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Interaction of Information, Control and Probability

The interaction between information and control is a phenomenon that arises in
every decision and control problem.

Any performance-driven controller requires information on the unknowns that affect
the operation of the underlying system.

The uncertainty can typically be characterized through a (possibly incomplete)
probability model.

The quality of the relevant information itself is typically affected by the choice of
the control action in a closed-loop system.

2



Interaction of Information, Control and Probability

A collection of decision makers who wish to achieve a common goal, but who may
have different (on-line) information variables, is said to be a team.

(This is in contrast to settings where the goals may not be aligned, as in games).

Networked Control refers to a team of decision makers (decentralized control
system) in which the decision makers are connected through communication channels.

Thus, there may be a data link between the sensors (which collect information),
the controllers (which make decisions), and the actuators (which execute the controller
commands).
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Figure 1: Decentralized control with rate-limited interactions.
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Networked Control

Channel
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Figure 2: Another networked control system. Here, the coder and the
controller are decision makers.
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Networked Control and Information Structures

Such systems are becoming ubiquitous. Applications in:

Design of (smart) power grids,
Communications and networking systems
Automobile and inter-vehicle communications designs
Control of surveillance and rescue robot teams for access to hazardous environments
Space exploration and aircraft design
Control of economic systems
Theory of organizations in economics/business
among many other fields of applications which involve decentralized decision making
under uncertainty.

In this tutorial talk, we will discuss stabilization, optimization and information structure
related aspects of such systems, focusing first on single-channel systems.
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Controlled Stochastic Systems

A controlled stochastic system has the following state / measurement equations:

xt+1 = f(xt, ut, wt), (1)

yt = g(xt, vt) (2)

A control policy γ is a sequence of control functions {γ0, γ1, · · · } each a causal
function of the information vector

It = {yt; y[0,t−1], u[0,t−1]} t ≥ 1,

with control actions ut = γt(It).

In stochastic control, typically a measurement model is given and one looks for a
control policy for optimization or stabilization of the controlled system.

Stochastic control theory is a rich, mature field with many applications.
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Stochastic Control with Information Constraints

Here, (2) defines a channel, a stochastic kernel, mapping the state to measurements.

In networked control systems, the measurement channel itself and the information
vector It are design variables: We can shape the observation / measurement channel,
through encoding and decoding.

Channel

Plant

Coder Controller

Figure 3: Encoding shapes the observation given the state. Joint design
of coding and control is needed.
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Design of Coder and Controllers

A Coding Policy Π is a sequence of functions {Qc
t, t ≥ 0} such that the channel

input, qt ∈ M, under Π is generated by a function of its local information

Iet = {x[0,t], q
′
[0,t−1]}

to the channel input alphabet M. This is typically a finite set.

The channel maps qt to q′t.

A control policy γ is a set of functions {γt} such that ut = γt(q
′
[0,t]).
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Problem P1: Design of Information Channels for
Stabilization

Given a system controlled over a channel, find the set of channels Q for which there
exists a policy (both control and encoding), such that {xt} is stochastically stable in
the following senses:

(i) recurrence / ergodicity / (asymptotic mean) stationarity,

and

(ii) existence of finite moments.

These will be specified further in this talk.
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Problem P2: Design of Information Channels for
Optimization

Given a controlled dynamical system, a channel, and a cost function c, the goal is
to minimize

EΠ,γ

[ T−1
∑

t=0

c(xt, ut)

]

, (3)

over the set of all admissible coding and control policies Π, γ.

Find optimal coding and control policies; structural, existence and topological
properties of such optimization problems.

One could also take the horizon to infinity, considering average/discounted cost.
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Problem P1: Design of Information Channels for
Stabilization

We will consider a linear Gaussian unstable system model (results are applicable
to higher-order systems)

xt+1 = Axt + But + wt,

It is assumed that there exists an unstable eigenvalue and (A,B) is controllable.
For ease in presentation, assume A is diagonal.

Partially observed settings can also be considered.

This system is connected over a channel with a finite capacity to a controller.
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Causal Coding for Control

Channel

Plant

Coder Controller

Figure 4: Control over a discrete noisy channel with feedback.
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Channel Models and Channels used in Practice

A discrete noisy channel is a stochastic kernel such that for any n ∈ N, an input
sequence q[0,n] leads to an output q′[0,n] with probability P (q′[0,n]|q[0,n]). The channel
is memoryless, if

P (q′[0,n]|q[0,n]) =
n
∏

k=0

P (q′k|qk).

A binary symmetric channel is defined by the transition probabilities: P (q′ =

0|q = 1) = P (q′ = 1|q = 0) = ǫ. Binary noiseless if ǫ = 0.

A binary erasure channel is defined by the transition probabilities P (q′ = 0|q =

0) = P (q′ = 1|q = 1) = 1 − ǫ for some ǫ ∈ [0, 1], and an erasure symbol e such
that P (q′ = e|q = 0) = P (q′ = e|q = 1) = ǫ.

A Gaussian channel is one in which q′ = q + w, where w is a Gaussian,
independent noise variable.
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Causal Coding for Control

The quantizer and the source coder policy is causal such that the channel input at
time t ≥ 0, qt, is generated using the information:

Ist = {x[0,t], q[0,t−1], q
′
[0,t−1]}

The quantizer outputs are transmitted through a channel, after being subjected to
a channel encoder. The receiver has access to noisy versions of the quantizer/coder
outputs for each time, which we denote by q′t ∈ M′.

The control policy at time t, also causal, only uses Ict , for t ≥ 0:

I
c
t = {q

′
[0,t]}

We will call such coding and control policies admissible policies.

15



Causal Coding for Control

We will consider the question: When does a linear system driven by unbounded
noise (such as Gaussian noise), controlled over a channel (possibly with memory)
satisfy the following:

• {xt} is asymptotically mean stationary and satisfies Birkhoff’s sample path ergodic
theorem (Stationarity).

• limT→∞
1
T

∑T−1
t=0 ||xt||

2 exists and is finite almost surely (Quadratic Stability).
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Information Theory: Source Coding

Given an X-valued source process {xt}, and a distortion criterion ρ, a rate-
distortion pair (R,D) is achievable if there exists a sequence of

-Encoders: En : Xn → M(n) with |M(n)| ≤ 2Rn

-Decoders: Dn : M(n) → X
n such that x̂t = Dn(x[0,n−1]) with

Dn :=
1

n

n−1
∑

i=0

ρ(xn, x̂n) ≤ D

inf {R : (R,D) is achievable} is the Rate-distortion function of a source.

Example : The rate-distortion function for a Gaussian source with variance σ2
x is given

by 1
2 log2(σ

2
x/D) bits per source realization.
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Information Theory: Channel Coding

Given a channel, a rate R can be reliably transmitted if there exists a sequence
(R, ǫn), with ǫn → 0, such that for every n:

- There exists a set of messages M(n) := {1, 2, 3 . . . ,M(n)} such that |M(n)| ≥

2Rn

- A channel coder: En : M(n) → Mn and a decoder: Dn : M′n → M(n),

with average error probability

Pe :=
1

|M(n)|

∑

c∈M(n)

P (D(q
′
[0,n−1]) 6= c|c) ≤ ǫn.

Given a channel, the supremum rate R can be achieved is called the Capacity of the
channel.

Example : The capacity of an erasure channel is (1 − ǫ), where ǫ is the erasure
probability.
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Source Coding: Causal and Non-Causal
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Figure 5: Information theoretic setup assumes non-causal block coders.
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Are information-theoretic definitions useful for control
problems?

The rate-distortion and capacity definitions are non-causal.

The encoder collects: x0, x1, x2, . . . , xn, and generates q[0,n], as a block; then
x̂[0,n] is generated.

In control applications, the system cannot tolerate long delays:

x0, q0, q
′
0, u0, x1, q1, · · ·

However, information theory suggests designs, and offers bounds on what is possible
and not possible.

20



Literature Review: Information Theory for Unstable
Processes

Consider the following Gaussian Auto-Regressive process:

xt = −
m
∑

k=1

akxt−k + wk,

where {wk} is an independent and identical, zero-mean, Gaussian random sequence
with variance E[w2

1] = σ2.

If the roots of:

H(z) = 1 +
m
∑

k=1

akz
−k

are inside the unit circle, the process is (asymptotically) stationary.
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Literature Review: Information Theory for Unstable
Processes

The rate distortion function (distortion being the normalized Euclidean error) is
given parametrically by the following (Gray (’70), Hashimoto-Arimoto (’80), Berger
(’70))

R(Dθ) =
1

2π

∫ π

−π

max

(

1

2
log(

1

θg(w)
), 0

)

dw +
m
∑

k=1

1

2
max

(

0, log(|ρk|
2)

)

, (4)

with

Dθ =
1

2π

∫ π

−π

min(θ,
1

g(w)
)dw,

where {ρk} are the roots of the polynomialH.

Note that the encoding is non-causal.
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Control Theory Literature and Causality Restrictions

Wong-Brockett’98, Nair-Evans’04, Tatikonda-Mitter’04 obtained that, for quadratic
stability, an average rate of information transmission over a noiseless channel needed
for stabilizability is at least

m
∑

k=1

1

2
max

(

0, log(|ρk|
2)

)

Contrasting with the Gray/Hashimito-Arimoto result, this shows that the rate term
is not due to the causality restriction, but due to the uncertainty inherent in the source
(the differential entropy rate).

There have also been other contributions by many researchers (Martins-Dahleh’08,
Sahai-Mitter’06, Matveev-Savkin’08, Matveev’08 etc.) typically for bounded noise setups
and under various notions of stability criteria such as finite second moments and
stability in probability.
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Causal Coding for Control: Noisy Channels

In Problem P1 , the problem is to find, for the system

xt+1 = Axt + But + wt,

the largest class of channels Q, for which there exists a policy (both control and
encoding), so that {xt} is stochastically stable:

When does an unstable linear system driven by unbounded noise, controlled over
a channel (possibly with memory) is stochastically stabilizable in the following sense:

- The ergodic theorem applies, the state process is asymptotically mean stationary.

- The state process is quadratically stable, that is has finite average second moment
which admits a limit.

The contribution is due the presence of unbounded noise, and the stronger criteria
such as as stationarity, ergodicity and quadratic stability.
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Asymptotic (Mean) Stationarity

Let X = R
d and Σ = X

∞ denote the sequence space of all one-sided sequences
drawn from X. Thus, if x ∈ Σ then x = {x0, x1, . . . } with xi ∈ X.

Let Xn : Σ → X denote the coordinate function such that Xn(x) = xn.

Let T denote the shift operation on Σ, that isXn(Tx) = xn+1. Tx = {x1, x2, . . . }.

Definition .1. A random process with measure P is N−stationary, (cyclo-stationary
or periodically stationary with period N ) if P (TNB) = P (B) for all B ∈ B(Σ). If
N = 1, stationary.

Definition .2. A random process is N−ergodic if B = TNB implies that P (B) ∈

{0, 1}. If N = 1, it is ergodic.
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Stochastic Stability Notion: Asymptotic (Mean)
Stationarity

Definition .3. A process with a probability measure (Ω,F , P ) is asymptotically mean
stationary (AMS) if there exists a probability measure P̄

lim
n→∞

1

n

n−1
∑

k=0

P (T−kF ) = P̄ (F ),

for all events F . Here P̄ is the stationary mean of P .

This property is equivalent to the applicability of the ergodic theorem.
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Necessity and Sufficiency for Stationarity

Theorem .1. [Y.’12,Y.’13]

(i) For stability over a memoryless channel with any causal encoding and controller
policy under the condition of the AMS property, the channel capacity must satisfy

C ≥ log2(|A|) =
∑

|λi|≥1

log2(|λi|).

(ii) If
C > log2(|A|) =

∑

|λi|≥1

log2(|λi|),

there exist coding and control policies such that the state process is AMS.

This result also applies for a large class of channels with memory.

Necessity also holds for having lim supt→∞E[|xt|
2] < ∞.
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Skecth of Necessity through Information Theory

Mutual information satisfies

I(q
′
t; q[0,t]|q

′
[0,t−1]) ≥ I(xt; q

′
t|q

′
[0,t−1])

C ≥ lim sup
T→∞

(1/T )

( T−1
∑

t=1

I(xt; q
′
t|q

′
[0,t−1])) + I(x0; q0)

)

≥ lim sup
T→∞

(1/T )

( T−1
∑

t=1

(

h(xt|q
′
[0,t−1]) − h(xt|q

′
[0,t])

)

+ I(x0; q
′
0)

)

= log2(|A|) − lim inf
T→∞

(

(1/T )h(xT−1|q
′
[0,T−1])

)

≥
∑

|λi|>1

log2(|λi|),
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Sufficiency

Let n be a given block length. We will consider a class of uniform quantizers,
defined by two parameters, with bin size ∆ > 0, and an even number K(n) ≥ 2:

Q∆
K(n)(x) =

{

(k − 1
2(K(n) + 1))∆, if x ∈ [(k − 1 − 1

2K(n))∆, (k − 1
2K(n))∆)

Z, if x 6∈ [−1
2K(n)∆, 12K(n)∆),

where Z denotes the overflow symbol in the quantizer.

Overflow bin
Overflow bin

(K/2)∆

Bin size

−(K/2)∆

Figure 6: An adaptive uniform quantizer.
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Sufficiency

Adaptive Zooming Quantizer: An approach known since early 70’s (Goodman-
Gersho (TCOM’74)). Also used in control literature recently extensively.

Zoom-out when the state has escaped the quantizer.

Zoom-in when the state is inside the quantizer’s granular region.

Control is only applied when the state is inside the granular region. Inspired by
this structure, the following drift criteria was obtained.
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Stochastic Stability: Markov Chains

Let {xt, t ≥ 0} be a Markov chain with state space (X,B(X)).

Definition .4. For a Markov chain, a probability measure π is invariant on the Borel
space (X,B(X)) if

π(D) =

∫

X

P (x,D)π(dx), D ∈ B(X) .

Existence of a unique invariant probability measure and positive Harris recurrence
let the ergodic theorem hold:

1

N

N−1
∑

t=0

f(xt) →

∫

π(dx)f(x),

for all integrable f under π a.s..
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Stochastic Stability: Markov Chains under
Random-Time State-Dependent Drift

The following characterizes stabilization when control is applied at random times.
Let τz, z ≥ 0 with τ0 = 0 be such a sequence (of stopping times).

Theorem .2. [Y. -Meyn (TAC’12)] Suppose that {xt} is a ϕ-irreducible Markov chain
and V : X → (0,∞), δ : X → [1,∞), f : X → [1,∞), a small setC, and a constant
b ∈ R, such that the following hold:

E[V (xτz+1) | Fτz] ≤ V (xτz) − δ(xτz) + b1{xτz∈C}

E
[

τz+1−1
∑

k=τz

f(xk) | Fτz

]

≤ δ(xτz) , z ≥ 0.

Then {xt} is positive Harris recurrent, and moreover π(f) < ∞, with π being the
invariant distribution.
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Stochastic Stability: Markov Chains

Corollary .1. Suppose that {xt} is a ϕ-irreducible Markov chain. Suppose that there
is a function V : X → (0,∞), a small set C, and a constant b ∈ R, such that the
following hold:

E[V (xτz+1
) | Fτz] ≤ V (xτz) − 1 + b1{xτz∈C}

sup
x∈X, z≥0

E[τz+1 − τz | Fτz = x] < ∞.

Then {xt} is positive Harris recurrent (and there is a unique invariant measure, ergodic
theorem holds).
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Applying the Random-Time Drift Criterion for AMS

When the decoder output is the overflow signal, then the quantizer is zoomed-out.

Zoom-in when state is within the granular region of the quantizer. Define ht :=
xt

∆t2
R′−1

. Apply control actions at these instants.

Define a sequence of stopping times (with n a block-length)

τ0 = 0, τz+1 = inf{kn > τz : |hkn| ≤ 1}, z, k ∈ Z+

For large ∆τz , ∃r > 1,M < ∞: P (τz+1 − τz ≥ kn|xτz,∆τz) ≤ Mr−kn.

Hence, by the random-time drift criterion, we can show that, there exist ψ > 0,
|G| < ∞ such that

E[log(∆2
τz+1

)|∆τz, hτz] ≤ log(∆2
τz
) − ψ +G1{|∆τz |≤F} (5)
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Quadratic Stability - More Restrictive Conditions

For finite second moments, more restrictive conditions are needed. We take
V (x,∆) = ∆2 as the Lyapunov function.

For erasure channels, we have a converse theorem, and an achievability theorem
which are equal for a scalar source:

Theorem .3. [Minero et. al.’09, Y.-Meyn’13] A necessary and sufficient condition for
lim supt→∞E[|xt|

2] < ∞ is:

a2
(

ǫ+
1 − ǫ

22R

)

< 1,

where ǫ is the erasure probability.

For more general channels, there is a gap between the converse and the achievability
results. Details are omitted.

35



Problem P2: Design of Information Channels for
Optimization

Consider the optimization problem where the controller has access to channel
outputs where Q(dy|x) is the channel.

We consider first the single-stage case

J(P,Q) = inf
Π
E
Q,Π
P

[

c(x0, u0)
]

= inf
γ∈G

∫

X×Y

c(x, γ(y))Q(dy|x)P (dx)

in the channel Q, where G is the collection of all γ : u = γ(y).
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Problem P2: A Topology on Information Channels

Let P(X) denote the family of probability measures on X.

Let {µn, n ∈ N} be a sequence in P(RN). The sequence {µn} is said to
converge to µ ∈ P(RN) weakly if

∫

RN
c(x)µn(dx) →

∫

RN
c(x)µ(dx)

for every continuous and bounded c : RN → R.

Definition .5. [Convergence of Channels] (i) A sequence of channels {Qn} converges
to a channel Q weakly at input P if PQn → PQ weakly.

(ii) A sequence of channels {Qn} converges to a channel Q in total variation at
input P if PQn → PQ in total variation, i.e., if ‖PQn − PQ‖TV → 0.
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Continuity on the Space of Channels

Theorem .4. [Y.-Linder’12]

i) If U is compact and c is continuous, an optimal control policy exists for every
channel.

ii) We do not have continuity in channels under weak convergence even for continuous
cost functions.

iii) If the cost function is measurable and bounded, the optimal cost J(P,Q) is
continuous on the set of communication channels Q under under the topology of total
variation.

This result will be useful to prove existence of optimal coding policies shortly.
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Application: Quantizers as a class of channels

Definition .6. An M -cell vector quantizer, q, is a (Borel) measurable mapping from
X = R

n to the finite set {1, 2, . . . ,M}, characterized by a measurable partition
{B1, B2, . . . , BM} such that Bi = {x : q(x) = i} for i = 1, . . . ,M . The Bi are
called the codecells (or bins) of q.

A quantizerQ with cells {B1, . . . , BM}, however, can also be characterized as a
stochastic kernel Q on B(X × {1, . . . ,M}) defined by

Q(i|x) = 1{x∈Bi}
, i = 1, . . . ,M

so that Q(x) =
∑M

i=1Q(i|x).

In the analysis, we will restrict the quantizers to have convex codecells.
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Existence of Optimal Quantization Policies

Let QC(M) denote the set of quantizers with convex codecells.

Theorem .5. [Y.-Linder’12] The set QC(M) is compact under total variation at any
input measure P that admits a density.

Combined with continuity:

Theorem .6. [Y.-Linder’12] Let P have a density and suppose the goal is to find
the best quantizer Q with M cells minimizing J(P,Q) = infγ E

Q,γ
P

∫

c(x, u), for
measurable and bounded c. Then an optimal quantizer exists.
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Multi-Stage Case: Dynamic Encoders

Consider a general controlled Markov system of the form, as before, with quantized
information:

xt+1 = f(xt, ut, wt),

Suppose that the goal is the minimization,

inf
Πcomp

inf
γ
E

Πcomp,γ
[

T−1
∑

t=0

c(xt, ut)], (6)

over all quantization policies Πcomp, and control policies γ.

Obtaining the structure of optimal policies is very important: The importance
is both in obtaining analytical solutions and topological properties, but also to obtain
computational complexity reductions.
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A Structural Result on Optimal Quantization Policies

Theorem .7. [Walrand-Varaiya’82, Y.’12] Under the objective given in (6), any causal
quantization policy can be replaced, without any loss in performance, by one which
only uses the conditional probability measure πt(·) = P (xt ∈ ·|q[0,t−1]), the state xt,
and the time information t, at time t.

This can be expressed as a quantization policy which only uses {πt, t} to generate
a quantizer, where the quantizer uses xt to generate the quantization output qt.

Thus, a quantizer can eliminate the past state data without any loss in optimality;
x[0,t−1] can be eliminated!

This result also applies to partially observed Markov sources.
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Stochastic Control Formulation

Let ΠW denote this class of optimal policies. Under such a policy, we obtain a
non-linear filtering equation:

πt(dx) =

∫

πt−1(dxt−1)P (qt−1|πt−1, xt−1)P (dx|xt−1, ut−1)
∫ ∫

πt−1(dxt−1)P (qt−1|πt−1, xt−1)P (dx|xt−1, ut−1)
.

Here, P (qt−1|πt−1, xt−1) is determined by the quantizer policy.

The sequence of conditional measures and quantizers {πt, Qt} form a controlled
Markov process in P(Rn) × Q.
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Stochastic Control Formulation

The cost to be optimized is:

inf
γ
Jπ0(Π

comp
, γ, T ) = E

Πcomp

π0

[

1

T

T−1
∑

t=0

c0(πt, Qt)

]

,

where

c0(πt, Qt) =
M
∑

i=1

inf
u∈U

∫

Q−1
t (i)

πt(dx)c0(x, u).

Thus, traditional Markov Decision Processes formalism applies: Consider a system
of the form: xt+1 = f(xt) + wt, where {wt} is i.i.d. Gaussian, action space U is
compact and c0 : Rn × U → R+ is (i) bounded and continuous or (ii) quadratic.
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Existence

Let ΠC
W be the set of coding policies in ΠW with quantizers having convex codecells.

Theorem .8. [Y.-Linder’12] For any T ≥ 1, there exists a policy in ΠC
W such that

inf
Πcomp∈ΠC

W

inf
γ
Jπ0(Π

comp
, γ, T ) (7)

is achieved. Letting JTT (·) = 0 and

J
T
0 (π0) := min

Πcomp∈ΠC
W
,γ

Jπ0(Π
comp

, γ, T ),

the dynamic programming recursion holds.

TJ
T
t (πt) = min

Q∈Qc

(

c(πt, Qt) + TE[J
T
t+1(πt+1)|πt, Qt]

)
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Linear Quadratic Gaussian Problem

Consider a Linear Quadratic Gaussian setup. Let xt ∈ R
n and the evolution of the

system be given by the following:

xt+1 = Axt + But + wt,

yt = Cxt + vt, (8)

Here, {wt, vt} are mutually independent, zero-mean i.i.d. Gaussian.

The goal is the computation of

inf
Πcomp

inf
γ

1

T
E

Πcomp,γ
ν0

[

T−1
∑

t=0

x
′
tQxt + u

′
tRut].

where, Q ≥ 0, R > 0.
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Linear Quadratic Gaussian Problem

Theorem .9. [Y.’12]

i) An optimal control policy is given by ut = LtE[xt|q[0,t]], where

Lt = −(R + B′Pt+1B)−1B′Kt+1A,

and
Pt = A′

tKt+1B(R + B′Kt+1B)−1B′Kt+1A,

Kt = A′
tKt+1At − Pt +Q,

with KT = PT−1 = 0.
ii) Coders in ΠW with a predictive encoder structure is without any loss.
iii) There exists an optimal coding policy in ΠC

W .
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Separation of estimation error and control and lack of
dual effect of control

Control performance is independent of optimal encoder performance [Borkar-Mitter’96,
Nair et al’08, Y.’12].

∑
t−1

k=0
At−k−1Buk

∑
t−1

k=0
At−k−1Buk

qt
xt utut

Quantizer Estimator ControllerLinear System

Figure 7: For the LQG problem, a predictive encoder is without loss.
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Information Structures in Networked Control

Until this point, we discussed single-channel settings.

A systematic study of more general distributed systems require a careful classification
of information structures.

     Plant

Station 4

Station 3

Station 2

Station 1

Figure 8: A decentralized networked control system.
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Teams and Information Structures

Information structure in a networked control system is on which decision maker
knows what information at any given time.

The information structure is a very important component in characterizing how
difficult an optimization problem is.

Example: In single-decision makers, dynamic programming principle holds because
information is expanding.

Example: In multi-decision maker settings, a dynamic programming approach is
in general not possible: There is no state variable which is common knowledge! We
can’t apply the law of the iterated expectation.
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Teams and Information Structures

A decentralized control system may either be sequential or non-sequential. In
a sequential system, the decision makers (DMs) act according to an order that is
specified before the system starts running.

If a decision maker’s information does not depend on the action of another decision
maker, the information structure is static.

There are some dynamic information structure problems which are equivalent to
static ones (these are called quasi-classical).

Non-classical information structure arises if a Decision Maker (DM) i’s action
affects the information available to DM j, but DM j does not know what DM i knows.
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Witsenhausen’s Intrinsic Team Model

According to Witsenhausen, any (finite horizon) team problem can be characterized
by a tuple

(

(Ω,F), N , {U i, i = 1, . . . , N}, {J i, i = 1, . . . , N}
)

.

• (Ω,F): The realization ω ∈ Ω is called the primitive variable of the system. Ω

denotes realizations and F is a set of events in Ω.

• N denotes the number of decision makers (DMs) in the system. Each DM takes
only one action.

• U i, i = 1, . . . , N} is a collection of action spaces for each DM.

• {J i, i = 1, . . . , N} is a collection of sets in F and represents the information
available to a DM to take an action. We can also show this with a measurement
function ηi with range space Ii. The collection {J i, i = 1, . . . , N} is called the
information structure of the system.

• A control strategy (policy): {γi, i = 1, . . . , N} where γi : J i → U i.
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Objectives and Policy Spaces

We will assume that we are given a probability measure P on (Ω,F) and a real-
valued loss function ℓ on (Ω × U1 × · · · × UN) =: H.

Any choice γ = (γ1, . . . , γn) of the control strategy induces a probability measure
P γ on H. We define the performance J(γ) of a strategy as the expected loss, i.e.,

J(γ) = E
γ
[ℓ(ω, u

1
, . . . , u

N
)]

where ω is the primitive variable and ui is the control action of DM i.
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Solutions to Convex Static Team Problems

Let
J(γ) := E[c(ω, γ1(η1(ω)), . . . , γN(ηN(ω)))].

A policy γ∗ is person-by-person-optimal if for all k

J(γ∗) ≤ J(γ∗1, . . . , γ∗(k−1), β, γ∗(k+1), . . . ), β ∈ Γk.

A policy γ∗ is optimal if

J(γ
∗
) ≤ J(γ), γ ∈ Γ = Γ

1
× Γ

2
× · · · × Γ

N

Person-by-person-optimality does not imply optimality, in general.

Theorem .10. [Radner’62] For a static team problem with cost function c(ω, u1, · · · , uN)

which is (i) continuously differentiable and (ii) convex in the actions; a person-by-
person-optimal strategy is globally optimal.
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Application: Static LQG Team Problems

Consider a two-controller system where x1 is Gaussian and

x2 = Ax1 + B
1
u
1
1 + B

2
u
2
1 + w1

y11 = C1x1 + v11, y21 = C2x1 + v21,

with w, v1, v2 zero-mean, i.i.d. disturbances. For ρ1, ρ2 > 0, let the goal be the
minimization of

J(γ1, γ2) = E

[

||x1||
2
2 + ρ1||u

1
1||

2
2 + ρ2||u

2
1||

2
2 + ||x2||

2
2

]

(9)

over the control policies of the form: uit = γit(y
i
t), i = 1, 2.

Solution : By Radner’s theorem, optimal policy is affine in measurements.
Remark : If quasi-classical, optimal solutions are still linear. If non-classical; they are
not.
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Non-Classical Settings and Lack of Convexity

Non-classical information structure arises if a Decision Maker (DM) i’s action
affects the information available to DM j, but DM j does not know what DM i knows.

For such a problem, DM i may want to signal her information to DM j through her
control actions.

Note that the function

J(P,Q) = inf
γ∈Γ

∫

c(x, γ(y))P (dx)Q(dy|x)

is concave in Q [Y.-Linder’10].

Hence, the information structure design or channel design is a non-convex problem,
when there is active signaling.
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Insight into Non-Classical Problems: Witsenhausen’s
Counterexample

u1u0

w1

x0

y0

x1 x2

y1µ0 µ1

y0 = x0, u0 = µ0(y0), x1 = x0 + u0,

y1 = x1 + w1, u1 = µ1(y1), x2 = x1 + u1.

The goal is to minimize the expected performance index for some k > 0

QW(x, u0, u1) = k(u0)
2
+ x

2
2

57



Witsenhausen’s Counterexample

This is the celebrated Witsenhausen’s counterexample.

It is described by a linear system; all primitive variables are Gaussian.

Yet optimal team policy is non-linear [Witsenhausen’68].

Witsenhausen established that a solution exists and established that an optimal
policy is non-linear.

The complete solution to this problem is not known. Properties of optimal solutions
have been discussed in [Wu-Verdú’11].

Yet, if one replaces, in the Witsenhausen’s problem, the noise variables with binary
variables, there does not exist an optimal team policy!
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Optimal Dynamic Teams under Information
Constraints

Efforts on existence, structure and approximations of optimal policies have ben
studied.

Minimum amount of information to agree on certain sufficient statistics for optimal
control has been studied with upper and lower bounds.

There is no all-encompassing systematic solution method in general for such
problems:

Approaches for such problems typically follow from the construction of a controlled
Markov state, information theory, reduction to static teams, expansion of information
structures and so on [an extensive review is available in Y.-Başar (Springer’13)].
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Concluding Remarks

For stabilization, there is a total order on the set of channels: For stationarity,
Shannon theoretic capacity is the border for the converse and achievability.

For finite moments, the criteria we obtained are more stringent. Tight bounds for
erasure channels have been obtained. Upper and lower bounds for more general
channels are not equal.

Structural results and existence results for optimal coding and control policies,
topological properties have been established.

A review of information structures has been presented: Information structure design
in networked control is typically non-convex.

Even for LQG systems under non-classical information structures, linear policies
are not optimal.
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Future Directions

Distributed control under information constraints. Existence results, structural
results and approximation techniques.

In multi-decision maker settings, a dynamic programming approach is in general
not possible. In general, there is no state variable which is common knowledge:
Sometimes, such a variable is available: Mean-field equilibrium [Huang et al.’07],
Belief sharing pattern [Y.’09], information sharing [Nayyar-Mahajan-Teneketzis’11].

Connections with asymptotic agreement, Bayesian learning and consensus literature.

Learning/training methods and approximation techniques for computing optimal
policies given structural and existence results.

Topological issues on mismatch in the beliefs/priors in optimal teams.

Value of information in games.
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