notice also that fully observed models can be
viewed as partially observed with the measurement channel thought to be

Q(·|x) = δx(·), (6)

which is only weakly continuous, thus it does not satisfy Assumption 2.

4.1 Weak Convergence

Absence of Continuity under Weak Convergence. We start with a nega-
tive result.

Theorem 9. For Tn → T weakly, it is not necessarily true that J∗β(c, Tn) →
J∗β(c, T ) even when the prior distributions are the same and c(x, u) is continuous
and bounded in X× U.

Proof. We prove the result with a counterexample, similar to the model used in
the proof of Theorem 1 Letting X = [−1, 1], U = {−1, 1} and c(x, u) = (x−u)2,
the initial distributions are given by P ∼ δ1, that is, X0 = 1, and the transition
kernels are

T (·|x, u) =δ−1(x)[
1

2
δ1(·) +

1

2
δ−1(·)] + δ1(x)[

1

2
δ1(·) +

1

2
δ−1(·)]

+ (1− δ−1(x))(1− δ1(x))δ0(·),

Tn(·|x, u) =δ−1(x)[
1

2
δ(1−1/n)(·) +

1

2
δ(−1+1/n)(·)] + δ1(x)[

1

2
δ(1−1/n)(·)

+
1

2
δ(−1+1/n)(·)] + (1− δ−1(x))(1− δ1(x))δ0(·).
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It can be seen that Tn → T weakly according to Definition 1(i). Under this setup
we can calculate the optimal costs as follows:

J∗β(c, Tn) =
1

n2
+

∞∑
k=2

βk =
1

n2
+

β2

1− β
,

and J∗β(c, T ) = 0. Thus, continuity does not hold. ut
We now present another counter example emphasizing the importance of

continuous convergence in the actions. The following counter example shows that
without the continuous convergence and regularity assumptions on the kernel
T , continuity fails even when Tn(·|x, u)→ T (·|x, u) pointwise (for x, u) in total
variation (also setwise and weakly) and even when the cost function c(x, u) is
continuous and bounded. Notice that this example also holds for both setwise
and weak convergence.

Example 1. Assume that the kernels are given by

Tn(·|x, u) ∼ U([un, 1 + un]),

T (·|x, u) ∼

{
U([0, 1]) if u 6= 1,

U([1, 2]) if u = 1,

where U = [0, 1] and X = R. We note first that Tn(·|x, u) → T (·|x, u) in total
variation for every fixed x and u.

The cost function is in the following form:

c(x, u) =



2 if x ≤ 1
e ,

2− x− 1
e

0.1 if 1
e < x ≤ 0.1 + 1

e ,

1 if 0.1 + 1
e < x ≤ 1 + 1

e − 0.1,

2− 1+ 1
e−x
0.1 if 1 + 1

e − 0.1 < x ≤ 1 + 1
e ,

2 if 1 + 1
e < x.

Notice that c(x, u) is a continuous function.
With this setup, γ∗(x) = 0 is an optimal policy for T since on the [0, 1]

interval the induced cost is less than the cost induced on the [1, 2] interval. The
cost under this policy is

J∗β(c, T ) =

∞∑
t=0

βt
(

2× 1

e
+

0.3

2
+ 0.9− 1

e

)
=

1

1− β

(
1.05 +

1

e

)
.

For Tn, γ∗n(x) = e−
1
n is an optimal policy for every n as e−

1
n×n = 1

e and thus
the state is distributed between 1

e < x ≤ 1 + 1
e in which interval the cost is the

least. Hence, we can write

lim
n→∞

Jβ(c, Tn, γ∗n) =

∞∑
t=0

βt
(

0.3 + 1− 0.2

)
=

1.1

1− β
6= 1

1− β

(
1.05 +

1

e

)
= J∗β(c, T ).
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�

A Sufficient Condition for Continuity under Weak Convergence. We
will now establish that if the kernels and the model components have some
further regularity, continuity does hold. The assumptions of the following result
are the same as the assumptions for the partially observed case (Theorem 4)
except for the assumption on the measurement channel Q.

Theorem 10. Under Assumption 1, Jβ(cn, Tn, γ∗n) → Jβ(c, T , γ∗) for any ini-
tial state x0, as n→∞.

Proof. We will use the successive approximations for an inductive argument.

Recall discounted cost optimality operator T : Cb(Z)→ Cb(Z) from (3)

(T (v))(x) = inf
u∈U

(
c(x, u) + βE[v(x1)|x0 = x, u0 = u]

)
,

which is a contraction from Cb(X) to itself under the supremum norm and has
a fixed point, the value function. For the kernel T , we will denote the approxi-
mation functions by

vk(x) = T (vk−1)(x),

and for the kernel Tn we will use vkn(x) to denote the approximation functions,
notice that the operator T also depends on n for the model Tn, but we will
continue using it as T in what follows.

We wish to show that the approximation functions for Tn continuously con-
verge to the ones for T . Then, for the first step of the induction we have

v1(x) = c(x, u∗), v1n(xn) = cn(xn, u
∗
n),

and thus we can write,

|v1(x)− v1n(xn)| ≤ sup
u∈U

∣∣c(x, u)− cn(xn, u)
∣∣

since cn(xn, un) → c(x, u) for all (xn, un) → (x, u) and the action space, U, is
compact, the first step of the induction holds, i.e. limn→∞ |v1(x)− v1n(xn)| = 0.

For the kth step we have

vk(x) = T (vk−1)(x) = inf
u

[
c(x, u) + β

∫
X
vk−1(x1)T (dx1|x, u)

]
,

vkn(xn) = T (vk−1n )(xn) = inf
u

[
cn(xn, u) + β

∫
X
vk−1n (x1)Tn(dx1|xn, u)

]
.

Note that the assumptions of the theorem satisfy the measurable selection crite-
ria and hence we can choose minimizing selectors ([13, Section 3.3]). If we denote
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the selectors by u∗ and u∗n, we can write

|vk(x)− vkn(xn)|

≤max
([
|c(x, u∗)− cn(xn, u

∗)|

+ β|
∫
X
vk−1(x1)T (dx1|x, u∗)−

∫
X
vk−1n (x1)Tn(dx1|xn, u∗)|

]
,[

|c(x, u∗n)− cn(xn, u
∗
n)|

+ β|
∫
X
vk−1(x1)T (dx1|x, u∗n)−

∫
X
vk−1n (x1)Tn(dx1|xn, u∗n)|

])
.

Hence, we can write

|vk(x)− vkn(xn)| (7)

≤ sup
u∈U

[
|c(x, u)− cn(xn, u)|

+ β|
∫
X
vk−1(x1)T (dx1|x, u)−

∫
X
vk−1n (x1)Tn(dx1|xn, u)|

]
,

above, the first term goes to 0 as cn(xn, un) → c(x, u) for all (xn, un) → (x, u)
and the action space, U, is compact. For the second term we write,

sup
u∈U
|
∫
X
vk−1(x1)T (dx1|x, u)−

∫
X
vk−1n (x1)Tn(dx1|xn, u)|

≤ sup
u∈U
|
∫
X

(
vk−1(x1)− vk−1n (x1)

)
Tn(dx1|xn, u)|

+ sup
u∈U
|
∫
X
vk−1(x1)T (dx1|x, u)−

∫
X
vk−1(x1)Tn(dx1|xn, u)|

above, for the first term, by the induction argument for any x1n → x1,
∣∣vk−1(x1)−

vk−1n (x1n)
∣∣ → 0 (i.e., we have continuous convergence). We also have that

Tn(·|xn, u)→ T (·|x, u) weakly uniformly over u ∈ U as U is compact. Therefore,
using Theorem 2 the first term goes to 0. For the second term we again use that
Tn(·|xn, u) converges weakly to T (·|x, u) uniformly over u ∈ U. With an almost
identical induction argument it can also be shown that vk−1(x1) is continuous
in x1, thus the second term also goes to 0.

So far, we have showed that for any k ∈ N, limn→∞
∣∣vkn(xn)− vk(x)

∣∣ = 0 for

any xn → x, in particular it is also true that limn→∞
∣∣vkn(x) − vk(x)

∣∣ = 0 for
any x.

As we have stated earlier, it can be shown that the approximation operator, T
is a contractive operator under supremum norm with modulus β and it converges



Robustness to Incorrect Models and Approximations 19

to a fixed point which is the value function. Thus, we have∣∣Jβ(c, T , γ∗)− vk(x)
∣∣ ≤ ‖c‖∞ βk

1− β
,
∣∣J∗β(cn, Tn, γ∗n)− vkn(x)

∣∣ ≤ ‖c‖∞ βk

1− β
.

(8)

Combining the results,

|Jβ(cn, Tn, γ∗n)− |Jβ(c, T , γ∗)| ≤|Jβ(cn, Tn, γ∗n)− vkn(x)|+ |vkn(x)− vk(x)|
+ |Jβ(c, T , γ∗)− vk(x)|.

Note that the first and the last term can be made arbitrarily small since (8)
holds for all k ∈ N; the second term goes to 0 with an inductive argument for
all k ∈ N. ut

A Sufficient Condition for Robustness under Weak Convergence. We
now present a result that establishes robustness if the optimal policies for every
initial point are identical. That is, for every n, γ∗n is optimal for every x0 ∈ X
(under the model Tn). A sufficient condition for this property is that γ∗n solves
the discounted cost optimality equation (DCOE) for every initial point.

A policy γ∗ ∈ Γ solves the discounted cost optimality equation and is optimal
if it satisfies

J∗β(c, T , x) = c(x, γ∗(x)) + β

∫
J∗β(c, T , x1)T (dx1|x, γ∗(x)).

Thus, a policy is optimal for every initial point if it satisfies the DCOE for all
initial points x ∈ X. The following generalizes [18].

Theorem 11. Under Assumption 1, Jβ(c, T , γ∗n)→ Jβ(c, T , γ∗) for any initial
point x0 if γ∗n is optimal for any initial point for the kernel Tn and for the
stage-wise cost function cn.

Remark 1. For the partially observed case, the proof approach we use makes use
of policy exchange (e.g. (4)) and for this approach the total variation continuity of
channelQ(·|x) is a key step to deal with the uniform convergence over policies. As
we stated before, the channel for fully observed models can be considered in the
form of (6) which is only weakly continuous and not continuous in total variation.
Thus, obtaining a result uniformly over all policies may not be possible. However,
for the fully observed models we can reach continuity and robustness (Theorem
10, Theorem 11) using a value iteration approach. With this approach, instead
of exchanging policies and analyzing uniform convergence over all policies, we
can exchange control actions (e.g. (7)) and analyze uniform convergence over
the action space U by using the discounted optimality operator (3). Hence, we
are only able to show convergence over optimal policies for the fully observed
case, i.e. Jβ(cn, Tn, γ∗n) → Jβ(c, T , γ∗) or Jβ(c, T , γ∗n) → Jβ(c, T , γ∗) where γ∗n
and γ∗ are optimal policies, whereas, for partially observed models, regularity
of the channel allows us to show convergence over any sequence of policies, i.e.
supγ∈Γ |Jβ(cn, Tn, γ)− Jβ(c, T , γ)| → 0.
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Remark 2. As we have discussed in subsection 2.2, a partially observed model
can be reduced to a fully observed process where the state process (beliefs)
becomes probability measure valued. Consider the partially observed models
with transition kernels Tn and T (with a channelQ) and their corresponding fully
observed transition kernels ηn and η: following the discussions and techniques in
[9] and [15], one can show that ηn and η satisfy the conditions of Theorem 11
and Theorem 10 that is ηn(·|zn, un) → η(·|z, u) for any (zn, un) → (z, u) under
the following set of assumptions

– Tn(·|xn, un)→ T (·|x, u) for any (xn, un)→ (x, u),
– Q(·|x) is continuous on total variation in x.

We remark that these conditions also agree with the conditions presented for con-
tinuity and robustness of the partially observed models (Theorem 4 and Theorem
8).

4.2 Setwise Convergence

Absence of Continuity under Setwise Convergence. We give a negative
result similar to Theorem 5, via Example 1:

Theorem 12. Letting Tn → T setwise, then it is not necessarily true that
J∗β(c, Tn)→ J∗β(c, T ) even when c(x, u) is continuous and bounded in X× U.

A Sufficient Condition for Continuity under Setwise Convergence.

Theorem 13. Under Assumption 3 Jβ(cn, Tn, γ∗n) → Jβ(c, T , γ∗), for any ini-
tial state x0, as n→∞.

Proof. We use the same value iteration technique that we used to prove Theorem
10. See [18]. ut

Absence of Robustness under Setwise Convergence. Now, we give a
result showing that even if the continuity holds under the setwise convergence
of the kernels, the robustness may not be satisfied (see [18, Theorem 4.7]).

Theorem 14. Supposing Tn(·|xn, un) → T (·|x, u) setwise for every x ∈ X and
u ∈ U and (xn, un) → (x, u), then it is not true in general that Jβ(c, T , γ∗n) →
Jβ(c, T , γ∗), even when X and U are compact and c(x, u) is continuous and
bounded in X× U.

A Sufficient Condition for Robustness under Setwise Convergence.
We now present a similar result to Theorem 11 that is we show that under the
conditions of Theorem 13, if further for every n, γ∗n is optimal for every x0 ∈ X
(under the model Tn) then robustness holds under setwise convergence.

Theorem 15. Supposing Assumption 3 holds, if further we have that for every
n, γ∗n is optimal for every x0 ∈ X (under the model Tn) then Jβ(c, T , γ∗n) →
Jβ(c, T , γ∗).
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4.3 Total Variation

The continuity result in Theorem 6 and the robustness result in Theorem 7 apply
to this case since the fully observed model may be viewed as a partially observed
model with the measurement channel Q given in (6).

5 Applications to Data-Driven Learning and Finite
Model Approximations

5.1 Application of Robustness Results to Data-Driven Learning

In practice, one may estimate the kernel of a controlled Markov chain using
empirical data; see e.g. [3, 12] for some related literature in the control-free and
controlled contexts.

Let us briefly review the basic case where an i.i.d. sequence of random vari-
ables is repeatedly observed, but its probability measure is not known apriori.
Let {(Xi), i ∈ N} be an X-valued i.i.d. random variable sequence generated ac-
cording to some distribution µ. Defining for every (fixed) Borel B ⊂ X, and
n ∈ N, the empirical occupation measures µn(B) = 1

n

∑n
i=1 1{Xi∈B}, one has

µn(B)→ µ(B) almost surely by the strong law of large numbers. It then follows
that µn → µ weakly with probability one ([6], Theorem 11.4.1). However, µn
does not converge to µ in total variation or setwise, in general. On the other
hand, if we know that µ admits a density, we can find estimators to estimate µ
under total variation [5, Chapter 3]. For a more detailed discussion, see [17, p.
1950-1951]. In the previous sections, we established robustness results under the
convergence of transition kernels in the topology of weak convergence and total
variation. We build on these observations.

Corollary 1 (to Theorem 6 and Theorem 7 ). Suppose we are given the
following dynamics for finite state space, X, and finite action space, U,

xt+1 = f(xt, ut, wt), yt = g(xt, vt)

where {wt} and {vt} are i.i.d.noise processes and the noise models are unknown.
Suppose that there is an initial training period so that under some policy, every
x, u pair is visited infinitely often if training were to continue indefinitely, but that
the training ends at some finite time. Let us assume that, through this training,
we empirically learn the transition dynamics such that for every (fixed) Borel
B ⊂ X, for every x ∈ X, u ∈ U and n ∈ N, the empirical occupation measures
are

Tn(B|x0 = x, u0 = u) =

∑n
i=1 1{Xi∈B,Xi−1=x,Ui−1=u}∑n

i=1 1{Xi−1=x,Ui−1=u}
.

Then we have that J∗β(Tn) → J∗β(T ) and Jβ(T , γ∗n) → J∗β(T ), where γ∗n is the
optimal policy designed for Tn. Since the channel model g has no restrictions,
this result also applies to the fully observed model setup by taking g(xt, vt) = xt.
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Proof. We have that Tn(·|x, u) → T (·|x, u) weakly for every x ∈ X, u ∈ U
almost surely by law of large numbers. Since the spaces are finite, we also have
Tn(·|x, u)→ T (·|x, u) under total variation. By Theorem 6 and Theorem 7, the
results follow. ut

The following holds for more general spaces.

Corollary 2 (to Theorems 8, 4, 10 and 11). Suppose we are given the
following dynamics with state space X and action space U,

xt+1 = f(xt, ut, wt), yt = g(xt, vt),

where {wt} and {vt} are i.i.d.noise processes and the noise models are unknown.
Suppose that f(x, u, ·) : W → X is invertible for all fixed (x, u) and f(x, u, w)
is continuous and bounded on X×U×W. We construct the empirical measures
for the noise process wt such that for every (fixed) Borel B ⊂W, and for every
n ∈ N, the empirical occupation measures are

µn(B) =
1

n

n∑
i=1

1{f−1
xi−1,ui−1

(xi)∈B} (9)

where f−1xi−1,ui−1
(xi) denotes the inverse of f(xi−1, ui−1, w) : W → X for given

(xi−1, ui−1). Using the noise measurements, we construct the empirical transi-
tion kernel estimates for any (x0, u0) and Borel B as

Tn(B|x0, u0) = µn(f−1x0,u0
(B)).

(i) If the measurement channel (represented by the function g) is continuous in
total variation then J∗β(Tn) → J∗β(T ) and Jβ(T , γ∗n) → J∗β(T ), where γ∗n is
the optimal policy designed for Tn for all initial points.

(ii) If the measurement channel is in the form g(xt, vt) = xt (i.e. fully observed)
then J∗β(Tn) → J∗β(T ) and if further for every n, γ∗n is optimal for every
x0 ∈ X (under the model Tn) then Jβ(T , γ∗n)→ J∗β(T ).

Proof. We have µn → µ weakly with probability one where µ is the model. We
claim that the transition kernels are such that Tn(·|xn, un) → T (·|x, u) weakly
for any (xn, un)→ (x, u). To see that observe the following for h ∈ Cb(X)∫

h(x1)Tn(dx1|xn, un)−
∫
h(x1)T (dx1|x, u)

=

∫
h(f(xn, un, w))µn(dw)−

∫
h(f(x, u, w))µ(dw)→ 0,

where µn is the empirical measure for wt and µ is the true measure again. For the
last step, we used that µn → µ weakly and h(f(xn, un, w)) continuously converge
to h(f(x, u, w)) i.e. h(f(xn, un, wn)) → h(f(x, u, w) for some wn → w since f
and g are continuous functions. Similarly, it can be also shown that Tn(·|x, u) and
T (·|x, u) are weakly continuous on (x, u). Thus, for the case where the channel is
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continuous in total variation by Theorem 8 and Theorem 4 if c(x, u) is bounded
and U is compact the result follows.

For the fully observed case, J∗β(Tn)→ J∗β(T ) by Theorem 10 and Jβ(T , γ∗n)→
J∗β(T ) by Theorem 11. ut

Remark 3. We note here that the moment estimation method can also lead to
consistency. Suppose that the distribution of W is determined by its moments,
such that estimate models Wn have moments of all orders and limn = E[W r

n ] =
E[W r] for all r ∈ Z+. Then, we have that [4, Thm 30.2] Wn → W weakly
and thus Tn(·|xn, un) → T (·|x, u) weakly for any (xn, un) → (x, u) under the
assumptions of above corollary. Hence, we reach continuity and robustness using
the same arguments as in the previous result (Corollary 2).

Now, we give a similar result with the assumption that the noise process of
the dynamics admits a continuous probability density function.

Corollary 3 (to Theorem 6 and Theorem 7). Suppose we are given the
following dynamics for real vector state space X and action space U

xt+1 = f(xt, ut, wt), yt = g(xt, vt),

where {wt} and {vt} are i.i.d.noise processes and the noise models are unknown
but it is known that the noise wt admits a continuous probability density function.
Suppose that f(x, u, ·) : W → X is invertible for all (x, u). We collect i.i.d.
samples of {wt} as in (9) and use them to construct an estimator, µ̃n , as
described in [5] which consistently estimates µ in total variation. Using these
empirical estimates, we construct the empirical transition kernel estimates for
any (x0, u0) and Borel B as

Tn(B|x0, u0) = µ̃n(f−1x0,u0
(B)).

Then independent of the channel, J∗β(Tn) → J∗β(T ) and Jβ(T , γ∗n) → J∗β(T ),
where γ∗n is the optimal policy designed for Tn. Since the channel model g has no
restrictions, this result also applies to the fully observed model setup by taking
g(xt, vt) = xt.

Proof. By [5] we can estimate µ in total variation so that almost surely
limn→∞ ‖µ̃n − µ‖TV = 0. We claim that the convergence of µ̃n to µ under total
variation metric implies the convergence of Tn to T in total variation uniformly
over all x ∈ X and u ∈ U i.e. limn→∞ supx,u ‖Tn(·|x, u) − T (·|x, u)‖TV = 0.
Observe the following:

sup
x,u
‖Tn(·|x, u)− T (·|x, u)‖TV

= sup
x,u

sup
||h||∞≤1

∣∣ ∫ h(x1)Tn(dx1|x, u)−
∫
h(x1)T (dx1|x, u)

∣∣
= sup

x,u
sup

||h||∞≤1

∣∣ ∫ h(f(x, u, w))µ̃n(dw)−
∫
h(f(x, u, w))µ(dw)

∣∣
≤‖µ̃n − µ‖TV → 0.
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Thus, by Theorem 6 and Theorem 7, the result follows. ut

The following example presents some system and channel models which sat-
isfy the requirements of the above corollaries.

Example 2. Let X,Y, U be real vector spaces with

xt+1 = f(xt, ut) + wt, yt = h(xt, vt)

for unknown i.i.d. noise processes {wt} and {vt}.

1. Suppose the channel is in the following form; yt = h(xt, vt) = xt + vt where
vt admits a density (e.g. Gaussian density). It can be shown by an appli-
cation of Scheffé’s theorem that the channels in this form are continuous
in total variation. If further f(xt, ut) is continuous and bounded then the
requirements of Corollary 2 hold for partially observed models.

2. If the channel is in the following form; xt = h(xt, vt) then the system is fully
observed. If further f(xt, ut) is continuous and bounded then the require-
ments of Corollary 2 holds for fully observed models.

3. Suppose the function f(xt, ut) is known, if the noise process wt admits a
continuous density, then one can estimate the noise model in total variation
in a consistent way (see [5]). Hence, the conditions of Corollary 3 holds
independent of the channel model.

�

5.2 Application to Approximations of MDPs and POMDPs with
Weakly Continuous Kernels

We now discuss Problem P4, that is whether approximation of an MDP model
with a standard Borel space with a finite MDPs can be viewed an instance of
robustness problem to incorrect models and whether our results can be applied.

Review of Finitely Quantized Approximations to Standard Borel MDPs.
Consider an MDP which is quantized as follows.

Finite State Approximate MDP: Quantization of the State Space. Let
dX denote the metric on X. For each n ≥ 1, there exists a finite subset {xn,i}kni=1

of X such that

min
i∈{1,...,kn}

dX(x, xn,i) < 1/n for all x ∈ X.

Let Xn := {xn,1, . . . , xn,kn} and define Qn mapping any x ∈ X to the nearest
element of Xn, i.e.,

Qn(x) := arg minxn,i∈Xn
dX(x, xn,i).
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For each n, a partition {Sn,i}kni=1 of the state space X is induced by Qn by
setting

Sn,i = {x ∈ X : Qn(x) = xn,i}.

Let ψ be a probability measure on X which satisfies

ψ(Sn,i) > 0 for all i, n,

and define probability measures ψn,i on Sn,i by restricting ψ to Sn,i:

ψn,i( · ) := ψ( · )/ψ(Sn,i).

Using {ψn,i}, we define a sequence of finite-state MDPs, denoted as f-MDPm,
to approximate the compact-state MDP.

For each m, f-MDPm is defined as:
(
Xn,U, Tn, cn

)
, and the one-stage cost

function cn : Xn × U → [0,∞) and the transition probability Tn on Xn given
Xn × U are given by

cn(xn,i, a) :=

∫
Sn,i

c(x, a)ψn,i(dx)

Tn( · |xn,i, a) :=

∫
Sn,i

Qn ∗ T ( · |x, a)ψn,i(dx),

where Qn ∗ T ( · |x, a) ∈ P(Xn) is the pushforward of the measure T ( · |x, a) with
respect to Qn; that is,

Qn ∗ T (zn,j |x, a) = T
(
{y ∈ X : Qn(y) = xn,j}|x, a

)
,

for all xn,j ∈ Xn.

Finite Action Approximate MDP: Quantization of the Action Space.
Let dU denote the metric on U. Since the action space U is compact and thus
totally bounded, one can find a sequence of finite sets Λn = {an,1, . . . , an,kn} ⊂ U
such that for all n,

min
i∈{1,...,kn}

dU(a, an,i) < 1/n for all a ∈ U.

In other words, Λn is a 1/n-net in U. Let us assume that the sequence {Λn}n≥1
is fixed. To ease the notation in the sequel, let us define the mapping Υn

Υn(f)(x) := arg min
a∈Λn

dU(f(x), a), (10)

where ties are broken so that Υn(f)(x) is measurable.
It is known that finite quantization policies are nearly optimal under the

conditions to be presented below, see [23, Theorem 3.2]. Thus, to make the
presentation shorter, we will either assume that the action set is finite, or it
has been approximated by a finite action space through the construction above.
Assuming finite action sets will help us avoid measurability issues (see universal
measurability discussions in [22]) as well as issues with existence of optimal
policies.
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Assumption 6 (a) The one stage cost function c is nonnegative and continu-
ous.

(b) The stochastic kernel T ( · |x, a) is weakly continuous in (x, a) ∈ X× U.

(c) U is finite.

(d) X is compact.

We note that condition (d) in Assumption 6 as presented in [22] was more
general, but we have used the simpler version here for clarity in exposition.

One can write the following fixed point equation for the finite MDP

Jnβ (x) = min
a∈U

{
cn(x, a) + β

∑
x1∈Xn

Jnβ (x1)Tn(x1|x, a)

}

where Tn is the transition model for the finite MDP and cn is the cost function
defined on the finite model. Since the acton space is finite, we can find an optimal
policy, say f∗n for this fixed point equation. One can also simply extend Jnβ and
f∗n, which are defined on Xn to the entire state space X by taking them constant

over the quantization bins Sn,i. If we call the extended versions Ĵnβ and f̂n, the
following result can be established:

Theorem 16. [22, Theorem 2.2 and 4.1] Suppose Assumption 6 holds. Then,

for any β ∈ (0, 1) the discounted cost of the deterministic stationary policy f̂n,
obtained by extending the discounted optimal policy f∗n of f-MDPm to X (i.e.,

f̂n = f∗n ◦ Qn), converges to the discounted value function J∗ of the compact-
state MDP:

lim
n→∞

‖Ĵnβ (· )− J∗β(· )‖ = 0 and lim
n→∞

‖Jβ(f̂n, · )− J∗β‖ = 0. (11)

Theorems 16 shows that under Assumption 6, an optimal solution can be
approximated via the solutions of finite models. We now show that the above
approximation scheme can be viewed in relation to our robustness results.

Proof sketch of Theorem 16 via results from Section 4. With the introduced
setup, one can see that the extended value function and optimal policy for the
finite model satisfy the following:

Ĵnβ (x) = min
a∈U

{
ĉn(x, u) + β

∫
Ĵnβ (x1)T̂n(dx1|x, u)

}
where ĉn is the extended version of cn to the state space X by making it constant
over the quantization bins {Sn,i}i and T̂n is such that for any function f∫

f(x1)T̂n(dx1|x, u) :=

∫
x1∈X

∫
z∈Sn,i

f(x1)T (dx1|z, u)ψn,i(dz)

where Sn,i is the quantization bin that x belongs to.
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With this setup, one can see that for any xn → x we have ĉn(xn, u)→ c(x, u)
and for any continuous and bounded f∫

f(x1)T̂n(dx1|xn, u) :=

∫
x1∈X

∫
z∈Sn,i

f(x1)T (dx1|z, u)ψn,i(dz)

→
∫
f(x1)T (dx1|x, u).

Hence, Assumption 1 holds under Assumption 6, and we can conclude the
proof using Theorem 11 and Theorem 10. ut

6 Concluding Remarks

We studied regularity properties of optimal stochastic control on the space of
transition kernels, and applications to robustness of optimal control policies de-
signed for an incorrect model applied to an actual system. We also presented
applications to data-driven learning and related the robustness problem to finite
MDP approximation techniques. For the problems presented in this article, our
focus was on infinite horizon discounted cost setup. However, we note that the
results can be extended to the infinite horizon average cost setup under various
forms of ergodicity properties on the state process.
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