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Teams and Information Structures

A decentralized control system is one where there are multiple controllers and
these controllers have access to only local information variables.

Such a collection of decision makers who wish to achieve a common goal and who
have an agreement on the system variables (that is, the policy and action spaces and
the probability space on which the system is defined) is said to be a team.

This is in contrast to settings where the goals may not be aligned, as in games.

An example would be a large-scale power-grid with multiple coupled generators.
Here, the decision center at each generator has access to only local measurements
and based on local information, it must regulate variables that may impact the entire
grid.
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Figure 1: A decentralized control system with possible interactions.

2



Teams and Information Structures: Sequential
Systems

A decentralized control system may either be sequential or non-sequential.

In a sequential system, the decision makers (DMs) act according to an order that
is specified before the system starts running.

In a non-sequential system the DMs act in an order that depends on the realization
of the system uncertainty and the control actions of other DMs.

It is more difficult to analyze and formulate a well-posed optimal control problem for
non-sequential systems because we need to ensure that it is causal and deadlock-free
[Andersland-Teneketzis’92][Teneketzis’96].

In this tutorial, we restrict attention to sequential systems.
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Witsenhausen’s Intrinsic Team Model

According to Witsenhausen’s Intrinsic Model, any (finite horizon) team problem
can be characterized by a tuple

(

(Ω,F), N , {U i, i = 1, . . . , N}, {J i, i = 1, . . . , N}
)

.

• (Ω,F): The realization ω ∈ Ω is called the primitive variable of the system. Ω

denotes realizations and F is a set of events in Ω.

• N denotes the number of decision makers (DMs) in the system. Each DM takes
only one action.

• {U i, i = 1, . . . , N} is a collection of action spaces for each DM.

• {J i, i = 1, . . . , N} is a collection of sets in F and represents the information
available to a DM to take an action. We can also show this with a measurement
function with range space Ii. The collection {J i, i = 1, . . . , N} is called the
information structure of the system.

• A control strategy (policy): {γi, i = 1, . . . , N} where γi : J i → U i.
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Objectives and Policy Spaces

We focus on minimizing a loss function. Other performance measures include
minimizing risk, ensuring safety, and ensuring stability.

We will assume that we are given a probability measure P on (Ω,F) and a real-
valued loss function ℓ on (Ω × U1 × · · · × UN) =: H.

Any choice γ = (γ1, . . . , γn) of the control strategy induces a probability measure
P γ on H. We define the performance J(γ) of a strategy as the expected loss, i.e.,

J(γ) = E
γ
[ℓ(ω, u

1
, . . . , u

N
)]

where ω is the primitive variable and ui is the control action of DM i.

In the intrinsic model, if the system has a control station that takes multiple actions
over time, it is modeled as a collection of DMs, one for each time instant.
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Example

Consider the following model of a system with two decision makers.

Ω = {ω1, ω2, ω3},

and action spaces
U

1
= {U(up), D(down)},

U2 = {L(left), R(right)},

with information fields:
J 1

= {∅, {ω1}, {ω2, ω3},Ω}

J 2
= {∅, {ω1, ω2}, {ω3},Ω}.

Hence, DM2 can’t distinguish ω2 from ω3; and DM2 can’t distinguish ω1 from
ω2.
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Example

Suppose the probability measure P is given by

P (ω1) = 0.3, P (ω2) = 0.3, P (ω3) = 0.4,

and the loss function ℓ(ω, u1, u2) is given by

u2

L R
u1 U 1 0

D 3 1
ω : ω1 ↔ 0.3

u2

L R
U 2 3
D 2 1
ω2 ↔ 0.3

u2

L R
U 1 2
D 0 2
ω3 ↔ 0.4

For the above model, the unique optimal control strategy is given by

γ
1,∗

(y
1
) =

{

U, y1 ∈ {ω1}

D, else
, γ2,∗(y2) =

{

R, y2 ∈ {ω1, ω2}

L, else
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Solutions to Teams

A solution to the generalized sequential decentralized stochastic control problem
is in general difficult.

Most of the work in the literature has concentrated on identifying solution techniques
for specific subclasses.

Typically, these subclasses are characterized on the basis of the information structure
of the system.

In this tutorial, we provide an overview of some of these techniques and highlight
the sources of difficulties.

8



Static and dynamic information structures

The simplest, and at first glance, the most critical, distinction is between static and
dynamic information structures.

An information structure is called static if the observation of all DMs depends only
on the primitive random variable (and not on the control actions of others).

Systems that don’t have static information structure are said to have dynamic
information structure.

In such systems, some DMs influence the observations of others through their
actions.
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Classical, quasiclassical and nonclassical information
structures

Centralized control systems are a special case of decentralized control systems.

The characterizing feature is centralization of information, i.e., any DM knows the
information available to all the DMs that acted before it, or formally, J i ⊆ J i+1 for
all i.

Such information structures are called classical.

Single-person stochastic control problems are typically classical problems.
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Classical, quasiclassical and nonclassical information
structures

A decentralized system is called quasiclassical or partially nested if the following
condition holds:

Whenever DM i can influence DM j, then DM j must know the observations of
DM i, or more formally, J i ⊆ J j.

This is an important sub-class: Such problems can be reduced to static problems.
We will discuss this explicitly in the context of Linear Quadratic Gaussian teams.

Such settings will also be shown to admit convex formulations for a class of problems.
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Classical, quasiclassical and nonclassical information
structures

Any information structure that is not classical or quasiclassical is called nonclassical.

These problems are difficult to analyze and they lack a systematic approach which
applies to all such problems.

In this tutorial, sources of this difficulty will be addressed together with some
solution techniques.
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Example: Decentralized systems admitting a state
space model

In a state space model, we assume that system has a state variable xt.

The initial state x1 is a random variable and the state evolves as

xt+1 = ft(xt, u
1
t , . . . , u

N
t ;w

0
t ) , t ∈ T ,

yi
t = gi

t(xt, w
i
t),

The information at station i at time t is

I
i
t = η

i
t(x[1,t], y[1,t], u[1,t−1],w[1,t]), (1)

where u = {u1, . . . , uN} and x[1,t] = {x1, . . . , xt}.
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Common Information Sharing Patterns

Some important information structures are

1. Complete information sharing: In complete information sharing, each DM has
access to present and past measurements and past actions of all DMs. Such a
system is equivalent to a centralized system.

I
i
t = {y[1,t], u[1,t−1]}.

2. Complete measurement sharing: In complete measurement sharing, each DM has
access to the present and past measurements of all DMs. Note that past control
actions are not shared.

I
i
t = {y[1,t]}.
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Examples

3. Delayed information sharing: In delayed information sharing, each DM has access
to n-step delayed measurements and control actions of all DMs.

Ii
t =

{

{yi
[t−n+1,t], u

i
[t−n+1,t−1]y[1,t−n], u[1,t−n]}, t > n

{yi
[1,t], u

i
[1,t−1]}, t ≤ n

(2)

4. Delayed measurement sharing: In delayed measurement sharing, each DM has
access to n-step delayed measurements of all DMs. Note that control actions are
not shared.

I
i
t =

{

{yi
[t−n+1,t], u

i
[1,t−1], y[1,t−n]}, t > n

{yi
[1,t], u

i
[1,t−1]}, t ≤ n

5. Delayed control sharing: In delayed control sharing, each DM has access to n-step
delayed control actions of all DMs. Note that measurements are not shared.

Ii
t =

{

{yi
[1,t], u

i
[t−n+1,t−1], u[1,t−n]}, t > n

{yi
[1,t], u

i
[1,t−1]}, t ≤ n
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Examples

6. Completely decentralized information: In a completely decentralized system, no
data is shared between the DMs.

I
i
t = {yi

[1,t], u
i
[1,t−1]}.

In all the structures above, each DM has perfect recall (PR).

A DM may only have access to its current observation, in which case the information
structure is

I
i
t = {yi

t}.
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The Cost (Loss) Function

To complete the description of the team problem, we have to specify the loss
function. We will assume that the loss function is of an additive form:

ℓ(x[1,T ], u[1,T ]) =
∑

t∈T

c(xt, ut) (3)

where each term in the summation is known as the incremental (or stagewise) loss.

The objective is to choose control laws γi
t such that ui

t = γi
t(I

i
t) so as to minimize

the expected loss.

In the sequel, we will denote the set of all measurable control laws γi
t under the

given information structure by Γi
t.
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Solutions to Static Teams: Convex Static Team
Problems

Let
J(γ) := E[c(ω, γ

1
(η

1
(ω)), . . . , γ

N
(η

N
(ω)))].

A policy γ∗ is person-by-person-optimal if for all k

J(γ
∗
) ≤ J(γ

∗1
, . . . , γ

∗(k−1)
, β, γ

∗(k+1)
, . . . ), β ∈ Γ

k
.

A policy γ∗ is optimal if

J(γ∗) ≤ J(γ), γ ∈ Γ = Γ1 × Γ2 × · · · × ΓN
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Solutions to Static Teams: Convex Static Team
Problems

It has been observed by [Radner’62] and [Krainak-Speyer-Marcus’82] that a static
team problem with a loss (or cost) function c(ω, u1, · · · , uN) which is

(i) continuously differentiable in the actions
(ii) convex in the actions

a person-by-person-optimal strategy is globally optimal.
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Sketch: Convex Static Team Problems [Radner’62] -
[Krainak-Speyer-Marcus’82]

Let γ∗ be person-by-person-optimal and γ be another finite-cost policy:

J(γ) − J(γ∗)

≥ lim
h→0

E[
c(ω, γ∗ + h(γ − γ∗)) − c(ω, γ∗ + h(γ − γ∗))

h
]

= E[lim
h→0

c(ω, γ∗ + h(γ − γ∗)) − c(ω, γ∗ + h(γ − γ∗))

h
]

= E[
∑

i

∇uic(ω, γ
∗
)|ui=γ∗(yi)]

= 0

Hence, γ∗ is optimal.
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Application: Static LQG Team Problems

Consider a two-controller system evolving in R
n with the following description: Let

x1 be Gaussian and
x2 = Ax1 + B1u1

1 + B2u2
1 + w1

y
1
1 = C

1
x1 + v

1
1, y

2
1 = C

2
x1 + v

2
1,

with w, v1, v2 zero-mean, i.i.d. disturbances. For ρ1, ρ2 > 0, let the goal be the
minimization of

J(γ1, γ2) = E

[

||x1||
2
2 + ρ1||u

1
1||

2
2 + ρ2||u

2
1||

2
2 + ||x2||

2
2

]

(4)

over the control policies of the form:

ui
t = µi

t(y
i
1), i = 1, 2
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Solutions to Static Teams: Convex Static Team
Problems

For this problem, the cost function is convex in the actions of the decision makers,
and it is continuously differentiable.

Linear policies are person by person optimal since linear policies adopted by the
other decision makers reduce the problem to a standard Linear Quadratic Gaussian
cost optimization problem with partial, Gaussian observations.

Hence, the solution to this problem is affine.

This remarkable observation allows one to show that optimal team policies are
affine.
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Reduction of Quasi-Classical Problems to Static
Problems

For partially observed LQG problem, [Ho-Chu’72] showed that affine control laws
are optimal.

The result relies on showing that an invertible linear transformation can convert
the partially nested LQG system into a static LQG system:

As an example, consider the following dynamic team with measurements:

yk = Ckξ +
∑

i:i→k

Diku
i,

where ξ is an exogenous random variable picked by nature, and i → k denotes the
precedence relation that the action of DM i affects the information of DM k and ui is
the action of DM i.
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Static Reduction of Quasi-Classical LQG Teams

If the information structure is quasi-classical, then

Ik = {yk, {Ii, i → k}}.

That is, DM k has access to the information available to all the signaling DMs. The
above original information structure IS can be converted to the following static information
structure

ỹ
k
=

{

C
k
ξ, {Ci

ξ, i → k}

}

,

provided that the policies adopted by the agents are deterministic .

The restriction of using only deterministic policies is without any loss of optimality:
With policies of all other agents fixed (possibly randomized) no agent can benefit from
randomized decisions for such team problems [Blackwell’64].
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Static Reduction of Sequential Dynamic Teams

[Witsenhausen’88] showed that any sequential dynamic team can be converted to
a static decentralized control system by an appropriate change of measures and cost
functions, provided that a mild conditional density condition holds.

This is a conceptually useful construction, as we discuss later.
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Non-Classical Settings

The above analysis is not applicable to stochastic dynamic team problems with
nonclassical information as we will see shortly.

As discussed above, nonclassical information structure (IS) arises if a Decision
Maker (DM) i’s action affects the information available to another DM j, who however
does not have access to the information available to DM i based on which her action
was constructed.

A more precise way of stating this is that the information of DM j is dependent
explicitly on the policy (decision rule, or control law) of DM i.
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Signaling

What makes a large number of problems possessing the nonclassical information
structure difficult is the fact that signaling is present:

Signaling is the policy of communication through control actions.

In this case, the control policies induce a probabilistic map (hence, a channel) from
the primitive random variable space to the observation space of the signaled decision
makers.

For the nonclassical case, the problem thus also features an information transmission
aspect, and the signaling decision maker’s objective also includes the design of an
optimal measurement channel.
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Introducing Probability into Information Structures

The characterizations due to Witsenhausen are independent of probability measures
on the system. Incorporating probability lets us expand the class of systems which are
effectively partially nested.

Stochastic nestedness [Yüksel’09] captures this: Let x,w1, w2 be independent
Gaussian variables.

y1 = x + w1 + w2, y2 = [x + w1, u1]

J(γ) = E[|x + u1 + u2|2 + |u1|2]

DM1 agent does not have an incentive to signal, since its private information is
not informative: Optimal policies are affine, even though the problem is not partially
nested.

This was extended in [Mahajan-Yüksel’10] to the Intrinsic Model.
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Expansion of Information Structures

Solution through Expansion of Information Structures consists of three steps:

1 Provide additional information to make the problem solvable. More information
does not degrade performance in a team.

2- Obtain a solution.

3- And show that the solution can be realized with the original information structure.

In the example provided, if we let

ỹ
2
= [x + w

1
, u

1
, y

1
]

The problem would be partially nested. The optimal solution would be realizable
with the original y2.

Further discussions in [Yüksel’09] [Mahajan-Yüksel’10].
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More on Signaling: Comparison of Information
Structures

How do we compare information structures?

Let x be a variable and y be observed through y = g(x, w) for some independent
variable w.

This measurement model induces a channel: Q(y ∈ S|x) = P (g(x, w) ∈ S|x).

Consider the following optimization problem where the controller has access to y.

J(P,Q) = inf
γ

∫

X×Y

c(x, γ(y))Q(dy|x)P (dx),
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A Concavity Property on the Space of Information
Structures

We first present the following concavity result [Yüksel-Linder’10].

The function

J(P,Q) = inf
γ∈Γ

∫

c(x, γ(y))PQ(dx, dy)

is concave in Q.

Hence, the information structure design or channel design is a non-convex problem.

Signaling leads to a non-convex problem.
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Comparison of Information Structures

Using the above, we can estbalish a comparison of experiments result due to D.
Blackwell (’55) and Le Cam (’64).

TQ1

x y 1 y 2

Figure 2: Q1 defines a better information structure than the composite
channel Q2 := Q1T .
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Comparison of Information Structures: Remarks

When X is finite, Blackwell showed that the above condition also has a converse:
For an information structure to be more informative, weak stochastic degradedness is
a necessary condition.

For more general X and Y, the converse result holds under technical conditions
on the stochastic kernels further technical conditions on the set of kernels [Le Cam’96]
[Boll’55].

These generalize garbling discussions of [Marshak-Radner’72].

The comparison argument applies also for multi-stage problems. [Yüksel-Başar’13].

The comparison result also applies for multi DM problems [Lehrer et al’10].

Further properties of information structures are available in [Yüksel-Linder’10].
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Adding Cost Dependency: Witsenhausen’s
Counterexample and the Generalized Gaussian test

channel

It is known that classical LQG team problems admit solutions which are linear.

[Witsenhausen’68] showed that when there are measurability and information constraints
leading to a non-classical information structure, this result is no longer true.

[Witsenhausen’68]: Even LQG problems may admits solutions which are non-
linear.

34



Witsenhausen’s Counterexample

u1u0

w1

x0

y0

x1 x2

y1µ0 µ1

y0 = x0, u0 = µ0(y0), x1 = x0 + u0,

y1 = x1 + w1, u1 = µ1(y1), x2 = x1 + u1.

The goal is to minimize the expected performance index for some k > 0

QW(x, u0, u1) = k(u0)
2 + x2

2
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Witsenhausen’s Counterexample

This is the celebrated Witsenhausen’s counterexample.

It is described by a linear system; all primitive variables are Gaussian.

Yet optimal team policy is non-linear [Witsenhausen’68].

Witsenhausen established that a solution exists ([Wu-Verdú’11] provided an alternative
proof using Transport Theory), and established that an optimal policy is non-linear.

Properties of optimal solutions have been discussed in [Wu-Verdú’11].

36



Witsenhausen’s Counterexample: Equivalent
Representation

Suppose x and w1 are two independent, zero-mean Gaussian random variables
with variance σ2 and 1. An equivalent representation is:

u0 = γ0(x), u1 = γ1(u0 + w).

QW(x, u0, u1) = k(u0 − x)
2
+ (u1 − u0)

2
, (5)

x
γ0

γ1

y u1u0

w1

Figure 3: Flow of information in Witsenhausen’s counterexample.
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Witsenhausen’s Counterexample and the Generalized
Gaussian test channel

Now consider a different choice for Q:

QTC(x, u0, u1) = k(u0)
2 + (u1 − x)2 , (6)

where again k > 0.

x
γ0

γ1

y u1u0

w1

Figure 4: Flow of information in Witsenhausen’s counterexample.
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Witsenhausen’s Counterexample and the Generalized
Gaussian test channel

The version of this problem where the soft constraint is replaced by a hard power
constraint, E[(u0)

2] ≤ k, is known as the Gaussian Test Channel (GTC).

In this context γ0 is the encoder and γ1 the decoder, where the latter’s optimal
choice is clearly the conditional mean of x given y, that is E[x|y].

The best encoder for the GTC can be shown to be linear (a scaled version of the
source output, x), which in turn leads to a linear optimal decoder.

The approach here is through information theoretic arguments [Goblick’65][Berger’71].
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Witsenhausen’s Counterexample and the Generalized
Gaussian test channel

Now, consider the more general version of (6):

QGTC(x, u0, u1) = k(u0)
2 + (u1 − x)2 + b0u0x , (7)

where b0 is a scalar. In this case, an optimal solution is linear [Bansal-Başar’87]. The
difference between (7) and Witsenhausen’s problem is that Q in the former has a
product term between the decision rules of the two agents while here it does not.

x
γ0

γ1

y u1u0

w1

Figure 5: Flow of information in Witsenhausen’s counterexample.
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Witsenhausen’s Counterexample and the Generalized
Gaussian test channel

Hence, it is not only the nonclassical nature of the information structure but also
the structure of the performance index that determines whether linear policies are
optimal in these quadratic dynamic decision problems with Gaussian statistics and
nonclassical information.

More on this aspect has been discussed in [Yüksel-Başar’13].
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Static Reduction of Witsenhausen’s Counterexample

[Witsenhausen’88] showed that it is generally possible to transform any sequential
team problem into a static team problem.

The static reduction of the Witsenhausen’s counterexample is a two controller
static team where the observations y1 and y2 of the two controllers are independent
zero-mean Gaussian random variables with variance σ2 and 1, respectively.

The control laws γ1 and γ2 are to be chosen to minimize

J(γ
1
, γ

2
) = E

[

(y
1
+ u

1 − u
2
)
2
+ (ku

1
)
2
e
(y1+u1)(2y2−y1−u1)/2]

The above static reduction clearly illustrates that the cost is not convex.
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Linear Policies may be optimal in min-max settings

In a class of quadratic cost minimization problems, one poses the problem not as
an expectation minimization but as a min-max optimization where nature acts as the
maximizer and the controllers act as the minimizers for cost functions of the form

inf
{γi}

sup
ω

J(γ, ω),

with J being a quadratic function, γi denoting controller policies and ω a disturbance
with norm constraints.

Linear policies are optimal for a large class of such settings in both encoder-
decoder design as well as controller design (see different contexts in [Başar’71] [Başar’85]
[Rotkowitz’06] [Gattami-Bernhardsson-Rantzer’12]).

The proof of such results typically use the fact that such min-max problems can
be converted to a quadratic optimization problem by a re-parametrization of the cost
function.
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Concluding Remarks

In the first part of this tutorial, we defined information structures and provided
various characterizations.

In particular, we reviewed Witsenhausen’s Intrinsic Model.

Solutions to Static and Dynamic Teams have been investigated.

Probability measure and cost dependency of information structures have been
discussed and relaxations to partially nested information structure have been obtained.

LQG problems have been discussed as a case study.

In the following talks, further solution approaches and various optimization problems
will be discussed.
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