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Abstract

Information and communication complexity of a networked control system identifies the minimum amount
of information exchange needed between the decision makers (such as encoders, controllers and actuators)
to achieve a certain objective, which may be in terms of reaching a target state or achieving a given cost
threshold. This formulation does not impose any constraints on the computational requirements to perform
the communication or control. Both stochastic and deterministic formulations are considered.
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Introduction

Consider a dynamic team problem with L control stations (these will be referred to as decision makers
and denoted by DMs) under the following dynamics and measurement equations

xt+1 = ft(xt, u
1
t , . . . , u

L
t , wt) , t = 0, 1, · · · (1)

yit = git(xt, u
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where i ∈ {1, 2, . . . , L} =: L and x0, w[0,T−1], v
i
[0,T−1] are mutually independent random variables with

specified probability distributions. Here, we use the notation w[0,t] := {ws, 0 ≤ s ≤ t}.
The DMs are allowed to exchange limited information, see Figure 1. The information exchange is facili-

tated by an encoding protocol E which is a collection of admissible encoding functions described as follows.
Let the information available to DM i at time t be:

Ii
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where z
i,j
t takes values in Zi,j

t and is the information variable transmitted from DM i to DM j at time t

generated with

zit = {zi,jt , j ∈ L} = E i
t (I
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and for t = 0, zi0 = {zi,j0 , j ∈ L} = E i
0(y

i
0). The control actions are generated with

ui
t = γi

t(I
i
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for all DMs. Define log2(|Z
i,j
t |) to be the communication rate from DM i to DM j at time t and R(z[0,T−1]) =

∑T−1
t=0

∑

i,j∈L log2(|Z
i,j
t |) to be the (total) communication rate. The minimum (total) communication rate

over all coding and control policies subject to a design objective is called the communication complexity for
this objective.

The above is a fixed-rate formulation for communication complexity, since for any two coder outputs a
fixed number of bits is used at any given time. One could also use variable-rate formulations. The variable-
rate formulation exploits the probabilistic distribution of the system variables, see Cover and Thomas (1991).
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Figure 1: A decentralized networked control system with information exchange between decision makers.

Communication complexity for decentralized dynamic optimization

Let E i = {E i
t , t ≥ 0} and γi = {γi

t , t ≥ 0}. Under a team-encoding policy E = {E1, E2, . . . , EL}, and a

team-control policy γ = {γ1, γ2, . . . , γL}, let the induced cost be:

Eγ,E [
T−1
∑

t=0

c(xt, u
1
t , u

2
t , · · · , u

L
t )]. (4)

In networked control, the goal is to minimize (4) over all coding and control policies subject to information
constraints in the system. Let ut = {u1

t , u
2
t , · · · , u

L
t }. The following definition and example are from Yüksel

and Başar (2013).

Definition 0.1 Given a decentralized control problem as above, team cost-rate function C : R → R is:

C(R) := inf
γ,E

{

Eγ,E [

T−1
∑

t=0

c(xt,ut)] :
1

T
R(z[0,T−1]) ≤ R

}

.

We can define a dual function.

Definition 0.2 Given a decentralized control problem as above, team rate-cost function R : R → R is:

R(C) := inf
γ,E

{

1

T
R(z[0,T−1]) : E

γ,E [

T−1
∑

t=0

c(xt,ut)] ≤ C

}

.

The formulation here can be adjusted to include sequential (iterative) information exchange given a fixed
ordering of actions, as opposed to a simultaneous (parallel) information exchange at any given time t. That
is, instead of (3), we may have

zit = {zi,jt , j ∈ {1, 2, . . . , L}} = E i
t (I

i
t−1, u

i
t−1, y

i
t, {z

k,i
t , k < i}). (5)

Both to make the discussion more explicit and to show that a sequential (iterative) communication protocol
may perform strictly better than an optimal parallel communication protocol given a total rate constraint,
we state the following example: Consider the following setup with two DMs. Let x1, x2, p be uniformly
distributed binary random variables, DM i have access to yi, i = 1, 2, and

x = (p, x1, x2), y1 = p, y2 = (x1, x2),

and the cost function be

c(x, u1, u2) = 1{p=0}c(x
1, u1, u2) + 1{p=1}c(x

2, u1, u2),
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with
c(s, u1, u2) = (s− u1)2 + (s− u2)2.

Suppose that we wish to compute the minimum expected cost subject to a total rate of 2 bits that can be
exchanged. Under a sequential scheme, if we allow DM 1 to encode y1 to DM 2 with one bit, then a cost of
0 is achieved since DM 2 knows the relevant information that needs to be transmitted to DM 1, again with
one bit: If p = 0, x1 is the relevant random variable with an optimal policy u1 = u2 = x1, and if p = 1, x2

is relevant with an optimal policy u1 = u2 = x2, and a cost of 0 is achieved. However, if the information
exchange is parallel, then DM 2 does not know which state is the relevant one, and it can be shown that a
cost of 0 cannot be achieved under any policy.

The formulation in Definition 0.1 can also be adjusted to allow for multiple rounds of communication
per time-stage. Keeping the total rate constant, having multiple rounds can enhance the performance for a
class of team problems while keeping the total rate constant.

Communication complexity in decentralized computation

Yao (1979) initiated the research on communication complexity in distributed computation. This may
be viewed as a special case of the setting considered earlier but with finite spaces and in a deterministic
and an error-free context: Consider two decision makers (DMs) who have access to local variables x ∈
{0, 1}n, y ∈ {0, 1}n. Given a function f of variables (x, y), what is the maximum (over all input variables
x, y) of the minimum amount of information exchange needed for at least one agent to compute the value
of the function?: Let s(x, y) = {m1,m2, · · · ,mt} be the communication symbols exchanged on input (x, y)
during the execution of a communication protocol. Let mi denote the ith binary message symbol with |mi|
bits. The communication complexity for such a setup is defined as:

R(f) = min
γ,E

max
(x,y)∈{0,1}n×{0,1}n

|s(x, y)|, (6)

where |s(x, y)| =
∑t

i=1 |mi| and E is a protocol which dictates the iterative encoding functions as in (5) and
γ is a decision policy.

For such problems, obtaining good lower bounds is in general challenging. One lower bound for such
problems is obtained through the following reasoning: A subset of the form A×B, where A and B are subsets
of {0, 1}n is called an f -monochromatic rectangle if for every x ∈ A, y ∈ B, f(x, y) is the same. It can be
shown that given any finite message sequence {m1,m2, · · · ,mt}, the set {(x, y) : s(x, y) = {m1,m2, · · · ,mt}}
is an f -monochromatic rectangle. Hence, to minimize the number of messages, one needs to minimize the
number of f -monochromatic rectangles which has led to research in this direction. Upper bounds are typically
obtained by explicit constructions. For a comprehensive review, see Kushilevitz and Nisan (2006).

For control system, the discussion takes further aspects into account including a design objective, system
dynamics and the uncertainty in the system variables.

Communication complexity in reach-control

Wong (2009) defines the communication complexity in networked control as follows. Consider a design
specification where two DMs wish to steer the state of a dynamical system in finite time. This can be viewed
as a setting in (1)-(2) with 4 DMs, where there is iterative communication between a sensor and a DM, and
there is no stochastic noise in the system. Given a set of initial states x0 ∈ X0, and finite sets of objective
choices for each DM (A for DM 1, B for DM 2), the goal is to ensure that (i) there exists a finite time where
both DMs know the final state of the system, (ii) the final state satisfies the choices of the DMs, and (iii)
the finite time (when the objective is satisfied) is known by the DMs.

The communication complexity for such a system is defined as the infimum over all protocols of the
supremum over the triple of initial states, and choices of the DMs, such that the above is satisfied. That is,

R(X0,A,B) = inf
γ,E

sup
α,β,x0

R(γ, E , α, β, x0),

where R(γ, E , α, β, x0) denotes the communication rate under the control and coding functions γ, E , which
satisfies the objectives given by the choices α, β and initial condition x0.
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Wong obtains a cut-set type lower bound: Given a fixed initial state, a lower bound is given by 2D(f),
where f is a function of the objective choices and D(f) is a variation of R(f) introduced in (6) with the
additional property that both DMs know f at the end of the protocol. An upper bound is established by
the exchange of the initial states and objective functions also taking into account signaling, that is, the com-
munication through control actions, which is discussed further below in the context of stabilization. Wong
and Baillieul (2012) consider a detailed analysis for a real-valued bilinear controlled decentralized system.

Connections with information theory

Information theory literature has made significant contributions to such problems. An information the-
oretic setup typically entails settings where an unboundedly large sequence of messages are encoded and
functions of which are to be computed. Such a setting is not applicable in a real-time setting but is very
useful for obtaining performance bounds (that is, good lower bounds on complexity) which can at certain
instances be achievable even in a real-time setting. That is, instead of a single-realization of random variables
in the setup of (1)-(2), the average performance for a large number of independent realizations/copies for
such problems is typically considered.

In such a context, Definitions 0.1 and 0.2 can be adjusted so that the communication complexity is com-
puted by mutual information Cover and Thomas (1991). Replacing the fixed-rate or variable-rate (entropy)
constraint in Definition 0.1 with a mutual information constraint leads to desirable convexity properties for
C(R) and R(C). Such an information theoretic formulation can provide useful lower bounds and desirable
analytical properties.

We note here the interesting discussion between decentralized computation and communication provided
by Orlitsky and Roche (2001), as well as by Witsenhausen (1976) where a probability-free construction is
considered and a zero-error (non-asymptotic and error-free) computation is considered in the same spirit as
in Yao (1979).

Such decentralized computation problems can be viewed as multi-terminal source coding problems with
a cost function aligned with the computation objective. Ma and Ishwar (2011) and Gamal and Kim (2012)
provide a comprehensive treatment and review of information exchange requirements for computing. Essen-
tial in such constructions is the method of binning, which is a key tool in distributed source coding problems.
Binning efficiently designates the enumeration of symbols (which can be confused in the absence of coding)
given the relevant information at a receiver DM.

Such problems involve interactive communications as well as multi-terminal coding problems. As men-
tioned earlier, it is also important to point out that multi-round protocols typically reduce the average rate
requirements.

Communication complexity in decentralized stabilization

An important relevant setting of reach-control is where the target final state is the zero vector: the system
is to be stabilized. Consider the following special case of (1)-(2) for an LTI system

xt+1 = Axt +

L
∑

j=1

Bju
j
t , yit = Cixt t = 0, 1, . . . (7)

where i ∈ L, and it is assumed that the joint system is stabilizable and detectable, but the individual pairs
(A,Bi) may not be stabilizable or (A,Ci) may not be detectable. Here, xt ∈ R

n is the state, ui
t ∈ R

mi is
the control applied by station i, and yit ∈ R

pi is the observation available at station i, all at time t. The
initial state x0 is generated according to a probability distribution supported on a compact set X0 ⊂ R

n.
We denote controllable and unobservable subspaces at station i by Ki and N i, and refer to the subspace
orthogonal to N i as the observable subspace at the ith station, denoted by Oi. The information available to
station i at time t is Iit = {yi[0,t], u

i
[0,t−1]}. For such a system (see Figure 2), it is possible for the controllers

to communicate through the plant with the process known as signaling which can be used for communication
of mode information among the decision makers. Denote by i → j the property that DM i can signal to DM
j. This holds if and only if Cj(A)lBi 6= 0, for at least one l, 1 ≤ l ≤ n. A directed graph G among the L

stations can be constructed through such a communication relationship.
Suppose that A is such that in its Jordan form, where each Jordan block admits distinct real eigenval-

ues. Then, a lower bound on the communication complexity (per time-stage) for stabilizability is given by
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Figure 2: Decentralized stabilization with multiple controllers.

∑

|λi|>1 ηMi
log2(|λi|), where

ηMi
= min

l,m∈{1,2,...,L}
{d(l,m) + 1 : l → m, [xi] ⊂ Oi ∪Om, [xi] ⊂ Km},

with d(l,m) denoting the graph distance (number of edges in a shortest path) between DM l and DM m in
G, and [xi] denoting the subspace spanned by xi. Furthermore, there exist stabilizing coding and control
policies whose sum rate is arbitrarily close to this bound. When different Jordan blocks may admit repeated
and possibly complex eigenvalues, variations of the result above are applicable. In the special case where
there is a centralized controller which receives information from multiple sensors (under stabilizability and
joint detectability), even in the presence of noise, to achieve asymptotic stability, it suffices to have the aver-
age total rate be greater than

∑

|λi|>1 log2(|λi|). The results above follow from Matveev and Savkin (2008)

and Yüksel and Başar (2013). For the case with a single sensor, this result has been studied extensively in
networked control [see the chapter on Quantized Control and Data-Rate Constraints in the Encyclopedia].

Summary and Future Directions

In this text, we discussed the problem of communication complexity in networked control systems. Our
analysis considered both cost minimization and controllability/reachability problems subject to information
constraints. We also discussed the communication complexity in distributed computing as has been studied
in the computer science community and provided a brief discussion on the information theoretic approaches
for such problems together with structural results. There are many relevant open problems on structural
results for optimal policies, explicit solutions as well as non-trivial upper and lower bounds on the optimal
performance.

Recommended Reading

The information exchange requirements for decentralized optimization depend also on the structural
properties of the cost functional to be minimized. For a class of team problems, one might simply need to
exchange a sufficient statistic needed for optimal solutions. For some problems, there may be no need for
an exchange at all, if the sufficient statistics are already available, as in the case of mean field equilibrium
problems when the number of decision makers is unbounded or very large for almost optimal solutions; see
Huang et al (2006) and Lasry and Lions (2007). In case there is no common probabilistic information,
the problem considered becomes further involved. The consensus literature, under both Bayesian and non-
Bayesian contexts, aims to achieve agreement on a class of system variables under information constraints,
see e.g., Tsitsiklis et al (1986). Optimization under local interaction and sparsity constraints and various
criteria have been investigated in a number of publications including Rotkowitz and Lall (2006). A review for
the literature on norm-optimal control as well as optimal stochastic dynamic teams is provided in Mahajan
et al (2012). Tsitsiklis and Athans (1985) have observed that from a computational complexity viewpoint,
obtaining optimal solutions for a class of such communication protocol design problems is non-tractable
(NP-hard).

Even though obtaining explicit solutions for optimal coding and control results may be difficult, it is useful
to obtain structural results on optimal coding and control policies since one can reduce the search space to
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a smaller class of functions. For dynamic team problems, these typically follow from the construction of a
controlled Markov chain (see Walrand and Varaiya (1983)) and applying tools from stochastic control theory
which obtain structural results on optimal coding and control policies (see Nayyar et al (2013)). Along these
lines, for system (1)-(2), if the DMs can agree on a joint beliefs P (xt ∈ ·|Iit , i ∈ L) at every time stage, then
the optimal cost that would be achieved under a centralized system could be achieved (see Yüksel and Başar
(2013)). As a further important illustrative case, if the problem described in Definition 0.1 is for a real-
time estimation problem for a Markov source, then the optimal causal fixed-rate coder minimizing any cost
function uses only the last source symbol and the information at the controller’s memory, see Witsenhausen
(1979). We also note that the optimal design of information channels for optimization under information
constraints is a non-convex problem; see Yüksel and Linder (2012) and Yüksel and Başar (2013) for a review
of the literature and certain topological properties of the problem. We refer the reader to Nemirovsky
and Yudin (1983) for a comprehensive resource on information complexity for optimization problems. A
sequential setting with an information theoretic approach to the formulation of communication complexity
has been considered in Raginsky and Rakhlin (2011). A formulation relevant to the one in Definition 0.1
has been considered in Teneketzis (1979) with mutual information constraints. Giridhar and Kumar (2006)
discuss distributed computation for a class of symmetric functions under information constraints and present
a comprehensive review.

References

Cover TM, Thomas JA (1991) Elements of Information Theory. Wiley, New York

Gamal AE, Kim YH (2012) Network Information Theory. Cambridge University Press, U.K.

Giridhar A, Kumar P (2006) Toward a theory of in-network computation in wireless sensor networks. IEEE
Communications Magazine 44:98 107
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