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On the Capacity of Memoryless Finite-State
Multiple-Access Channels With Asymmetric State

Information at the Encoders
Giacomo Como and Serdar Yüksel

Abstract—A single-letter characterization is provided for the
capacity region of finite-state multiple-access channels, when the
channel state process is an independent and identically distributed
sequence, the transmitters have access to partial (quantized) state
information, and complete channel state information is available
at the receiver. The partial channel state information is assumed
to be asymmetric at the encoders. As a main contribution, a tight
converse coding theorem is presented. The difficulties associated
with the case when the channel state has memory are discussed
and connections to decentralized stochastic control theory are
presented.

Index Terms—Asymmetric channel state information, decentral-
ized stochastic control, multiple-access channel, nonnested infor-
mation structure.

I. INTRODUCTION AND LITERATURE REVIEW

W IRELESS communication channels and Internet type
networks are examples of channels where the channel

characteristics are time-varying. In wireless channels, the mo-
bility of users and changes in landscape as well as interference
may lead to temporal variations in the channel quality. In net-
work applications, user demand and node failure may affect the
channel reliability. Such channel variation models may include
fast fading and slow fading; in fast fading, the channel state is
assumed to be changing for each use of the channel. On the other
hand, in slow fading, the channel is assumed to be constant for
each finite block length.

In such problems, the channel state can be transmitted to the
encoders either explicitly, or through output feedback. Typically
the feedback is not perfect, that is the encoder has only par-
tial information regarding the state or the output variables. The
present paper studies a particular case, finite-state multiple-ac-
cess channels (MACs), where partial channel state information
(CSI) is provided to the encoders causally. What makes such
setup particularly interesting is the fact that the partial CSI avail-
able to the two transmitters is in general asymmetric, i.e., none
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of the transmitters’ CSI contains the CSI available to the other
one. On the other hand, we assume that the receiver has access
to perfect state information.

A single-letter characterization of the capacity region is pro-
vided for the case of independent and identically distributed
(i.i.d.) channel state sequences. As we shall review shortly, re-
sults in the literature have already provided achievability results
for such problems. The main contribution of this paper con-
sists in providing a tight converse theorem. Our proof involves
showing that restricting to encoders using only the quantized
CSI on the current state does not cause any loss of optimality
with respect to the most general class of admissible encoders
using all the quantized CSI causally observed until a given time.

The problem at hand can be thought of as a decentralized sto-
chastic control problem. We shall elaborate on this connection in
the concluding section, where we shall also discuss in what our
arguments fail when trying to extend them to a proof of the con-
verse theorem for finite-state MACs with memory, and asym-
metric CSI at the transmitters.

Let us now present a brief literature review. Capacity with
partial channel state information at the transmitter is related to
the problem of coding with unequal side information at the en-
coder and the decoder. The capacity of memoryless channels,
with various cases of state information being available at nei-
ther, either or both the transmitter and receiver, has been studied
in [13] and [7]. Reference [14] develops a stochastic control
framework for the computation of the capacity of channels with
memory and complete noiseless output feedback via the prop-
erties of the directed mutual information. Reference [8] con-
siders fading channels with perfect channel state information at
the transmitter, and shows that with instantaneous and perfect
state information, the transmitter can adjust the data rates for
each channel state to maximize the average transmission rate.
Viswanathan [17] relaxes this assumption of perfect instanta-
neous state information, and studies the capacity of Markovian
channels with delayed information. Reference [4] studies the ca-
pacity of Markov channels with perfect causal state information.
The capacity of Markovian, finite-state channels with quantized
state information available at the transmitter is studied in [20].

The works most closely related to ours are [6] and [9]. In [6],
the capacity of general finite-state MACs with different levels
of causal CSI at the transmitters is characterized in terms of
multiletter formulas. Moreover, single-letter characterizations
are provided for the capacity of finite-state MACs when the
decoder has perfect CSI and the encoders are restricted to use
only a finite window of, possibly limited, CSI; the capacity re-
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Fig. 1. Finite-state multiple-access channel with asymmetric partial state in-
formation at the transmitters.

gion without any such restriction is recovered in the limit of
large window size. Reference [9] develops a general framework
for approximating, and possibly characterizing, the capacity of
channels with causal, and noncausal CSI: in particular, The-
orem 4 therein provides a single-letter characterization of the
capacity region of a MAC with independent CSI at the trans-
mitters. With respect to [6] and [9], the present paper considers
the somewhat simpler case of a MAC with i.i.d. state, where
the encoders have causal, asymmetric, partial CSI, which is ob-
tained through fixed quantizers acting componentwise. In con-
trast to [6], a single-letter expression for the capacity region is
obtained in this case without any finite window restriction on
the CSI available to the transmitters, while, differently from [9],
the CSI available to the transmitters is not assumed to be inde-
pendent. Recent related work also includes [11], providing an
infinite-dimensional characterization for the capacity region for
Multiple Access Channels with feedback, and [3], studying the
case of MAC channels where the encoders have access to coded
noncausal state information.

The rest of the paper is organized as follows. In Section II a
formal statement of the problem and the main results are pre-
sented, consisting in a single-letter characterization of the ca-
pacity region of finite-state MACs with i.i.d. state. Section III
contains the proof of achievability of the capacity region, while
Section IV presents a proof of the converse coding theorem. Fi-
nally, in Section V, we discuss the issues arising when trying to
generalize our arguments to the memory case, and present some
final remarks on the connections of this problem with the decen-
tralized stochastic control literature.

II. CAPACITY OF I.I.D. FINITE-STATE MAC WITH ASYMMETRIC

PARTIAL CSI

In the following, we shall present some notation, before for-
mally stating the problem. For a vector , and a positive integer

will denote the -th entry of , while will
denote the vector of the first entries of . Following a common
convention, capital letters will be used to denote random vari-
ables (r.v.s), and small letters denote particular realizations. We
shall use the standard notation , and (respectively

, and ) for the (conditional) entropy and
mutual information of r.v.s. With a slight abuse of notation, for

, we shall write for the entropy of . For a
finite set will denote the simplex of probability distri-
butions over . Finally, for a positive integer , we shall denote
by the set of -strings of length smaller
than .1

We shall consider a finite-state MAC with two transmitters,
indexed by , and one receiver. Transmitter aims
at reliably communicating a message , uniformly distributed
over some finite message set , to the receiver. The two mes-
sages and are assumed to be mutually independent. We
shall use the notation for the vector of the two
messages.

The channel state process is modeled by a sequence
of independent, identically distributed

(i.i.d.) r.v.s, taking values in some finite-state space , and in-
dependent from ; the probability distribution of any is de-
noted by . The two encoders have access to causal,
partial state information: at each time , encoder observes

, where is a quantizer modeling
the imperfection in the state information. We shall denote by

the vector of quantized state observations,
taking values in . The channel input of encoder

at time , takes values in a finite set , and is assumed
to be a function of the locally available information .

The symbol will be used for the vector of
the two channel inputs at time , taking values in .
The channel output at time , takes values in a finite set ;
its conditional distribution satisfies

(1)

where, for any , and is an
output probability distribution. Finally, the decoder is assumed
to have access to perfect causal state information (which may
be known causally or noncausally); the estimated message pair
will be denoted by .

We now present the class of transmission systems.

Definition 1: For a rate pair , a block-length
, and a target error probability , an -coding

scheme consists of two sequences of functions

and a decoding function

such that, for :
• ;
• ;

• ;
• .
We now proceed with the characterization of the capacity

region.

1This includes the empty string, conventionally assumed to be the only ele-
ment of � .
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Definition 2: A rate pair is achievable if, for all
, there exists, for some , an -coding scheme.

The capacity region of the finite-state MAC is the closure of the
set of all achievable rate pairs.

We now introduce what we call memoryless stationary team
policies and their associated rate regions.

Definition 3: A memoryless stationary team policy is a family

(2)

of probability distributions on the two channel input sets con-
ditioned on the quantized observation of each transmitter. For
every memoryless stationary team policy will denote
the region of all rate pairs satisfying

(3)

where , and , are r.v.s taking values in
, and , respectively, and whose joint probability distribution

factorizes as

(4)

We can now state the main result of the paper.

Theorem 4: The achievable rate region is given by

the closure of the convex hull of the rate regions associated to
all possible memoryless stationary team policies as in (2).
In Section III we shall prove the direct part of Theorem 4,
namely that every rate pair is achievable. In
Section IV we shall prove the converse part, i.e., that no rate
pair is achievable.

III. ACHIEVABILITY OF THE CAPACITY REGION

The result on achievability is known, and follows, e.g., from
[6]. For convenience, we briefly sketch a different approach, as
suggested at the beginning of [9Sect. VI]. The main idea con-
sists in considering an equivalent MAC having as input map-
pings form the CSI information available at the transmitters to
the original MAC’s input. Specifically, one considers an equiv-
alent memoryless MAC having output space coin-
ciding with the product of the state and output space of the orig-
inal MAC, input spaces , for ,
and transition probabilities

where . Then, a standard arguments shows that the
rate region

(5)

is achievable on this MAC, where and are
random variables whose joint distribution factorizes as

(6)

for some , and . Now, one can restrict
himself to choosing probability distributions in

with the product structure

(7)

where , and is some memoryless stationary team
policy, as in (2). Then, to any triple of r.v.s , with
joint distribution as in (6), one can naturally associate random
variables , and ,
whose joint probability distribution satisfies (4). Moreover, it
can be readily verified that

(8)

Hence, if a rate pair belongs to the rate re-
gion associated to some memoryless stationary team
policy (i.e., if it satisfies (3)), then satisfies (5) for the
product probability distributions defined by (7). This
in turn implies that the rate pair is achievable on the original
finite-state MAC . The proof of achievability of the capacity
region then follows from a standard time-sharing
principle (see, e.g., [5, Lemma 2.2, p.272]).

IV. CONVERSE TO THE CODING THEOREM

In this section, we shall prove that no rate outside
is achievable. Lemma 5 shows that any achievable

rate pair can be approximated by convex combinations of
(conditional) mutual information terms. For , define

(9)

and observe that

(10)

For every , and , define

(11)

Clearly, , and

(12)
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Lemma 5: For a rate pair , a block-length ,
and a constant , assume that there exists a

-code. Then,

(13)

(14)

(15)

Proof: By Fano’s inequality we have the following esti-
mate of the residual uncertainty on the messages given the full
decoder’s observation

(16)

For , we consider the conditional mutual information
term

and observe that

(17)

since the initial state is independent of the message pair ,
and the final state is conditionally independent of given

. On the other hand, using the conditional indepen-
dence of from given , one gets

(18)

where the above inequality follows from the fact that
, since removing the conditioning

does not decrease the entropy, while
, as is conditionally independent from

given , due to the absence of output feedback. Since
forms a Markov chain, the data pro-

cessing inequality implies that

(19)

By combining (16), (17), (18), and (19), we then get

(20)

Moreover, observe that

where . Substituting into (20)
yields (13).

Analogously, let us focus on encoder : by Fano’s inequality,
we have that

(21)

For , define

and observe that

(22)

where the last inequality follows from the independence be-
tween , and , and the fact that removing the condi-
tioning does not decrease the entropy. Now, we have

(23)

where the inequality above follows from the fact that
since re-

moving the conditioning does not decrease the entropy, and
that due to absence
of output feedback. Observe that, since, conditioned on and

(hence, on ), forms a Markov chain,
the data processing inequality implies that

(24)

By combining (21), (22), (23), and (24), one gets

which proves (14).
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In the same way, by reversing the roles of encoder and ,
one obtains (15).

For , let us fix some string , and focus
our attention on the conditional mutual information terms

,

and , appearing in the right-
most sides of (13), (14), and (15), respectively. Clearly, the
three of these quantities depend only on the joint conditional
distribution of current channel state , input , and output

, given the past state realization . Hence, the key
step now consists in showing that

(25)

factorizes as in (4). This is proved in Lemma 6 below.
For , and , let us consider the set

,

and the probability distribution ,

Lemma 6: For every ,
and ,

(26)

Proof: First, observe that

(27)

where . The former of
the equalities in (27) follows from (1), while the latter is implied
by the assumption that the channel state sequence is i.i.d.

Now, recall that, for , the current input satisfies
. For , let
. Then,

(28)

the second inequality above following from the mutual indepen-
dence of , and . The claim now follows from (27)
and (28).

Let us now fix an achievable rate pair . By
choosing -codes for arbitrarily small , the in-

equalities (13), (14), and (15), together with (10) and (12), imply
that can be approximated by convex combinations of
rate pairs (indexed by ) satisfying (3) for joint state-
input-output distributions as in (25). Hence, any achievable rate
pair belongs to .

Remark 1: For the validity of the arguments above, two crit-
ical steps were (27), where the hypothesis of i.i.d. channel state
sequence has been used, and (28), which only relies on the mu-
tual independence of and , this being a consequence of
the assumption of absence of intersymbol interference. In par-
ticular, the key point in (27) is the fact that the past state real-
ization appears in only and not in .

Remark 2: For the validity of the arguments above, it is crit-
ical that the receiver observes the channel state. More in gen-
eral, it would suffice that the state information available at the
decoder contains the one available at the two transmitters. In this
way, the decoder does not need to estimate the coding policies
used in a decentralized time-sharing.

V. EXTENSIONS TO CHANNELS WITH MEMORY AND

CONCLUDING REMARKS

The present paper has dealt with the problem of reliable
transmission over finite-state multiple-access channels with
asymmetric, partial channel state information at the encoders.
A single-letter characterization of the capacity region has
been provided in the special case when the channel state is a
sequence of independent and identically distributed random
variables.

It is worth commenting to which extent the results above can
be generalized to channels with memory. Let us consider the
case when the channel state sequence forms
a Markov chain with transition probabilities

which are stationary and satisfy the
strongly mixing condition for all .
Further, assume that there is no intersymbol interference, i.e.,

is independent from the message , and
that the state process is observed through quantized observations

, as discussed earlier.
For the generation of optimal policies in a multiperson opti-

mization problem, whenever a dynamic programming recursion
via the construction of a Markov Chain with a fixed state space
is possible (see [19] for a review of information structures in de-
centralized control), the optimization problem is computation-
ally feasible and the problem is said to be tractable. In a large
class of decentralized control problems, however, one faces in-
tractable optimization problems. Let us elaborate on this further.

In team decision problems, one may assume that there is an
a priori agreement among the decentralized decision makers on
who will do what, when the random variables take place. This
approach is based on Witsenhausen’s equivalent model for dis-
crete stochastic control [18], and makes the point that, indeed,
all dynamic team problems are essentially static, with a much
larger state space.

In the case of finite-state multiple-access channels with in-
dependent and identically distributed state sequences, by first
showing that the past information is irrelevant, we observed that
we could limit the memory space on which the dynamic opti-
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mization is performed. This is because, as observed in Remark
1, in the rightmost side of (27) the past state realization affects
only the control , but not the current state distribution

. In contrast, when the state sequence is a Markov chain,
the past state realization does affect both the control
as well as the current state distribution . It is
exactly such a joint dependence which prevents the proof pre-
sented here to be generalized to the Markov case.

Let us have a brief discussion for the case where there is
only one transmitter. In this case, the conditional probability
distribution of the state given the observation history,

, can be shown to be a sufficient
statistic, i.e., the optimal coding policy can be shown to de-
pend on it only. As a consequence, the optimization problem is
tractable. Such a setting was studied in [20], where the following
single-letter characterization was obtained for the capacity of fi-
nite-state single-user channels with quantized state observation
at the transmitter and full state observation at the receiver:

where the supremization runs over conditional input distribu-
tions , and where
denotes the asymptotic joint distribution of the state and its
estimate , existence and uniqueness of which are ensured by
the strong mixing condition.

For finite-state multiple-access channels with memory, a sim-
ilar approach can successfully be undertaken only if the state ob-
servation is symmetric, namely if . Indeed, in this case,
the conditional state estimation

can be shown to be a sufficient statistic,
and a single-letter characterization of the capacity region can be
proved.

However, for the general case when the channel state se-
quence has memory and the state observation is asymmetric
(i.e., ), the construction of a Markov chain (which
would not incur a loss in performance) is not straightforward.
The conditional measure on the channel state is no longer a
sufficient statistic: In particular, if one adopts a team decision
based approach, where there is a fictitious centralized decision
maker, this decision maker should make decisions for all the
possible memory realizations, that is the policy is to map the
variables to decentrally, and the
memory cannot be truncated, as every additional bit is essen-
tial in the construction of an equivalent Markov chain to which
the Markov Decision Dynamic Program can be applied; both
for the prediction on the channel state as well as the belief of
the coders on each other’s memory. Let us also elaborate a dis-
cussion in view of common knowledge of Aumann [1]: Infor-
mation between two decision makers is common knowledge if
it is measurable with respect to the sigma-fields generated by
both of the local information variables at the decision makers. It
is not usual in practical applications that all the local informa-
tion is common knowledge. In such scenarios, one approach is
to have the decision makers compute the conditional probability
measures for the exogenous random variables and the actions of

other decision makers for generating their optimal actions. For
example, in the context of our problem in the paper, if we look
for such person-by-person optimal policies, a policy of one of
the encoders (say Encoder ) which uses the past will force the
other encoder (Encoder ) to also use the past to second-guess
the action of Encoder , which requires the use of a policy with
memory. Thus, adopting a person-by-person policy does not
lead to useful structural results, in our context.

We instead adopted Witsenhausen’s equivalent model to gen-
erate team policies, as also elaborated in [19], by having the
encoders agree on which policies to adopt before random vari-
ables are realized. The approach in our paper showed that we
can obtain a direct result when the channel state sequence is
memoryless. However, when the channel state has memory, the
past information provides useful information which is impor-
tant for estimating the future channel states. As such, we cannot
avoid the use of the information on the past channel state re-
alizations. If one is to construct an equivalent state based on
which coding policies are generated, the equivalent state needs
to keep growing with time: The discussion in [6] provides such
a block-level characterization and it seems we cannot go beyond
this due to the nontractability of the optimization problem. We
note that if the encoders can exchange their past observations
with a fixed delay, if they can exchange their observations peri-
odically, or if they can exchange their beliefs at every time stage,
then the optimization problem will be tractable.

One question of important practical interest is the following:
If the channel transitions form a Markov chain, which is mixing
fast, is it sufficient to use a finite memory construction for prac-
tical purposes? This is currently being investigated.
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