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Abstract —
This paper studies sufficient conditions on informa-

tion rate and control for stability of remote LTI sys-
tems connected over noisy forward and reverse (feed-
back) channels. In particular we consider discrete
memoryless (DMC), Gaussian and erasure channels.
We study zero-delay, time-invariant coding and de-
coding policies with memoryless control. For Gaus-
sian channels we provide an achievable region with
the optimal linear memoryless policies, and for era-
sure channels we obtain sufficient packet loss proba-
bilities for stability. For DMCs, we deduce conditions
for source and channel codes and controllers leading
to an invariant probability density for the state with
a finite second moment. We provide a coding scheme
achieving stability. All these results reduce to known
ones if stochasticities are relaxed. Thus, the paper
provides a unified approach to quantization, informa-
tion rate, sampling and stability for linear networked
control systems.

I. Introduction

Research on the interaction of information and control has
been rather fruitful, impacting both information and control
communities. One problem in this context is the problem of
control over communication channels, for which various mod-
els for systems and channels have been studied in the recent
literature; see e.g. [5], [7], [9], [10] and the references therein.
Among these, several studies focused on noiseless systems with
time-invariant coders for which the main issue becomes an
invariant quantization; see [10], and [23]. Specifically, [10]
adopts a Lyapunov approach to stabilize a system and shows
that the coarsest quantizer achieving stability is logarithmic
and that the design is universal, i.e., it has the same base
for construction regardless of the sampling interval. We will
show that this property carries over to the stochastic systems
as well.

For noiseless channels, structures which are not strictly
time-invariant are more rate-efficient ([11], [6], [1], [3], [15],
[2]) because the transmitter and receiver can make the up-
dates in the encoding and decoding relying on the data re-
ceived and knowing that the data sent will make it to the other
party with no ambiguity. [16] studies the relationship between
information and disturbance rejection. [24] studies the feed-
back strategies in communication and control building on a
Bode-integral argument. For systems with noiseless feedback,
the concept of any-time decoding has been introduced in [8],
where the receiver can halt the process of decoding the sent
signal at any appropriate time. Unlike the any-time decoding

1Research supported by the NSF grant NSF CCR 00-85917.

concept of [8], our encoder and decoders here are not only
causal but also of zero-delay type [19], i.e., the encoder and
decoders encode and decode messages symbol by symbol, and
the decoder can only use the past and current received data to
generate the estimate. Our motivation for zero-delay coding
comes from the fact that in real-time encoding and control
the receiver needs that data immediately; for instance in real-
time voice over the Internet, UDP is more appropriate than
the TCP, for the same reason. Most of the studies mentioned
above have considered at least one noiseless channel connect-
ing the controller and the plant and have not touched on the
effects when both channels are unreliable. On noisy feedback
channels there have been few studies: [14] studies the Gaus-
sian channel case, with no encoding in the reverse channel in
the relaxation of the noiseless feedback, [21] studies optimal
control policies with packet losses in the feedback channel as
well as the forward one; and [22] studies communication with
a noisy feedback channel but in the context of estimation, not
of control.

In this paper we consider systems where both channels are
noisy discrete and memoryless, and with memoryless, time-
invariant policies. We focus on stabilizability, for this is a
necessary condition for the more comprehensive problem of
controllability of linear systems. Here we provide necessary
and sufficient rate and coding conditions on the forward and
the reverse channels needed to be able to asymptotically stabi-
lize a linear time invariant system. The conditions we provide
are tight in the sense that one cannot do any better by relaxing
the condition on any one of the channels; thus we generalize
in part the results in [6], [10], [7].

The paper is organized as follows. We first start with the
system model description and the precise problem formulation
in section II. We study discrete memoryless channels, the suf-
ficient rate and coding conditions, and a code construction
in section III. Section IV studies Gaussian channels and era-
sure channels. The paper ends with the concluding remarks
of section V.

II. Problem Formulation

We consider in this paper sampled version of an LTI
continuous-time system with the scalar dynamics

dxt = (ξxt + b′u′
t)dt + dBt, (1)

where Bt is the standard Brownian motion process, u′
t is the

(applied) control which is assumed to be piecewise constant
over intervals of length Ts, the initial state x0 is a second-
order random variable; ξ > 0, thus the system is unstable
without control. After sampling, with period Ts, we have the
discrete-time system

xt+1 = axt + bu′
t + dt (2)



where xt is the state at time t, {dt} is a zero-mean i.i.d.
Gaussian process. Here a = eǫTs , b = b′(eξTs − 1)/ξ and

E[d2
t ] = e2ξTs−1

2ξ
.

We study the rate conditions for the stability over noisy
forward and feedback channels. We refer to the channel car-
rying signal from the plant to the controller as the forward
channel and the channel carrying signal from the controller to
the plant as the reverse channel (see Fig. 1).

In our setup both the plant and the controller act as both
transmitters and receivers because of the closed-loop struc-
ture. We identify the forward source-channel encoder as a
mapping ps(zt|xt), xt ∈ R, zt ∈ Z, between the source out-
put and channel input. The forward channel is a memory-
less stochastic mapping between the channel input and out-
put, pc(yt|zt), yt ∈ Y, and the decoder is a mapping be-
tween the channel output, the information available at the
control, It−1, and the output, i.e., pd(x′

t|It−1, yt), x
′
t ∈ X ′,

and It = {It−1, yt, ut−1}. The control, ut ∈ U , is generated
using It. The reverse channel also has a source-channel en-
coder, p′

s(z
′
t|ut), z

′
t ∈ Z ′, channel mapping p′

c(y
′
t|z

′
t), y

′
t ∈ Y ′

,and a channel decoder p′
d(u

′
t|y

′
t), u

′
t ∈ U ′ (see Fig. 1). For

the DMC case, the source-coder is quantizer and the channel
encoder generates the bit stream for each of the corresponding
quantization symbol, thus generating the joint-source channel
encoder.
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Figure 1: Control over a discrete noisy channel.

For DMC’s we use the coding rate definition [13]

Rf =
log(|Mf |)

Nf

,

where Mf is the set of plant symbols and Nf is the codelength
and likewise for the reverse channel with the subscript changed
to r. For a Gaussian system we have the capacity as,

Cf =
1

2
log(1 +

Pf

σ2
wf

),

where σ2
wf

is the noise variance; and likewise for the reverse
channel.

Problem: Here we seek to obtain the set of achievable
forward and reverse rate pairs leading to a finite state variance:

{Rf , Rr : lim
T→∞

E[x2
T ] < ∞}.

We say the controller has memory of order m if the infor-
mation available to it at time t is

Im
t = {yt−m, . . . , yt; ut−max(m,1), . . . , ut−1}.

In case m = 0, we will have a memoryless controller; i.e.,
I0

t = yt, which we will study in detail. In this case we will

lump the forward source-channel encoder, the forward channel
and the decoder mappings as a single mapping p(x′|x) and
likewise the reverse source-channel encoder, reverse channel
and decoder mappings as p′(u′|u).

A quantizer Q is constructed by corresponding bins {Bi}
and their reconstruction levels qi such that ∀i, Q(x) = qi <=>
x ∈ Bi. We have, ∀i, qi ∈ Bi. For scalar quantization, x ∈ R
and Bi = (δi, δi+1], here {δi} are termed as “bin edges” and
w.l.o.g. we assume the monotonicity on bin edges: ∀i, δi <
δi+1. In this paper we consider “symmetric quantizers”, which
are defined as: If ∃ a quantization bin (δi, δi+1], where 0 <
δi < δi+1, then B−i = [−δi+1,−δ) is also a quantization bin.

We define the encodable set S ∈ R, as the set of elements
which are represented by some codeword; S :=

S

i
Bi. Sup-

pose the state is within the encodable set and is in the ith bin
of the quantizer. The source coding output at the plant sensor
will represent this state as qi and send the ith index over the
channel. After a joint mapping of the channel and the channel
decoder, the controller will receive the index i as index j with
probability p(j|i). The controller will apply its control over
index j, computing Q′

j -thus the controller decoder, controller
and encoder can be regarded as a single mapping- and send it
through the reverse channel, which would interpret this value
as Q′

l with probability p′(l|j), by a mapping through the re-
verse channel. Given that the state is in the ith bin, the plant
will receive the control Q′

l with probability
P

j
p′(l|j)p(j|i).

Thus, the applied control will be u′
t = Q′

l with probability
P

j
p′(l|j)p(j|i), the probability of the state being in the ith

bin is p(i) = p(x ∈ Bi).

While studying the stability of a Markovian system, an
appropriate method is to use drift conditions [20]; we will use
these conditions to first characterize and then construct our
state-encoders. For Gaussian and erasure systems (with an
uncountable code alphabet), however, since one does not need
to design a quantizer, simpler approaches will be taken.

III. Stabilizing regions for a DMC

We start by providing a necessity condition.

III.A A Necessity Condition

The following theorem [12] provides a necessity condition on
the rate requirements.

Theorem III.1 For the existence of an invariant density
with finite variance, channels should satify

min(Cf , Cr) ≥ log2(|a|),

where Cf and Cr are the forward and the reverse channel ca-
pacities.

We now study the conditions for the existence of a finite
second moment of the state for systems connected over DMCs.

III.B Stability through Drift Conditions

Consider symmetric quantizers studied before. Suppose a
time invariant decoding policy is used by the controller. Then,
we have [12].

Theorem III.2 Let S ⊂ X be a closed and bounded inter-
val around the origin, L < ∞, and let δi > 0, ∀i (positive
portion of the symmetric quantizer). Finally, let 1x∈S be the



indicator function for x being in S. Then, for a discrete chan-
nel, if the following condition holds for all bins

max(
X

l

X

j

p(j|i)p′(l|j)[aδi + bQ′
l]

2,

X

l

X

j

p(j|i)p′(l|j)[aδi+1 + bQ′
l]

2) − δ2
i

< −ǫδ2
i+1 + L1∈S (3)

then limt→∞ E[x2
t ] exists and is finite. The limit distribution

is independent of the initial distribution.

In case the channels are noiseless we obtain a logarithmic
quantizer which was, in a control context, first introduced in
[10], as we capture with ǫ = 0, L = 0.

Proposition III.1 Let the forward and the reverse channels
be noiseless. Consider a symmetric quantizer. For a scalar
system state to satisfy a drift towards the origin, for the non-
negative quantizer values quantizer bin edges have to satisfy

δi+1 ≤ (1 + 2/|a|)δi (4)

We note that for an arbitrary channel, there does not al-
ways exist an invariant density; for instance, for the degener-
ate case where the channel output is a fixed bin with proba-
bility one, there does not exist a drift achieving control and
quantization vector. An important observation in the devel-
opment of this paper is the following [12]:

Proposition III.2 For a linear system with |a| > 1 with
channel transitions forming an irreducible Markov chain, if
the encodable set is bounded, the chain is transient.

This is an important result for it shows that for the noisy
discrete channel case one needs to encode the entire state space
and thus, can not use a time invariant fixed length encoding
to obtain a finite expected code length, since in that case
the codelength would just be the logarithm of the number of
symbols, which is unbounded.

It is well known that in order to avoid excessive delays ar-
bitrarily long block codes cannot be used in control systems.
Although long block codes improve the channel transmission
quality, an increment in the sampling period makes the un-
stable system more difficult to control. For an LTI system,
the effective system matrix will grow exponentially with the
sampling period and the uncertainty in the system, measured
by the entropy, will grow linearly [2]. The average probability
of error decreases exponentially with the length of the code,
and the explicit dependence on the length is characterized by
the error exponents [13]. In this section we will particularly be
interested in pairwise errors, that is the probability of error
between two different codewords (i.e., p(m|m′), m 6= m′).
Bhattacharyya distance ([13], Chapter 12), a coding theoretic
characterization for the pairwise errors, is lower bounded by
the Gilbert bound, i.e. for any two codewords m, m′,

d(m, m′) ≥ N [EL(R) − ǫ], m 6= m′,

where R is the coding rate. What this means is that the
probability of error between any two (different) codewords

(p(m|m′)) will be upper bounded by e−NE
f
L

(Rf )+o(N), where
o(n)/n converges to zero as N grows unbounded. Here EL(.)
is the Gilbert lower bound on the error exponent, which gives

an upper bound on the probability of errors. Let us fix the
forward and reverse channel rates, Rf = log2(Mf )/Nf and
Rr = log2(Mr)/Nr. Thus the error exponent function will
not change as Nf and Nr increase, and furthermore the in-
crease in Nf , Nr would lead to a higher number of levels in the
quantizer and higher number of controller symbols. We also
penalize the codelengths in the forward and reverse channels
by a linear term in the sampling period; it thus takes longer
to send more bits; reliability competes with delay.

Note that the control will only be a function of what it
will estimate, it will be at most a one-to-one mapping, thus
the number of symbols from the controller to the plant need
not be more than the number of symbols it receives from the
sensors. We first consider the case where the system (2) is
noiseless. We later include noise for a more general setup.

III.C Asymptotic Stability

The following theorem shows that if the controller waits long
enough, stability can be achieved.

Theorem III.3 Suppose a scalar continuous-time system
ẋt = ξxt+b′u′

t, with a bounded initial state x0, is remotely con-
trolled. Let the sampling period be a function of block lengths:
Ts = αNf + βNr; α, β be possibly depending on the code-
lengths, and the number of symbols in the state and control
be K = |X ′| = |U| = |U ′|. Let the rates Rf = log2(K)/Nf

and Rr = log2(K)/Nr be kept constant as Nf , Nr grow. If the
system and channel parameters satisfy

(2ξα − Ef
L(Rf ))Nf + (2ξβNr) < 0

(2ξβ − Er
L(Rf ))Nr + (2ξαNf ) < 0

K = eNf Rf = eNrRr > eξ(αNf +βNr), (5)

then increasing the sampling period (obtaining additional mea-
surements) decreases a bound on the distortion monotonically.
This bound is asymptotically tight and converges to zero.

We have the following remarks:

1. If there is no forward or reverse channel noise, the con-
dition is the well-studied quantization based condition
of stability: K ≥ |a|.

2. Not all information rates are possible. In case there is
no noise in the reverse channel for instance, we will need

Ef
L(log2(K)/Nf ) > 2 log2(|a|),

which is the same as

log2(K) < NE−1
f (2 log2(|a|)),

but also we need log2(K) > log2(|a|). The solution set
can be empty. Note that this resembles the discussion
in [7] with regard to the any-time capacity constraint:
Canytime(2 log2(|a|)) > log2(|a|).

3. Theorem III.3 shows that the error exponents being pos-
itive (which is the case when rate is less than the capac-
ity R < C) does not directly lead to stability (as was
observed by Sahai [8]), and there needs to be a posi-
tive lower bound on the exponent. However, if there is
no penalty on the arbitrarily long codelengths through
the sampling period, say if α = ts/2N,β = ts/2M , for
some constant ts, then the classical information theo-
retical results are sufficient; it suffices to have a positive
error exponent to achieve stability in the system, which
would be the case so long as Rf < Cf and Rr < Cr,
provided Nf , Nr are sufficiently large.



Thus the achievable rates satisfy (Fig. 2 for α = β = 1):

1

Nf

ξ(αNf + βNr) < Rf < (Ef
L)−1([2ξα] + 2ξβNr/Nf )

1

Nr

ξ(αNf + βNr) < Rr < (Er
L)−1([2ξα]Nf/Nr + 2ξβ)
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Figure 2: Achievable rates over discrete channels, the

area above the curve is achievable. The area below the

perpendicular lines is not achievable.

III.D Asymptotic stability with delay

restricted codes

We now consider the original system (2) driven by i.i.d.
noise, which is a more realistic scheme, where the sampling
period is finite, the system is noisy and the amount of data
to be sent over a sampling period is finite. In this case the
asymptotic analysis becomes inapplicable, and we are forced
to obtain a finite design with finite length codes, in a statistical
sense.

We know from Proposition III.2 that the encodable set has
to be unbounded, and we need to represent this with a finite
(in an expectation sense) number of codewords. We will in-
deed achieve this. In doing so, we will introduce a new coding
scheme, where we will transmit the coset of the code and send
the particular bin by an additional channel which is noisy as
well. We quantify the requirements needed by this channel.

Suppose we have K = 2Nf Rf symbols that we can transmit
during each time stage. We will partition the entire state
space into bins and group K adjacent elements into one larger
bin, indexed by I, and represent them by a single channel
codebook. We refer to these ensemble of bins by a Code Bin.
Hence, a total of 2Nf Rf codewords are used to represent the
entire state space (see Figure 3). Thus we have,

CodeBin(I) = {x : δINf Rf
≤ x < δ(I+1)Nf Rf

}

We denote the bin indices by δnI+i, which means the edge
belongs to code bin I and is represented by the ith channel
codeword. We say the source code is in mode I, if the state
is in Code Bin I (see Figure 4). The reconstruction value
of each bin is assumed to be the midpoint, such that Qi =
1/2(δi + δi+1). We define pm(J |I) as the probability of error
of CodeBin (mode of the quantizer) transmission from mode
I to mode J through the side channel. This means the mode
is errorenously transmitted from the plant to the controller if
J 6= I. Likewise for the feedback channel we have pm′

(L|J)
as the side channel mapping.

Code Bin 1 Code Bin 2

0

ABC D E F G A B C D E

Figure 3: Illustration of the binning approach to the joint

source channel code; the symbols in a given Code Bin are

represented by the same channel code -letters A, B, C,

. . . - ; the mode symbol -1,2,3 . . . -is carried by the side

channel.
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Theorem III.4 Suppose the scalar continuous-time system
dxt = (ξxt + b′u′

t)dt + dBt, is remotely controlled. Let Ts

be a sampling period which is function of block lengths: Ts =
αNf +βNr, α, β be possibly depending on the codelengths, and
the number of symbols in the state and control be K = |X ′| =
|U| = |U ′|. Suppose the forward and reverse channel codes are
of Nf and Nr bits long, and let the rates be Rf = log2(K)/Nf

and Rr = log2(K)/Nr. Define T (γ, pm, I) as

X

L,L6=I

X

J

P m′

(L|J)P m(J |I)4γ2γ2 max(0,Nf Rf (|L|−|I|))

U(γ, I) = γ2
X

L

X

J

P m′

(L|J)P m(J |I)γ2max(0,Nf Rf (|L|−|I|+1))

Z = [e−Nf E
f
L

(Rf )−NrEr
L(Rr)2Nf Rf +e−Nf E

f
L

(Rf )+e−NrEr
L(Rr)]

If for some γ > 1 the forward, reverse and side channels sat-
isfy the following

lim I→∞U(γ, I) =: Ū(γ) < ∞

lim I→∞T (γ, pm, I) =: T (γ, pm) < 1

γ < 1 + 2(e−ξ)αNf +βNr

.
q

[(1 − ǫ) − 4Z2Nf Rf Ū(γ) − T (γ, pm)], (6)

then drift conditions hold and there exists a coding scheme
leading to a finite second moment. The source coder will be a
symmetric logarithmic quantizer with expansion ratio γ, i.e.,
|δi+1| < γ|δi|.

III.E On the necessity of the Side Channel

One might not need the side channel for the forward chan-
nel. The conceptual idea is based on the Slepian-Wolf coding
theorem, which was applied in [4] as uniform binning in a



decentralized linear system (see also the recent study [17]).
We have studied this in [12], with a discussion on the reverse
channel, which requires a different treatment.

IV. Gaussian and Erasure Channels

IV.A Stabilizing Rates over Gaussian Channels

We now study Gaussian channels. For Gaussian channels
we associate power constraints with the encoder outputs, Pf

and Pr, for the forward and the reverse channels, respectively
(Fig. 5).
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Figure 5: Control over Gaussian channels, the noise terms

are wf and w
′

r.

For Gaussian channels, one does not face the difficulties
of explicitly using a finite codelength, for X ′ is the entire
real line, and the improbable events are already sent out
with higher magnitude signals, whose contribution to the ex-
pected power is limited; this is the main difficulty one faces in
the design of variable length channel codes in a control con-
text. The impropable events ought to be represented by longer
codelengths to avoid transience. For Gaussian channels, one
does not need to use drift analysis either since one can obtain
achievable rate regions by adopting linear policies. Below we
obtain the optimal linear memoryless encoder and decoders
for the minimization of the steady-state variance.

Theorem IV.1 Let the forward and the reverse channels
have capacities Cf and Cr, respectively. The optimal mem-
oryless linear policies for the minimization of the steady state
variance are:

zt = f(xt) =
p

Pfxt/||xt||

z′
t = f ′(zt + wf

t ) = [
p

Pf/(Pf + σf
w

2)](zt + wf
t )

u′
t = h(y′

t) = −a
p

PfPr

»

||xt||/[

q

Pf + σf
w

2(Pr + σr
w

2)]

–

y′
t

where y′
t = z′

t + wr
t and ||xt|| =

p

E[x2
t ]. If the forward and

the reverse channels satisfy:

2−2Cf + 2−2Cr − 2−2Cf−2Cr < 1/a2, (7)

then the steady state variance is finite.

Proof: We first have

E[x2
t+1] = [(a + ρηfηr)

2 + ρ2η2
fη2

rσ2
w/Pf

+ρ2η2
fη2

rσ
′2
w ]E[x2

t ] + E[d2
t ], (8)

where ρ is a scaling term and

ηf = Pf/(Pf + σ2
w),

likewise for ηr. The coefficients are then optimized by the
selection of the gain terms leading to the smallest steady-state
variance. Optimal gain ρ turns out to be −a, as to be expected
by intuition. Upon recognizing the signal to noise ratio and
capacity in ηf , ηr, one obtains the given result. ⋄

Remark. [14] studied Gaussian channels in the context of
relaxation of the ’equimemory’ condition. In [14] control is
not encoded and by optimizing over the controller gain it is
proven that the rate in the reverse channel does not improve
the performance after a threshold value. In our case, however,
the control is encoded as well, and an increment in power
strictly improves the rate restrictions for the forward channel.
Note that if one encodes the control, the problem is that of
an information transmission problem. If there is no encoding,
then control is applied as it is received and there exists an
optimal value for the control power. ⋄.

We now plot the achievable (sufficient) and the necessary
rate regions (for Gaussian channels) in Fig 6.
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Gaussian channels. The area above the convex curve is

achievable by linear memoryless policies, the areas out-

side the perpendicular edges are not achievable by any

scheme; in the figure we have picked a = 4.5.

IV.B Stabilizing Loss Probabilities

Suppose we have erasure forward and reverse channels
which lose packets with probabilities pf and pr, respectively.
Consider the case where the packets can be sent without a
need of quantization, i.e., the erasure channel codebook set is
the real line (thus the capacity is indeed infinite). In this case
we have the following result.

Proposition IV.1 Consider the unstable plant in (2). The
quantity limt→∞ E[x2

t ] is finite, if the forward and the reverse
channel packet loss probabilities satisfy:

pf + pr − pfpr < 1/a2. (9)

Proof: We again consider memoryless policies. We will have
with probability (1 − pf )(1 − pr)

xt+1 = axt − b(a/b)xt + dt.

If there is a loss in the forward channel as well as the reverse
channel, zero control is applied (as a consequence of the mem-
oryless policy). Then the evolution of the second moment will
be

E[x2
t+1] = [1 − (1 − pf )(1 − pr)]a

2E[x2
t ] + E[d2

t ] (10)



This concludes the proof. ⋄
Remark Note the resemblance of (9) with what was ob-

tained in [21] as a sufficient condition on stabilizability over
UDP protocols with full observations in case of a successful
transmission. One can compare this result with that of TCP
to conclude that there is a loss due to the absence of the
noiseless feedback. In case of TCP what we needed there was
max{pf , pr}a

2 < 1. ⋄

V. Conclusion and Future Work

In this paper, we have analyzed control systems where feed-
back loops are closed over noisy channels. We studied time-
invariant encoding policies and memoryless control. For
DMCs, we used negative stochastic drift conditions towards
a small set around the origin and we provided rate condi-
tions for achieving this objective. We also studied the inter-
play between information rate, channel error exponents and
the sampling rate. We provided rate conditions for Gaussian
channels, with optimal linear memoryless policies. The packet
loss probability pairs tolerable by the system connected over a
communication network was also studied. The unifying result
that appears to different channels is that there is an additional
price to be paid if there is unreliability in the reverse channel
as well. The paper also shows that using memoryless policies
is not too bad, for the achievable rate regions are not too far
off the unachievable ones. We provided a framework to encode
the state-space for dynamic systems.

Here we have used memoryless schemes. One future direc-
tion for research would be to quantify the improvement due
to use of memory in the controller.
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