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AVERAGE COST OPTIMALITY OF PARTIALLY OBSERVED MDPs:
CONTRACTION OF NONLINEAR FILTERS AND EXISTENCE OF

OPTIMAL SOLUTIONS AND APPROXIMATIONS\ast 

YUNUS EMRE DEMIRCI\dagger , ALI DEVRAN KARA\ddagger , AND SERDAR Y\"UKSEL\dagger 

Abstract. The average cost optimality is known to be a challenging problem for partially observ-
able stochastic control, with few results available beyond the finite state, action, and measurement
setup, for which somewhat restrictive conditions are available. In this paper, we present explicit and
easily testable conditions for the existence of solutions to the average cost optimality equation where
the state space is compact. In particular, we present a novel contraction based analysis, which, to
the best of our knowledge, is new to the literature, building on recent regularity results for nonlinear
filters. Beyond establishing existence, we also present several implications of our analysis that also
are new to the literature: (i) robustness to incorrect priors, (ii) near optimality of policies based on
quantized approximations, (iii) near optimality of policies with finite memory, and (iv) convergence
in Q-learning. In addition to our main theorem, each of these represents a novel contribution for
average cost criteria.

Key words. nonlinear filtering, average cost optimality equation

MSC codes. 90C40, 93E11, 93E20

DOI. 10.1137/24M1643736

1. Introduction. We study optimal control for partially observable Markov de-
cision processes (PODMPs) under the average cost criterion. Let \BbbX denote a standard
Borel space, which is the state space of a partially observed controlled Markov process.
Let \BbbB (\BbbX ) be its Borel \sigma -field. Let \BbbC b(\BbbX ) be the set of all continuous, bounded functions
on \BbbX . Here and throughout the paper, \BbbZ + denotes the set of nonnegative integers,
and \BbbN denotes the set of positive integers. Let \BbbY be a standard Borel space denoting
the observation space of the model, and let the state be observed through an observa-
tion channel Q. The observation channel, Q, is defined as a stochastic kernel (regular
conditional probability) from \BbbX to \BbbY , such that Q( \cdot | x) is a probability measure on the
power set P (\BbbY ) of \BbbY for every x\in \BbbX , andQ(A| \cdot ) :\BbbX \rightarrow [0,1] is a Borel measurable func-
tion for every A\in P (\BbbY ). A decision maker (DM) is located at the output of the channel
Q and hence only sees the observations \{ Yt, t\in \BbbZ \geq 0\} and chooses its actions from \BbbU ,
the action space which is a compact set. An admissible policy \gamma is a sequence of control
functions \{ \gamma t, t\in \BbbZ \geq 0\} such that \gamma t is measurable with respect to the \sigma -algebra gen-
erated by the information variables It = \{ Y[0,t],U[0,t - 1]\} , t\in \BbbN , I0 = \{ Y0\} , where

Ut = \gamma t(It), t\in \BbbZ \geq 0,(1.1)

are the \BbbU -valued control actions and Y[0,t] = \{ Ys, 0 \leq s \leq t\} , U[0,t - 1] = \{ Us, 0 \leq 
s\leq t - 1\} . In the above, the dependence of control policies on the initial distribution
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2860 Y. E. DEMIRCI, A. D. KARA, AND S. Y\"UKSEL

\pi 0 is implicit. We will denote the collection of admissible control policies as \Gamma . The
update rules of the system are determined by (1.1) and the following relationships:

Pr
\bigl( 
(X0, Y0)\in B

\bigr) 
=

\int 
B

\mu (dx0)Q(dy0| x0), B \in \scrB (\BbbX \times \BbbY ),

where \mu is the (prior) distribution of the initial state X0, and

Pr

\biggl( 
(Xt, Yt)\in B

\bigm| \bigm| \bigm| \bigm| (X,Y,U)[0,t - 1] = (x, y,u)[0,t - 1]

\biggr) 
=

\int 
B

Q(dyt| xt)\scrT (dxt| xt - 1, ut - 1),

B \in \scrB (\BbbX \times \BbbY ), t\in \BbbN , where \scrT is the transition kernel of the model which is a stochastic
kernel from \BbbX \times \BbbU to \BbbX .

We may let the agent's goal be to minimize the expected discounted cost

J\beta (\mu ,\gamma ) =E\gamma 
\mu 

\Biggl[ \infty \sum 
t=0

\beta tc (Xt,Ut)

\Biggr] 

for some discount factor \beta \in (0,1) over the set of admissible policies \gamma \in \Gamma , where
c : \BbbX \times \BbbU \rightarrow \BbbR is the stagewise measurable cost function, and the expectation E\gamma 

\mu is
taken over the initial state probability measure \mu under policy \gamma . The optimal cost
for the discounted infinite horizon is defined as

J\ast 
\beta (\mu ) = inf

\gamma \in \Gamma 
J\beta (\mu ,\gamma ).

The average cost control problem under partial observations is shown as follows
involves finding an optimal policy that minimizes the average cost of the system over
an infinite horizon:

J\ast (\mu ) = inf
\gamma \in \Gamma 

J(\mu ,\gamma )

where

J(\mu ,\gamma ) = limsup
n\rightarrow \infty 

1

n
E\gamma 

\mu 

\Biggl[ 
n - 1\sum 
t=0

c (Xt,Ut)

\Biggr] 
.

Contributions.
(i) In the theory of partially observable Markov decision processes (POMDPs),

very few conditions for the existence of solutions to the average cost optimality
equation (ACOE)have been found in the literature, especially in scenarios
beyond those with finite states, actions, and measurements, often restricted
by stringent conditions, as we will discuss in detail. This paper introduces a
novel result concerning the existence of a solution for the ACOE by utilizing
a Wasserstein regularity result (Theorem 2.2), as detailed in Theorem 1.2.
Under Assumption 1, we show the existence of a solution for the ACOE.
We provide a detailed comparison to existing results in the literature and
highlight the explicit nature of our conditions.

(ii) Subsequently, the paper then presents several applications and implications
of the existence of a solution to the ACOE for POMDPs. To the best of our
knowledge, the following lead to new contributions in this area of study:
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AVERAGE COST OPTIMALITY OF PARTIALLY OBSERVED MDPs 2861

1. Subsection 3.1 establishes robustness to incorrect priors under univer-
sal filter stability, demonstrating that an optimal policy designed for an
incorrect prior remains optimal when applied for the correct prior un-
der the average cost criteria, leading to a complete robustness property.
Additionally, the subsection includes an analysis for the discounted cost
setup.

2. Subsection 3.2.1 establishes near optimality of quantized approximation
policies for average cost criteria.

3. Subsection 3.2.2 examines how, under conditions of filter stability, optimal
policies derived from a finite window of measurements and actions for the
discounted cost criteria are near-optimal solutions for average cost criteria
in POMDPs.

4. Subsection 3.2.2 also highlights the use of Q-learning to derive near-
optimal policies applicable for both discounted finite window and dis-
counted quantized approximation scenarios.

1.1. Notation and preliminaries.

Belief MDP reduction for POMDPs. It is known that any POMDP can
be reduced to a completely observable Markov process [35, 27], whose states are the
posterior state distributions or beliefs of the observer; that is, the state at time n is

zn( \cdot ) := P\{ Xn \in \cdot | y0, . . . , yn, u0, . . . , un - 1\} \in \scrP (\BbbX ).

We call this equivalent process the filter process. We denote by \scrZ := \scrP (\BbbX ) the set
of probability measures on (\BbbX ,\BbbB (\BbbX )) under the weak convergence topology, where,
under this topology, \scrZ is also a standard Borel space, that is, \scrZ =\scrP (\BbbX ) is separable
and completely metrizable under the weak convergence topology. The filter process
has state space \scrZ and action space \BbbU . Let \scrP (\scrZ ) denote the probability measures on
\scrZ , equipped with the weak convergence topology.

The transition probability \eta of the filter process can be determined via the fol-
lowing equation [14, 27, 35]:

\eta (\cdot | z,u) =
\int 
\BbbY 
1\{ F (z,u,y)\in \cdot \} P (dy | z,u),(1.2)

where

P (\cdot | z,u) = Pr\{ Yn+1 \in \cdot | Zn = z,Un = u\} 

from \scrZ \times \BbbU to \BbbY and

F (z,u, y) := Pr\{ Xn+1 \in \cdot | Zn = z,Un = u,Yn+1 = y\} 

from \scrZ \times \BbbU \times \BbbY to \scrZ .
The one-stage cost function \~c : \scrZ \times \BbbU \rightarrow \BbbR is a Borel measurable function and is

given by

\~c(z,u) :=

\int 
\BbbX 
c(x,u)z(dx),(1.3)

where c :\BbbX \times \BbbU \rightarrow \BbbR is the stagewise cost function.
This way, we obtain a completely observable Markov decision process from the

POMDP, with the components (\scrZ ,\BbbU , \~c, \eta ). The resulting MDP is often referred to as
the belief MDP.
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2862 Y. E. DEMIRCI, A. D. KARA, AND S. Y\"UKSEL

Convergence notions for probability measures. Let \{ \mu n, n \in \BbbN \} be a se-
quence in \scrP (\BbbX ). The sequence \{ \mu n\} is said to converge to \mu \in \scrP (\BbbX ) weakly if\int 

\BbbX 
f(x)\mu n(dx)\rightarrow 

\int 
\BbbX 
f(x)\mu (dx)(1.4)

for every continuous and bounded f :\BbbX \rightarrow \BbbR .
For two probability measures \mu ,\nu \in \scrP (\BbbX ), the total variation metric is given by

\| \mu  - \nu \| TV := 2 sup
B\in \scrB (\BbbX )

| \mu (B) - \nu (B)| 

= sup
f :\| f\| \infty \leq 1

\bigm| \bigm| \bigm| \bigm| \int f(x)\mu (dx) - 
\int 
f(x)\nu (dx)

\bigm| \bigm| \bigm| \bigm| ,(1.5)

where the supremum is over all measurable real f such that \| f\| \infty = supx\in \BbbX | f(x)| \leq 1.
Finally, the bounded-Lipschitz metric \rho BL [31, p. 109] can also be used to metrize

weak convergence as

\rho BL(\mu ,\nu ) = sup
\| f\| BL\leq 1

\bigm| \bigm| \bigm| \bigm| \int 
\BbbX 
f(x)\mu (dx) - 

\int 
\BbbX 
f(x)\nu (dx)

\bigm| \bigm| \bigm| \bigm| ,(1.6)

where

\| f\| BL := \| f\| \infty + \| f\| L , \| f\| L = sup
x \not =x

\prime 

f(x) - f(x\prime )

d\BbbX (x,x
\prime )

,

and d is the metric on \BbbX .
When \BbbX is compact, one way to metrize \scrZ under the weak convergence topology

is via the Kantorovich--Rubinstein metric (also known as the Wasserstein metric of
order 1) ([1, Theorem 8.3.2]) defined as follows:

W1(\mu ,\nu ) := sup

\biggl\{ \int 
\BbbX 
f(x)\mu (dx) - 

\int 
\BbbX 
f(x)\nu (dx) : f \in Lip(\BbbX ,1)

\biggr\} 
,(1.7)

\mu ,\nu \in \scrZ , where for k \in \BbbN ,

Lip(\BbbX , k) = \{ f :\BbbX \rightarrow \BbbR , \| f\| L \leq k\} .

Definition 1.1 ([8, eq. (1.16)). For a kernel operator K : S1 \rightarrow \scrP (S2) we define
the Dobrushin coefficient as

\delta (K) = inf

n\sum 
i=1

min(K (x,Ai) ,K (y,Ai)) ,

where the infimum is over all x, y \in S1 and all partitions \{ Ai\} ni=1 of S2.

1.2. Average cost optimality equation. The average cost optimality equa-
tion (ACOE) plays a crucial role in the analysis and the existence results of MDPs
under the infinite horizon average cost optimality criteria. In the framework of the
belief MDP noted above, the triplet (h,\rho \ast , \gamma \ast ), where h : \scrZ \rightarrow \BbbR , \gamma \ast : \scrZ \rightarrow \BbbU are
measurable functions and \rho \ast \in \BbbR is a constant, forms the ACOE if

h(z) + \rho \ast = inf
u\in \BbbU 

\biggl\{ 
\~c(z,u) +

\int 
h(z1)\eta (dz1| z,u)

\biggr\} 
= \~c(z, \gamma \ast (z)) +

\int 
h(z1)\eta (dz1| z, \gamma \ast (z))(1.8)
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AVERAGE COST OPTIMALITY OF PARTIALLY OBSERVED MDPs 2863

for all z \in \scrZ . It is well known that (see, e.g., [14, Theorem 5.2.4]) if (1.8) is satisfied
with the triplet (h,\rho \ast , \gamma \ast ), and, furthermore, if h satisfies

sup
\gamma \in \Gamma 

lim
t\rightarrow \infty 

E\gamma 
z [h(Zt)]

t
= 0 \forall z \in \scrZ ,(1.9)

then \gamma \ast is an optimal policy for the POMDP under the infinite horizon average cost
optimality criterion, and

J\ast (z) = inf
\gamma \in \Gamma 

J(z, \gamma ) = \rho \ast \forall z \in \scrZ .

We will refer to the function h as the relative value function in the rest of the paper.
Note that there may not be a unique relative value function h that satisfies the
ACOE; however, any h that satisfies the ACOE and the condition (1.9) can be used
for optimality analysis.

1.3. Statement of the main result. Now we state the main result of our
paper.

Assumption 1.
1. U is a compact space, and (\BbbX , d) is a compact metric space with diameter D

(where D= supx,y\in \BbbX d(x, y)).
2. The transition probability \scrT (\cdot | x,u) is continuous in total variation in (x,u),

i.e., for any (xn, un)\rightarrow (x,u),\scrT (\cdot | xn, un)\rightarrow \scrT (\cdot | x,u) in total variation.
3. There exists \alpha \in R+such that

\| \scrT (\cdot | x,u) - \scrT (\cdot | x\prime , u)\| TV \leq \alpha d(x,x\prime )

for every x,x\prime \in \BbbX , u\in \BbbU .
4. There exists K1 \in \BbbR + such that

| c(x,u) - c(x\prime , u)| \leq K1d(x,x
\prime )

for every x,x\prime \in \BbbX , u\in \BbbU .
5. The cost function c is continuous and thus bounded since \BbbX is assumed to be

compact.
6.

K2 :=
\alpha D(3 - 2\delta (Q))

2
< 1,

where \delta (Q) is defined as in Definition 1.1.

We thus state the following main theorem.

Theorem 1.2. Under Assumption 1, a solution to the average cost optimality
equation (ACOE) exists. This leads to the existence of an optimal control policy, and
optimal cost is constant for every initial state.

As can be seen, the testability/verification of these criteria is explicit. We pro-
vide three examples to illustrate this, one in a discrete setting and the others in a
continuous setting.

As we will discuss in more detail in section 3, the theorem provides significant im-
plications for robustness and approximations. By utilizing this theorem, we can derive
near-optimal policies for the average cost criteria in partially observable Markov deci-
sion processes. To the best of our knowledge, obtaining near-optimal policies for the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2864 Y. E. DEMIRCI, A. D. KARA, AND S. Y\"UKSEL

average cost criteria is a novel result in the literature on partially observable Markov
decision processes (POMDPs). Additionally, under certain conditions, our findings
contribute a new perspective to the literature on robustness, demonstrating that the
average cost optimization problem is completely robust to initialization errors.

1.4. Examples. The first example will be for the discrete case. For the case
with finite \BbbX , consider the discrete metric d defined as follows:

d (x,x\prime ) =

\Biggl\{ 
1 if x \not = x\prime ,

0 if x= x\prime .

With this choice of metric, the diameter D is equal to 1.

Example 1.1. Let \BbbX = \{ 0,1,2,3\} , \BbbY = \{ 0,1\} , \BbbU = \{ 0,1\} , \epsilon \in (0,1/2), and let c
be any function from X \times U to R+. Now, consider the transition and measurement
matrices given by

\scrT 0 =

\left(    
1/2 1/3 1/6 0
0 1/2 1/6 1/3
1/2 1/6 0 1/3
1/3 1/3 1/3 0

\right)    , Q=

\left(    
3/4 - \epsilon 1/4 + \epsilon 
3/4 - \epsilon 1/4 + \epsilon 
1/4 + \epsilon 3/4 - \epsilon 
1/4 + \epsilon 3/4 - \epsilon 

\right)    ,

\scrT 1 =

\left(    
1/3 1/2 1/6 0
0 1/3 1/2 1/6
1/2 1/3 0 1/6
1/3 1/3 1/3 0

\right)    .

For this example, please note that \delta (Q) is greater than 1/2, and the diameter D
is equal to 1. We can choose \alpha to be 1. Hence, according to Theorem 1.2, the average
cost optimality equation (ACOE) has a solution.

Alternatively, if we were to select \alpha to be less than 1, a more relaxed condition
on \delta (Q) would suffice. If we can choose \alpha to be less than 2/3, without any other
constraints on the observation kernel, we can assert that the ACOE has a solution.
As we will see in the literature review section, these conditions are new.

The second example will be for the continuous state space case.

Example 1.2. Let \BbbX = [0,2], \BbbY = \{ 0,1\} , and \BbbU = [0,12]; let the transition kernel
\scrT (. | x,u) =Unif(0,min(2,1+((x+u)/7))), where Unif stands for uniform distribution;
let measurement kernel Q(x) = \lfloor x\rfloor ; and let cost function c(x,u) = x+ u.

For this example, we observe that \delta (Q) = 0. Furthermore, considering any control
input u in the set \BbbU and any states x and x\prime within the space \BbbX such that x\prime <x, we
can derive the following bound:

\| \scrT (\cdot | x,u) - \scrT (\cdot | x\prime , u)\| TV \leq \| Unif(0,1 + (x\prime + u)/7) - Unif(0,1 + (x+ u)/7)\| TV

= 2

\Biggl( 
1 - 

1 + x
\prime 
+u
7

1 + x+u
7

\Biggr) 
= 2

x - x\prime 

x+ u+ 7

<
2

7
d(x,x\prime ).

We have D = supd(x,x\prime ) = 2, and by choosing \alpha = 2
7 and K1 = 1, we can set K2

to 6/7. This choice ensures that we satisfy the conditions outlined in Assumption 1.
Consequently, we can directly apply Theorem 1.2 to this specific example.

Example 1.3. Consider \BbbX = [0,1], \BbbU = [ - p, p], and the cost function c(x,u) =
x - u. Define the transition kernel \scrT (.| x,u) = \=N(x+ u,\sigma 2). Here, \=N(\mu ,\sigma 2) denotes

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/1

2/
24

 to
 6

7.
19

3.
16

3.
26

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



AVERAGE COST OPTIMALITY OF PARTIALLY OBSERVED MDPs 2865

the truncated version of N(\mu ,\sigma 2), where the support is restricted to [0,1] \subset \BbbR . Its
probability density function f is given by

f(x;\mu ,\sigma ) =
1

\sigma 

\varphi 
\bigl( 
x - \mu 
\sigma 

\bigr) 
\Phi 
\bigl( 
1 - \mu 
\sigma 

\bigr) 
 - \Phi 

\bigl( 
0 - \mu 
\sigma 

\bigr) .
Here, \varphi (\cdot ) is the probability density function of the standard normal distribution, and
\Phi (\cdot ) is its cumulative distribution function.

For any 0 \leq x < y \leq 1, \| \scrT (.| y,u) - \scrT (.| x,u)\| TV

y - x \leq 
\surd 
2

\sigma 
\surd 
\pi 
. This shows that the tran-

sition kernel \scrT satisfies Assumption 1(3) with \alpha =
\surd 
2

\sigma 
\surd 
\pi 
. If we choose \sigma > 3/

\surd 
2\pi ,

Assumption 1(6) is satisfied for every observation channel. Under this condition, by
Theorem 1.2, the ACOE has a solution.

1.5. Literature review and comparison. In the following we present a de-
tailed literature review and also provide a comparison with our results. We will in
particularly highlight the fact that many of the results in the literature are not easy
to verify, which also serves to demonstrate that the problem is a challenging one.

References [26, 12, 28, 16] study the average cost control problem under the
assumption that the state space is finite; they provide reachability type conditions
for the belief kernels. Reference [16] also provides a detailed literature review. An
additional line of argument, via simulation and coupling, was introduced in [2, 3, 5, 4].
Under certain strong continuity requirements of the transition kernel, [30] extends the
positivity condition to Polish spaces. We also note that, via the weak Feller property
of nonlinear filters, the convex analytic methods can also be utilized [33, Theorem
1.2], though the dependence on the initial condition is a limitation.

Borkar and Budhiraja [5] consider \BbbX , \BbbY , and \BbbU as Polish spaces, where \BbbX is a finite-
dimensional Euclidean space (not necessarily compact, unlike ours) and \BbbU is a compact
space. In their setup, unlike ours, the observation measurement depends on the
previous time's state and action. For (x,u)\in \BbbX \times \BbbU , the transition probability measure
p(x,u, dz, dy) \in \scrP (\BbbX \times \BbbY ) is defined. Reference [5] assumes that p is continuous in a
strong sense as follows: Let \lambda denote the Lebesgue measure on \BbbX , and let \eta \in \scrP (\BbbY )
assume a density function \varphi (x,u, z, y) on \BbbX \times \BbbU \times \BbbX \times \BbbY such that p(x,u, dz, dy) =
\varphi (x,u, z, y)\lambda (dz)\eta (dy), with \varphi (\cdot ) > 0. It is assumed that \varphi (x,u, z, y) is continuous.
Note that by Scheff\'e's lemma, this implies that the transition kernel, as well as the
measurement kernel, is continuous in total variation. The update rule is then given as

Pr
\bigl( 
Xn+1 \in A,Yn+1 \in A\prime | X[0,n], Y[0,n],U[0,n]

\bigr) 
=

\int 
A\prime 

\int 
A

\varphi (Xn,Un, z, y)\lambda (dz)\eta (dy).

Furthermore, to facilitate a coupling argument, [5] additionally assumes\int 
\=\varphi (x,u,x\prime )

\biggl( 
\varphi (x,u,x\prime , y)

\=\varphi (x,u,x\prime )

\biggr) 1+\varepsilon 0

\lambda (dx\prime )\eta (dy)<\infty (1.10)

for some \varepsilon 0 > 0, where \=\varphi (x,u,x\prime ) =
\int 
\varphi (x,u,x\prime , y)\eta (dy). Finally, the following Lya-

punov type assumption is assumed (which always holds when \BbbX is compact).

Assumption 2. There exist \scrV \in \BbbC (\BbbX ) and \^\scrV \in \BbbC (\BbbX ) satisfying lim\| x\| \rightarrow \infty \scrV (x) =\infty 
and lim\| x\| \rightarrow \infty \^\scrV (x) =\infty , and under any wide-sense admissible \{ Zn\} ,

E
\Bigl[ 
\^\scrV (Xn+1) | \BbbF n

\Bigr] 
 - \^\scrV (Xn)\leq  - \scrV (Xn) + \^CI \^B (Xn) ,
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2866 Y. E. DEMIRCI, A. D. KARA, AND S. Y\"UKSEL

limsup
n\rightarrow \infty 

E
\Bigl[ 
\^\scrV (Xn)

\Bigr] 
n

= 0,

where \^C > 0, \^B = \{ x\in S : \| x\| \leq \^R\} for some \^R> 0, and \BbbF n = \sigma (X[0,n], Y[0,n],U[0,n]).

Theorem 1.3 (Theorem 4.1 of [5]). For the system described above and under
the mentioned assumptions as well as Assumption 2, a solution to the average cost
optimality equation (ACOE) exists. This implies the existence of an optimal control
policy, and the optimal cost remains constant for every initial state.

Compared to this result, we present complementary conditions which are explicit
and testable. Additionally, for the compact setup, we do not have continuity assump-
tions on the measurement kernels, and the condition (1.10) is not needed. Our paper
looks to be the first to utilize contraction properties of filter kernels.

In [26], Platzman addresses the finite state average cost control problem with finite
state, observation, and action spaces under restrictive reachability, subrectangularity,
and detectability conditions.

Runggaldier and Stettner in [28] consider \BbbX and \BbbY as finite and \BbbU as compact.
They prove that under the following positivity condition [28], ACOE has a bounded
solution.

Assumption 3 (see [28]).

inf
i,j\in \BbbX 

inf
u,u\prime \in \BbbU 

inf
\{ C\in \BbbB (\BbbX ):[\scrT (C| i,u)]>0\} 

\scrT (C| j, u\prime )
T (C| i, u)

> 0.

We note that Example 1.1 does not meet this condition.
Borkar [2] employs a coupling argument under the following assumption.

Assumption 4 ([2, Assumption A]). There exist constants K0 \in \BbbR + and \delta \in 
(0,1) such that supi,j sup\gamma P (\tau > n| X \prime 

0 = i,X0 = j) \leq K0\delta 
n holds for all n \geq 0.

This supremum is taken over all wide-sense admissible policies, and \tau represents the
coupling time, i.e., \tau =min\{ n :X \prime 

n =Xn\} .
However, verifying this assumption is not simple due to the necessity of taking

the supremum over all wide-sense admissible policies (which is a strict superset of
deterministic admissible policies).

Hsu, Chuang, and Arapostathis [16] consider a finite \BbbX and \BbbY and a compact \BbbU .
They provide two different sets of assumptions under which ACOE has a solution.

Assumption 5 (Assumption 2 of [16]). \scrZ \epsilon = \{ \mu \in \scrZ : \mu (x) > \epsilon for all x \in \BbbX \} .
There exist constants \epsilon > 0, k0 \in \BbbN , and \alpha < 1 such that if z\ast (\beta ) \in argminz\in \scrZ J

\ast 
\beta (z),

then for each \beta \in [\alpha ,1) we have

max
1\leq k\leq k0

\BbbP \gamma \beta 

z\ast (\beta )
(Zk \in \scrZ \epsilon )\geq \epsilon ,

where Zk is the filter process, and \gamma \beta is the optimal policy for the \beta -discounted horizon
cost problem.

Because checking this assumption can be quite complex, an alternative, easier-to-
verify assumption is provided.

Assumption 6 (see [16]). There exist k\geq 1 and \Delta > 0 such that, for all admissible
\{ Ut\} ,

\BbbP (Xk = j| X0 = i,Ut - 1, Yt,1\leq t\leq k)\geq \Delta \forall i, j \in \BbbX .
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AVERAGE COST OPTIMALITY OF PARTIALLY OBSERVED MDPs 2867

For the second set of assumptions, the conditions are relaxed to some extent when
the cost function c is continuous.

Assumption 7 (see [16]). There exist k \geq 1 and \Delta > 0 such that, for all yk \in \BbbY k

and uk \in \BbbU k,

Pij

\bigl( 
yk| uk

\bigr) 
\geq \Delta 

\sum 
\ell \in \BbbX 

P\ell j

\bigl( 
yk| uk

\bigr) 
\forall i, j \in \BbbX ,

where Pij

\bigl( 
yk | uk

\bigr) 
= \BbbP 

\bigl( 
Xk = j, Y[1,k] = yk | X0 = i,U[0,k - 1] = uk

\bigr) 
.

Theorem 1.4 (Theorem 11 of [16]). Under either Assumption 5 or Assumption 7,
the average cost optimality equation (ACOE) possesses a bounded solution.

Finally, Stettner in [30] extends the results of [28] to Polish state spaces and
observation spaces, encompassing both nondegenerate and degenerate observations as
follows: For u1, u2 \in \BbbU and \mu ,\nu \in P (\BbbX ) define

\lambda (u1, u2, \mu , \nu ) := inf
\{ C:\scrT (C| \mu ,u1)>0\} 

\scrT (C| \nu ,u2)
T (C| \mu ,u1)

.

Then define \lambda (\mu ,\nu ) = infu\in U \lambda (u,u,\mu , \nu ).

Assumption 8 (see [30]). \lambda 
\bigl( 
u1, u2n, \mu , \nu n

\bigr) 
\rightarrow 1 and \lambda 

\bigl( 
u2n, u

1, \nu n, \mu 
\bigr) 
\rightarrow 1 when

u2n \rightarrow u1 and \nu n \Rightarrow \mu . Similarly, assume that both \lambda (\nu n, \mu ) and \lambda (\mu ,\nu n) converge to
1 as \nu n \Rightarrow \mu (where \Rightarrow denotes weak convergence of probability measures).

Theorem 1.5 (Theorem 5.6 of [30]). Let \BbbX and \BbbY be Polish spaces, \BbbU be a
compact space, and c be a continuous and bounded function. Under Assumptions 3
and 8, the average cost optimality equation (ACOE) admits a bounded solution.

In [32], the authors study near optimality of finite window policies for average cost
problems where the state, action, and observation spaces are finite; under the condi-
tion that the liminf and limsup of the average cost are equal and independent of the
initial state, the paper establishes the near optimality of (nonstationary) finite mem-
ory policies. Here, a concavity argument building on [11] (which becomes consequen-
tial by the equality assumption) and the finiteness of the state space is crucial. The
paper shows that for any given \epsilon > 0, there exists an \epsilon -optimal finite window policy.

With this review, we have both summarized some existing key studies and high-
lighted the fact that our paper presents accessible and testable conditions, compared
with most of the literature reviewed above.

In our paper, we present a contraction based analysis for nonlinear filters, which
is a novel contribution and which we expect will have significant consequences for
learning theoretic and approximation results.

2. Proof of the main theorem. Recently, [22] presented the following regu-
larity results for controlled filter processes.

Theorem 2.1 ([22, Theorem 7-i, Theorem 7-iv]). Assume that \BbbX and \BbbY are
Polish spaces.

i. If Assumption 1(3) is fulfilled, then we have

\rho BL (\eta (\cdot | z,u), \eta (\cdot | z\prime , u))\leq 3 (1 + \alpha )\rho BL (z, z\prime )

for any z, z\prime \in \scrP (\BbbX ) and u\in \BbbU .
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2868 Y. E. DEMIRCI, A. D. KARA, AND S. Y\"UKSEL

ii. Without any assumptions,

\rho BL (\eta (\cdot | z,u), \eta (\cdot | z\prime , u))\leq (3 - 2\delta (Q))(1 - \~\delta (\scrT ))\| z  - z\prime \| TV

for any z, z\prime \in \scrP (\BbbX ) and u\in \BbbU , where \~\delta (\scrT ) := infu\in \BbbU \delta (\scrT (\cdot | \cdot , u)).
Building on these results and their proof method, the next result follows from

[7, Theorem 5.1], which considered the control-free setup. A proof sketch is given in
Appendix A.

Theorem 2.2. Assume that \BbbX and \BbbY are Polish spaces. If Assumption 1(1) and
Assumption 1(3) are fulfilled, then we have

W1 (\eta (\cdot | z0, u), \eta (\cdot | z\prime 0, u))\leq 
\biggl( 
\alpha D(3 - 2\delta (Q))

2

\biggr) 
W1 (z0, z

\prime 
0)

for all z0, z0
\prime \in \scrZ , u\in \BbbU .

As we assume that \BbbX is compact, under the W1 (that is, the 1-Wasserstein or
Kantorovich--Rubinstein) metric, \scrZ is compact.

Under Assumption 1(4), we have that \~c defined in (1.3) is Lipschitz continuous,
since

| \~c(z,u) - \~c(z\prime , u)| =
\bigm| \bigm| \bigm| \bigm| \int 

\BbbX 
c(x,u)z(dx) - 

\int 
\BbbX 
c(x,u)z\prime (dx)

\bigm| \bigm| \bigm| \bigm| \leq K1W1 (z, z
\prime ) .(2.1)

Theorem 2.3 ([17, Theorem 2]). Under Assumption 1(2), the transition proba-
bility \eta (\cdot | z,u) of the filter process is weakly continuous in (z,u).

We also highlight that additional recent results are available on the weak Feller
property, such as those in [10]; however, as there are no restrictions on Q, this result
[17, Theorem 2] is relevant here.

Lemma 2.4. Under Assumption 1, for any \beta the value function J\ast 
\beta is Lipschitz

continuous with coefficient K, where K = K1

1 - \beta K2
.

Proof. We adopt the approach in the proof of [29, Theorem 4.37]. Let f \in 
Lip(\scrZ , k) for some k > 0. Then g = f

k \in Lip(\scrZ ,1), and therefore for all u \in U and
z, y \in \scrZ we have \bigm| \bigm| \bigm| \bigm| \int 

\scrZ 
f(x)\eta (dx | z,u) - 

\int 
\scrZ 
f(x)\eta (dx | y,u)

\bigm| \bigm| \bigm| \bigm| (2.2)

= k

\bigm| \bigm| \bigm| \bigm| \int 
\scrZ 
g(x)\eta (dx | z,u) - 

\int 
\scrZ 
g(x)\eta (dx | y,u)

\bigm| \bigm| \bigm| \bigm| (2.3)

\leq kW1(\eta (\cdot | z,u), \eta (\cdot | y,u))\leq kK2W1(z, y)(2.4)

by Theorem 2.2. Let T be the Bellman optimality operator,

(Tf)(x) =min
u\in U

\biggl\{ 
c(x,u) + \beta 

\int 
y\in \scrZ 

\eta (dy| x,u)f(y)
\biggr\} 
.

We know that J\ast 
\beta satisfies TJ\ast 

\beta = J\ast 
\beta [14, Lemma 4.2.6]. T is a contraction, so by the

Banach fixed point theorem, Tnf converges to J\ast 
\beta as follows:

| Tf(z) - Tf(y) | 

\leq max
u\in U

\biggl\{ 
| \~c(z,u) - \~c(y,u)| + \beta 

\bigm| \bigm| \bigm| \bigm| \int 
\bfZ 

f(x)\eta (dx | z,u) - 
\int 
\bfZ 

f(x)\eta (dx | y,u)
\bigm| \bigm| \bigm| \bigm| \biggr\} 

\leq K1W1(z, y) + \beta kK2W1(z, y) = (K1 + \beta kK2)W1(z, y) =:M1W1(z, y).
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AVERAGE COST OPTIMALITY OF PARTIALLY OBSERVED MDPs 2869

By induction we have, for all n\geq 2,

Tnf \in Lip (\scrZ ,Mn) ,

where Mn = K1 + \beta K2Mn - 1 and thus Mn = K1

\sum n - 1
i=0 (\beta K2)

i
+ k (\beta K2)

n
. Then,

the sequence Mn monotonically converges to K1

1 - \beta K2
since K2 < 1. Hence, Tnf \in 

Lip(\scrZ , K1

1 - \beta K2
) for all n, and therefore, J\ast 

\beta \in Lip(\scrZ , K1

1 - \beta K2
) since it is closed with

respect to the sup-norm. Taking k \leq K1

1 - \beta K2
, we certify that the fixed point satisfies

the desired Lipschitz continuity.

For any \beta \in (0,1), J\ast 
\beta \in Lip(\scrZ , K1

1 - K2
). Therefore, for any z0 \in \scrZ ,

h\beta (z) = J\ast 
\beta (z) - J\ast 

\beta (z0)\leq 
K1

1 - K2
W1(z, z0)\leq 

K1 \cdot D
1 - K2

.(2.5)

In view of the results above, we now introduce a crucial auxiliary result that will
play a pivotal role in establishing our main result.

Assumption 9.
1. The one-stage cost function \~c is bounded and continuous.
2. The stochastic kernel \eta (\cdot | x,u) is weakly continuous in (x,u)\in \scrZ \times \BbbU , i.e., if

(xk, uk)\rightarrow (x,u), then \eta (\cdot | xk, uk)\rightarrow \eta (\cdot | x,u) weakly.
3. \BbbU is compact.
4. \scrZ is \sigma -compact, that is, \scrZ =\cup nSn where Sn \subset Sn+1 and each Sn is compact.

There exist \alpha \in (0,1) and N \geq 0 and a state z0 \in \scrZ such that
5.  - N \leq h\beta (z)\leq N for all z \in \scrZ and \beta \in [\alpha ,1), where

h\beta (z) = J\ast 
\beta (z) - J\ast 

\beta (z0) .(2.6)

6. The sequence
\bigl\{ 
h\beta (k)

\bigr\} 
is equicontinuous, where \{ \beta (k)\} is a sequence of dis-

count factors converging to 1, which satisfies limk\rightarrow \infty (1 - \beta (k))J\ast 
\beta (k)(z) = \rho \ast 

for all z \in \scrZ for some \rho \ast \in [0,L].

Lemma 2.5 ([34, Theorem 7.3.3]). Under Assumption 9, a solution to the average
cost optimality equation (ACOE) exists, leading to the existence of an optimal control
policy, and optimal cost is constant for every initial state.

Proof. See Appendix B.

We note that a similar result, with slightly stronger continuity conditions (not
applicable to our setup) under [14, Assumption 4.2.1], can be found in [14, Theorem
5.5.4]. Using this auxiliary result, we are now ready to present the proof of the main
theorem.

Proof of Theorem 1.2. First, we will show that if a partially observable Markov
decision process (POMDP) satisfies Assumption 1, then the corresponding belief MDP
satisfies Assumption 9.

Assumption 9(1) is valid due to equation (2.1). Assumption 9(3)(4) hold because
\BbbU and \scrZ are compact. Assumption 9(2) follows from Theorem 2.3, and Assump-
tion 9(5) follows from (2.5).

By inequality (2.5), we know that

h\beta (z) = J\ast 
\beta (z) - J\ast 

\beta (z0)\leq 
K1

1 - K2
W1(z, z0)
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2870 Y. E. DEMIRCI, A. D. KARA, AND S. Y\"UKSEL

for all \beta \in (0,1). Therefore, h\beta is equicontinuous for all \beta \in (0,1). Since this condition
holds for all subsequences, Assumption 9(6) is satisfied.

Thus, if a POMDP satisfies Assumption 1, then the belief MDP satisfies Assump-
tion 9. All conditions of Lemma 2.5 are satisfied, and the proof is completed using
Lemma 2.5.

3. Implications for approximations, robustness, and learning. In this
section, we discuss several implications of our results on the existence of a solution to
the ACOE and Wasserstein regularity.

First, we establish robustness by studying how an optimal policy developed for
an incorrect initial prior performs when applied to the correct initial distribution in
the context of the average cost criteria. Under certain conditions, we find that the
average cost optimization problem is robust to errors in initialization.

We then study approximate optimality through the quantization of the belief
space, or \scrP (\BbbX ). This method yields a near-optimal policy for the original problem.
We then present an alternate method to construct a finite Markov decision process
(MDP). This is achieved by replacing the complete observable Markov process with
the most recent N observations and actions. Within this finite state MDP framework,
we apply Q-learning to obtain a near optimal policy.

3.1. Robustness to incorrect priors for discounted and average cost
criteria. In this section, we discuss the implications of our results on robustness.
Let us first formally define the robustness problem. We have already introduced J\ast 

and J\ast 
\beta in the first section.

An optimal control policy \gamma \mu for a given prior \mu is a policy that achieves the
lowest expected cost over all admissible control policies as follows:

J (\mu ,\gamma \mu ) = inf
\gamma \in \Gamma 

J(\mu ,\gamma ) = J\ast (\mu ).

Consider a scenario where a controller incorrectly assumes that the system's prior
is \nu , while in reality it is \mu . In this case, the controller would implement the policy
\gamma \nu , optimal for \nu , but this results in an expected cost of J (\mu ,\gamma \nu ). If the controller
had used the correct policy, the cost could have been J\ast (\mu ). In studying robustness,
we are interested in the differences

J\beta 
\bigl( 
\mu ,\gamma \nu \beta 

\bigr) 
 - J\ast 

\beta (\mu ),

J (\mu ,\gamma \nu ) - J\ast (\mu )

for the discounted cost problem and the average cost problem. Here \gamma \nu \beta is an optimal
policy for the initial \nu in the context of discounted cost criteria, while \gamma \nu is an optimal
policy for the initial \nu in the context of average cost criteria.

In the literature on POMDPs, there are upper bounds on this error cost for dis-
counted cost problem [19], studies on its relationship with filter stability, and attempts
to find uniform upper bounds for average cost problem [25]. There is also work con-
sidering how robustness is affected under different transition kernels for discounted
cost problems [20]. The following builds on [19, Theorem 3.2].

Theorem 3.1 ([25, Theorem 3.8], [19, Theorem 3.2]). Assume the cost function c
is bounded, nonnegative, and measurable. Let \gamma \nu be the optimal control policy designed
with respect to a prior \nu . Then we have

J (\mu ,\gamma \nu ) - J\ast (\mu )\leq 2\| c\| \infty \| \mu  - \nu \| TV .
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AVERAGE COST OPTIMALITY OF PARTIALLY OBSERVED MDPs 2871

However, by utilizing filter stability, the bound can be refined, as we will observe
in the following.

Definition 3.1. A filter process is said to be stable in the sense of total variation
in expectation with respect to a policy \gamma if for any measure \nu with \mu \ll \nu we have
limn\rightarrow \infty E\mu ,\gamma [\| \pi \mu ,\gamma 

n  - \pi \nu ,\gamma 
n \| TV ] = 0.

The filter is universally stable in total variation in expectation if it holds with
respect to every admissible policy \gamma \in \Gamma .

For the average cost criteria, under Assumption 1, asymptotic filter stability is
sufficient for robustness, as the following shows.

Theorem 3.2 ([25, Theorem 3.9]). Assume the cost function c is bounded, non-
negative, and measurable, and assume the filter is universally stable in total variation
in expectation. Consider the span seminorm,

\| J\ast \| sp := sup
\mu 1\in \scrP (\scrX )

J\ast (\mu 1) - inf
\mu 2\in \scrP (\scrX )

J\ast (\mu 2) ;

then we have

J (\mu ,\gamma \nu ) - J\ast (\mu )\leq \| J\ast \| sp .

In particular, if \| J\ast \| sp = 0, then the average cost optimization problem is completely
robust to initialization errors.

We note that in [25], the existence of an optimal solution was not shown; our
implication also presents an existence result for optimal policies. Under Assumption 1,
we show that \| J\ast \| sp = 0 (Theorem 1.2), meaning that if the filter is universally
stable in total variation in expectation, then the average cost optimization problem
is completely robust to initialization errors.

Corollary 3.3. Under Assumption 1 and assuming universal filter stability in
total variation in expectation, we have that

J (\mu ,\gamma \nu ) = J\ast (\mu ) \forall \mu ,\nu \in \scrZ .

Note 3.1. As mentioned in Note 3.2, [24, Theorem 4.1] demonstrates that if the
condition (1 - \~\delta (\scrT ))(2 - \delta (Q))< 1 is met, then the filter is universally stable in total
variation in expectation.

In addition to our results on the average cost optimality equation, our analysis
is also consequential for the discounted cost criterion and offers an improvement on
[25, Theorem 3.10]. Utilizing the span seminorm bound derived in our analysis of the
average cost optimality equation, and by modifying the proof of [25, Theorem 3.10]
along with individually bounding equations (1.8), (1.9), and (1.10) from the same
source, we arrive at the following theorem.

Theorem 3.4. Under Assumption 1 and the condition \=\alpha := (1  - \~\delta (T ))(2  - 
\delta (Q))< 1, we have the following robustness bound:

J\beta (\mu ,\gamma 
\nu 
\beta ) - J\ast 

\beta (\mu )\leq inf
n\in \BbbN 

\biggl( 
\| c\| \infty 

(1 - \beta n)

1 - \beta 
+ \beta n DK1

1 - K2\beta 
+ 4

\| c\| \infty 
1 - \beta 

(\=\alpha \beta )n
\biggr) 
.

Proof. A brief proof is provided here.
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2872 Y. E. DEMIRCI, A. D. KARA, AND S. Y\"UKSEL

J\beta 
\bigl( 
\mu ,\gamma \nu \beta 

\bigr) 
 - J\ast 

\beta (\mu )

(3.1)

=E\mu ,\gamma \nu 
\beta 

\Biggl[ 
n - 1\sum 
i=0

\beta ic (Xi,Ui)

\Biggr] 
 - E\mu ,\gamma \mu 

\beta 

\Biggl[ 
n - 1\sum 
i=0

\beta ic (Xi,Ui)

\Biggr] 
+ \beta n

\Bigl( 
E\mu ,\gamma \nu 

\beta 

\Bigl[ 
J\beta 

\Bigl( 
\pi 
\mu ,\gamma \nu 

\beta 

n - , \gamma \nu 
\prime 

\beta 

\Bigr) \Bigr] 
 - E\mu ,\gamma \mu 

\beta 

\Bigl[ 
J\ast 
\beta 

\Bigl( 
\pi 
\mu ,\gamma \mu 

\beta 

n - 

\Bigr) \Bigr] \Bigr) 
=E\mu ,\gamma \nu 

\beta 

\Biggl[ 
n - 1\sum 
i=0

\beta ic (Xi,Ui)

\Biggr] 
 - E\mu ,\gamma \mu 

\beta 

\Biggl[ 
n - 1\sum 
i=0

\beta ic (Xi,Ui)

\Biggr] 
+ \beta n

\Bigl( 
E\mu ,\gamma \nu 

\beta 

\Bigl[ 
J\beta 

\Bigl( 
\pi 
\mu ,\gamma \nu 

\beta 

n - , \gamma \nu 
\prime 

\beta 

\Bigr) 
+ J\ast 

\beta 

\Bigl( 
\pi 
\mu ,\gamma \nu 

\beta 

n - 

\Bigr) 
 - J\ast 

\beta 

\Bigl( 
\pi 
\mu ,\gamma \nu 

\beta 

n - 

\Bigr) \Bigr] 
 - E\mu ,\gamma \mu 

\beta 

\Bigl[ 
J\ast 
\beta 

\Bigl( 
\pi 
\mu ,\gamma \mu 

\beta 

n - 

\Bigr) \Bigr] \Bigr) 
=E\mu ,\gamma \nu 

\beta 

\Biggl[ 
n - 1\sum 
i=0

\beta ic (Xi,Ui)

\Biggr] 
 - E\mu ,\gamma \mu 

\beta 

\Biggl[ 
n - 1\sum 
i=0

\beta ic (Xi,Ui)

\Biggr] 

+ \beta n
\Bigl( 
E\mu ,\gamma \nu 

\beta 

\Bigl[ 
J\ast 
\beta 

\Bigl( 
\pi 
\mu ,\gamma \nu 

\beta 

n - 

\Bigr) \Bigr] 
 - E\mu ,\gamma \mu 

\beta 

\Bigl[ 
J\ast 
\beta 

\Bigl( 
\pi 
\mu ,\gamma \mu 

\beta 

n - 

\Bigr) \Bigr] \Bigr) (3.2)

+ \beta n
\Bigl( 
E\mu ,\gamma \nu 

\beta 

\Bigl[ 
J\beta 

\Bigl( 
\pi 
\mu ,\gamma \nu 

\beta 

n - , \gamma \nu 
\prime 

\beta 

\Bigr) 
 - J\ast 

\beta 

\Bigl( 
\pi 
\mu ,\gamma \nu 

\beta 

n - 

\Bigr) \Bigr] \Bigr) 
,

(3.3)

where \nu \prime = \pi 
\nu ,\gamma \nu 

\beta 

n - , and \gamma \nu 
\prime 

\beta is an optimal discounted policy for \nu \prime . As in [25], we
can refer to these three components as transient cost, strategic measure cost, and
approximation cost, respectively. The transient cost (3.1) is upper bound by

E\mu ,\gamma \nu 
\beta 

\Biggl[ 
n - 1\sum 
i=0

\beta ic (xi, ui)

\Biggr] 
 - E\mu ,\gamma \mu 

\beta 

\Biggl[ 
n - 1\sum 
i=0

\beta ic (xi, ui)

\Biggr] 
\leq \| c\| \infty 

n - 1\sum 
i=0

\beta i = \| c\| \infty 
\biggl( 
1 - \beta n

1 - \beta 

\biggr) 
.

The strategic measure cost (3.2) is upper bound by

\beta n
\Bigl( 
E\mu ,\gamma \nu 

\beta 

\Bigl[ 
J\ast 
\beta 

\Bigl( 
\pi 
\mu ,\gamma \nu 

\beta 

n - 

\Bigr) \Bigr] 
 - E\mu ,\gamma \mu 

\beta 

\Bigl[ 
J\ast 
\beta 

\Bigl( 
\pi 
\mu ,\gamma \mu 

\beta 

n - 

\Bigr) \Bigr] \Bigr) 
\leq \beta n

\bigm\| \bigm\| J\ast 
\beta 

\bigm\| \bigm\| 
sp

\leq \beta n K1

1 - \beta K2
D

because of Lemma 2.4. The approximation cost (3.3) is upper bound by

\beta n

\Biggl( 
E\mu ,\gamma \nu 

\beta 

\Biggl[ 
J\beta 

\Biggl( 
\pi 
\mu ,\gamma \nu 

\beta 

n - , \gamma 
\pi 
\nu ,\gamma \nu 

\beta 
n - 

\beta 

\Biggr) 
 - J\ast 

\beta 

\Bigl( 
\pi 
\mu ,\gamma \nu 

\beta 

n - 

\Bigr) \Biggr] \Biggr) 
\leq 4

\| c\| \infty 
1 - \beta 

(\=\alpha \beta )n

following the stability criteria from [24, Theorem 4.1]. We establish the desired
result.

3.2. Approximations and learning. Throughout the rest of this section, we
assume that Assumption 1 holds. Earlier, we already showed that if Assumption 1
is valid for the POMDP, then Assumption 9 is applicable for the belief MDP. The
following theorems assist in finding near-optimal policies for the average cost criterion;
for further analysis see [6, Theorem 5] or [34, Theorem 7.3.6]. In particular, the fact
that a solution to the average cost optimality equation exists and is arrived at via the
vanishing discount method in our analysis earlier is critical for the applicability of the
following result.
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AVERAGE COST OPTIMALITY OF PARTIALLY OBSERVED MDPs 2873

Theorem 3.5. (a) Under Assumption 9, lim\beta \uparrow 1(1  - \beta )J\ast 
\beta (x0) \rightarrow \rho \ast , where \rho \ast 

is the optimal average cost. Furthermore, if \gamma \beta solves the discounted cost optimality
equation,

J\ast 
\beta (x) =min

u\in \BbbU 

\biggl\{ 
c(x,u) + \beta 

\int 
\BbbX 
J\ast 
\beta (y)\scrT (dy | x,u)

\biggr\} 
,

then, for every \epsilon > 0, there exists \beta \epsilon \in (0,1) such that for \beta \in [\beta \epsilon ,1),

J (x,\gamma \beta ) - \rho \ast < \epsilon .

This implies that the discounted cost optimal policy is near-optimal for the average
cost criterion.

(b) Under Assumption 9, let \beta \epsilon be chosen as above, such that with h\beta as given in
(2.6),

| \rho \ast  - (1 - \beta \epsilon )J\beta \epsilon 
(x0)| \leq 

\epsilon 

2
and (1 - \beta \epsilon )\| h\beta \epsilon 

\| \infty \leq \epsilon 

2
,

so that \gamma \beta \epsilon 
is \epsilon -optimal. Suppose that \gamma \delta \beta \epsilon 

is an \delta -optimal policy for \beta \epsilon discounted cost
criteria, satisfying

J\beta \epsilon 

\bigl( 
x,\gamma \delta \beta \epsilon 

\bigr) 
 - J\beta \epsilon 

(x)< \delta .

Then,

J
\bigl( 
x,\gamma \delta \beta \epsilon 

\bigr) 
 - \rho \ast < \epsilon + \delta .

That is, a near-optimal discounted cost policy is also near-optimal for the average cost
criterion.

Since Assumption 1 for the POMDP implies Assumption 9 for the belief MDP, as
proven in the proof of Theorem 1.2, the above theorem also holds under Assumption 1.
Therefore, under Assumption 1, a near-optimal policy for the discounted cost criteria
is also near-optimal for the average cost criteria. The subsequent subsections will
detail how to establish a near-optimal policy for discounted costs.

We have that \BbbU is a compact space. As demonstrated in [29, Theorem 3.2], if the
transition kernel is weakly continuous and the cost function is bounded and contin-
uous, then the optimal policy for a quantized action model in a discounted context
is also near-optimal for the original model. This allows us to consider \BbbU as finite to
identify a near-optimal policy.

3.2.1. Near optimality of finite models via quantization for average
cost. In this subsection, we focus on achieving a near-optimal policy by quantizing the
states of the belief MDP, namely P (\BbbX ). We follow the approach and results from [18].

To create a new finite MDP model, we begin by quantizing the belief states. We
select disjoint sets \{ Zi\} Mi=1 such that

\bigcup 
iZi = \scrZ , and each Zi is distinct from Zj for

any i \not = j. For each set, we choose a representative state, denoted as zi \in Zi. This
results in a finite state space for our model, represented by \=Z := \{ z1, . . . , zM\} . The
quantization function maps the original state space \scrZ to this finite set \=Z as follows:

q(z) = zi if z \in Zi.

To define the cost function, we select a weighting measure \pi \ast \in P (\scrZ ) over \scrZ such
that \pi \ast (Zi) > 0 for all Zi. Under Assumption 1, we know that \scrZ is compact under
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2874 Y. E. DEMIRCI, A. D. KARA, AND S. Y\"UKSEL

W1 metric. We then define normalized measures for each quantization bin Zi using
the weighting measure as

\^\pi \ast 
zi(A) :=

\pi \ast (A)

\pi \ast (Zi)
\forall A\subset Zi, \forall i\in \{ 1, . . . ,M\} .

This normalized measure, \^\pi \ast 
zi , is specific to the set Zi containing zi.

Next, we define the stagewise cost and the transition kernel for the MDP with
the finite state space \=Z using these normalized weight measures. For any zi, zj \in \=Z
and u\in \BbbU , the stagewise cost function and the transition kernel are

c\ast (zi, u) =

\int 
Zi

\~c(z,u)\^\pi \ast 
zi(dz),

\eta \ast (zj | zi, u) =
\int 
Zi

\eta (Zj | z,u) \^\pi \ast 
zi(dz).

After establishing the finite state space \=Z, the cost function c\ast and the transition
kernel \eta \ast , we introduce the discounted optimal value function for this finite model,
denoted as \^J\beta : \=Z\rightarrow \BbbR . We extend this function to the entire original state space \scrZ by
keeping it constant within the quantization bins. Therefore, for any z \in Zi, we define

\^J\beta (z) := \^J\beta (zi).

We also define the maximum loss function among the quantization bins as

\=L := max
i=1,...,M

sup
z,z\prime \in Zi

W1(z, z
\prime ).(3.4)

Assumption 10 ([18, Assumption 4]).
1. \scrZ is compact.
2. There exists \alpha c > 0 such that | \~c(z,u) - \~c (z\prime , u)| \leq \alpha cd(z, z

\prime ) for all z, z\prime \in \scrZ 
and for all u\in \BbbU .

3. There exists \alpha \eta > 0 such that W1 (\eta (\cdot | z,u), \eta (\cdot | z\prime , u)) \leq \alpha \eta d(z, z
\prime ) for all

z, z\prime \in \scrZ and for all u\in \BbbU .

The following theorem states that an optimal policy of the quantized model is
near-optimal for the original model as \=L\rightarrow 0.

Theorem 3.6 ([18, Theorem 6]). Under Assumption 10, we have

sup
z\in \scrZ 

\bigm| \bigm| J\beta (z, \^\gamma ) - J\ast 
\beta (z)

\bigm| \bigm| \leq 2\alpha c

(1 - \beta )2 (1 - \beta \alpha \eta )
\=L,

where \=L is defined as in (3.4), and \^\gamma denotes the optimal policy of the finite state
approximate model extended to the state space \scrZ via the quantization function q.

A similar result is presented in [29, Theorem 4.38], offering a slightly weaker
bound.

Under Assumption 1, the belief MDP satisfies Assumption 10 because \scrZ is com-
pact under the W1 metric. Due to inequality (2.1), we have | \~c(z,u)  - \~c(z\prime , u)| \leq 
K1W1(z, z

\prime ) for all z, z\prime \in \scrZ and for all u\in \BbbU . Theorem 2.2 implies W1(\eta (\cdot | z,u), \eta (\cdot | 
z\prime , u)) \leq K2W1(z, z

\prime ) for all z, z\prime \in \scrZ and for all u \in \BbbU . Thus, for the belief MDP,
quantization provides the following bound:

sup
z\in \scrZ 

\bigm| \bigm| J\beta (z, \^\gamma ) - J\ast 
\beta (z)

\bigm| \bigm| \leq 2K1

(1 - \beta )2(1 - \beta K2)
\=L.

Furthermore, the quantized model gives a near-optimal policy of the original belief
MDP model as \=L\rightarrow 0.
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AVERAGE COST OPTIMALITY OF PARTIALLY OBSERVED MDPs 2875

Q-learning. This section introduces the Q-iteration method for identifying the
optimal policy for a quantized belief Markov decision process (MDP). We apply this
method to the quantized belief MDP with finite state space, \=Z, and a finite action
space, \BbbU . The Q-learning process updates Q-functions as follows: For each time step
t \geq 0, if the current state-action pair is (Zt,Ut) = (z,u), the Q-value for this pair is
updated in the following manner:

Qt+1 (Zt,Ut) = (1 - \alpha t (Zt,Ut))Qt (Zt,Ut)(3.5)

+ \alpha t (Zt,Ut)

\biggl( 
c\ast (Zt,Ut) + \beta min

v\in \BbbU 
Qt (Zt+1, v)

\biggr) 
Key assumptions for this Q-learning approach include the following.

Assumption 11 ([18, Assumption 5]).
\bullet The learning rate \alpha t(z,u) = 0 if (Zt,Ut) \not = (z,u); otherwise, it is defined as

\alpha t(z,u) =
1

1+
\sum t

k=0 1\{ Zk=z,Uk=u\} 
.

\bullet Under the exploration policy \gamma \ast ,Zt is uniquely ergodic and thus has a unique
invariant measure \pi \gamma \ast .

\bullet During exploration, every possible state-action pair in \=Z \times \BbbU is visited an
infinite number of times.1

Under Assumption 11, the Q-learning algorithm (3.5) converges to the fixed point
solution Q\ast . A stationary policy, \gamma N , that selects actions to minimize the Q-value at
each state, i.e., \gamma N (z) \in minuQ

\ast (z,u), is optimal. This method enables determining
the optimal policy for the quantized belief MDP [18].

3.2.2. Near optimality of finite window policies for average cost. In this
subsection, we focus on the finite window history to obtain a near-optimal policy for
the average cost criteria. Throughout this subsection, we assume \BbbY ,\BbbU to be finite.
Assuming \BbbY ,\BbbU as finite, we use finite window information to obtain finite state MDP
and demonstrate that the near-optimal policy of this finite MDP is near-optimal for
POMDP. We follow the approach and results from [21].

Recall zn is the belief distribution defined as zn(\cdot ) = P\mu \{ Xn \in \cdot | y0, . . . , yn, u0,
. . . , un - 1\} \in \scrP (\BbbX ), where the initial state X0 has a prior distribution \mu \in \scrP (\BbbX ).

Definition 3.7. z - n is the posterior distribution at time n before observing Yn
and is defined as z - n (\cdot ) := P\mu \{ Xn \in \cdot | y0, . . . , yn - 1, u0, . . . , un - 1\} \in \scrP (\BbbX ), where the
initial state X0 has a prior distribution \mu \in \scrP (\BbbX ).

For any N,n\geq 0, we can determine zn+N as follows:

zn+N = P
\bigl\{ 
Xn+N \in \cdot | z - n , yn, . . . , yn+N , un, . . . , un+N - 1

\bigr\} 
.

We then consider an alternative finite window belief MDP reduction. Let us
define the state variable at time n\geq N as

\^zn =
\bigl( 
z - n - N , I

N
n

\bigr) 
,(3.6)

where, for N \geq 1, the components are

1This can be relaxed and refined to concern those states in the support of an invariant measure
under an exploration policy [23].
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2876 Y. E. DEMIRCI, A. D. KARA, AND S. Y\"UKSEL

z - n - N =Pr(Xn - N \in \cdot | yn - N - 1, . . . , y0, un - N - 1, . . . , u0) ,(3.7)

INn = \{ yn, . . . , yn - N , un - 1, . . . , un - N\} ,(3.8)

and for N = 0, INn = yn with the prior measure \mu on X0. The state space is thus
\^\scrZ =\scrZ \times \BbbY N+1 \times \BbbU N .

The natural mapping between state spaces is defined by \psi : \^\scrZ \rightarrow \scrZ , such that

\psi (\^zn) =\psi 
\bigl( 
z - n - N , I

N
n

\bigr) 
= P z - 

n - N (Xn \in \cdot | yn - N , . . . , yn, un - N - 1, . . . , un - N - 1) = zn.

(3.9)

The new transition kernel and cost function are defined as

\^\eta (\cdot | \^z,u) =
\int 
\BbbY 
1\{ (z - 

n - N+1,I
N
n+1)\in \cdot \} 

\^P (dy | \^z,u),(3.10)

where

\^P (\cdot | \^z,u) = Pr
\bigl\{ 
Yn+1 \in \cdot | Zn - N = z - n - N , I

N
n ,Un = u

\bigr\} 
from \scrZ \times \BbbU to \BbbY . The cost function is

\^c (\^zn, un) = \~c
\bigl( 
\psi 
\bigl( 
z - n - N , I

N
n

\bigr) 
, un
\bigr) 

=

\int 
\BbbX 
c (xn, un)P

z - 
n - N (dxn | yn - N , . . . , yn, un - 1, . . . , un - N ) .

If \gamma is an optimal policy of the belief MDP, then \psi  - 1(\gamma ) is an optimal policy of
the finite window belief MDP [21].

Next, we explain how to derive a near-optimal policy for the finite window belief
MDP in the context of discounted cost. We introduce a new approximate MDP for
this purpose.

For n\geq N , fixing z - n - N to a constant z \in P (\BbbX ), we obtain a new MDP with state

\^zn = (z, INn ) with state space \^\scrZ N := \{ z\} \times \BbbY N+1 \times \BbbU N , cost function \^cN (\^zNn , un) :=
\^c((z, INn ), un), and transition kernel \^\eta N

\bigl( 
\^zNn+1 | \^zNn , un

\bigr) 
:= \^\eta 

\bigl( 
\scrZ \times INn+1 | (z, INn ), un

\bigr) 
[21].

This process is finite state and fully observable and allows for finding an opti-
mal policy \varphi N through Q-iteration. This policy can be extended to \^\scrZ as \~\varphi N (\^zNn ) =
\~\varphi N (z - n - N , I

N
n ) :=\varphi N (z, INn ).

The following theorem indicates that this policy is also nearly optimal for \^zn.

Theorem 3.8 ([21, Theorem 3]). For \^z0 = P z - 
0

\bigl( 
Xn \in \cdot | IN0

\bigr) 
, with a policy \^\gamma 

acting on the first N steps which produces IN0 = Y [0,N ],U[0,N - 1], the following holds:

E\^\gamma 

z - 
0

\Bigl[ \bigm| \bigm| \bigm| \~JN
\beta 

\bigl( 
\^z0, \~\varphi 

N
\bigr) 
 - J\ast 

\beta (\^z0)
\bigm| \bigm| \bigm| | IN0 \Bigr] \leq 2\| c\| \infty 

(1 - \beta )

\infty \sum 
t=0

\beta tLN
t ,

where

LN
t := sup

\^\gamma \in \^\Gamma 

E\^\gamma 

z - 
0

[ \| P z - 
t
\bigl( 
Xt+N \in \cdot | Y[t,t+N ],U[t,t+N - 1]

\bigr) 
 - P z

\bigl( 
Xt+N \in \cdot | Y[t,t+N ],U[t,t+N - 1]

\bigr) 
\| TV ] .

Here, \^\gamma \in \^\Gamma , where \^\Gamma can be taken to be Markov control policies.
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AVERAGE COST OPTIMALITY OF PARTIALLY OBSERVED MDPs 2877

With filter stability [21], as N approaches infinity, the upper bound tends to zero.
Given filter stability and a sufficiently large N , the policy \~\varphi N becomes near-optimal
for the finite window belief MDP for discounted cost criteria. If \beta is sufficiently large,
this policy also becomes near-optimal for the average cost criterion.

Q-learning. We now outline how to find all optimal policies using Q-learning for
the approximate finite belief MDP in the context of discounted cost. As the posterior
distribution z is fixed, we track observations and actions. We assume tracking of the
last N +1 observations and the last N control actions after at least N +1 time steps.
Thus, at time n, we monitor the information variables INn .

The Q-value iteration is constructed using these information variables. For these
new approximate states, we follow the standard Q-learning algorithm. For any I \in 
\BbbY N+1 \times \BbbU N and u\in \BbbU , the Q-value update is

Qt+1(I,u) = (1 - \alpha t(I,u))Qt(I,u) + \alpha t(I,u)
\Bigl( 
\^cN (I,u) + \beta min

v
Qt

\bigl( 
It1, v

\bigr) \Bigr) 
,(3.11)

where It1 = \{ Yt+1, yt, . . . , yt - N+1, ut, . . . , ut - N+1\} . Exploration policies are employed,
randomly choosing control actions independently, such that at time t, the action ut
is selected with probability \sigma i for each ui \in \BbbU , where \sigma i > 0 for all i. The following
assumption is a revision of Assumption 11, specifically adapted for the finite window
context:

Assumption 12 ([21 Assumption 4.1]).
1. \alpha t(I,u) = 0 unless (It, ut) = (I,u). In other cases,

\alpha t(I,u) =
1

1+
\sum t

k=0 1\{ Ik=I,uk=u\} 
.

2. Under the stationary (memoryless or finite memory exploration) policy, say
\gamma , the true state process, \{ Xt\} t, is positive Harris recurrent and in particular
admits a unique invariant measure \pi \ast 

\gamma .
3. Furthermore, we have that P (Yt = y| x)> 0 for every x \in \BbbX , and thus during

the exploration phase, every (I,u) pair is visited infinitely often.

Theorem 3.9 ([21, Theorem 4.1, Corollary 5.1]). Suppose the following condi-
tions hold:

1. Assumption 12 holds.
2. The POMDP is such that the filter is stable uniformly over priors in expec-

tation under total variation, meaning Lt \rightarrow 0 as N \rightarrow \infty .
Then, the followings are true:

\bullet The algorithm given in (3.11) converges almost surely to Q\ast which satisfies
the fixed point equation.

\bullet A stationary policy \gamma N that satisfies \gamma N (I) \in minuQ
\ast (I,u) is an optimal

policy.

Note 3.2 (see [24]). Theorem 4.1 of [24] provides sufficient conditions for uniform
filter stability. If we have \=\alpha = (1 - \~\delta (\scrT ))(2 - \delta (Q))< 1, then the filter is exponentially
stable with coefficient \=\alpha for any control policy. Here, \~\delta (\scrT ) = infu\in \scrU \delta (T (\cdot | \cdot , u)). See
also an analysis via the Hilbert projective metric [13, 24].

This method allows for obtaining near-optimal policies of POMDP for the dis-
counted cost and, consequently, under Assumption 1 for average cost. It is important
to note that for the average cost optimal policy, the actions taken in the first N steps
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2878 Y. E. DEMIRCI, A. D. KARA, AND S. Y\"UKSEL

are not significant. The cost incurred during these initial steps does not impact the
overall outcome, and since the optimal cost for each state is constant, applying the
optimal policy after N steps will still yield an optimal policy.

4. Concluding remarks. The average cost optimality of the partially observ-
able Markov decision process is a challenging problem. In this paper, we presented
explicit and easily testable conditions for the existence of solutions to the average cost
optimality equation where the state space is compact. A comparison with the related
literature and several examples are presented. Notably, our paper appears to be the
first to present and utilize a contraction result for optimality analysis. Finally, we
presented several implications of our analysis and existence result for approximations,
learning, and robustness.

Appendix A. Proof of Theorem 2.2.

Proof. We equip \scrZ with the metric W1 to define the Lipschitz seminorm \| f\| L of
any Borel measurable function f :\scrZ \rightarrow \BbbR .

W1 (\eta (\cdot | z0, u), \eta (\cdot | z\prime 0, u))(A.1)

= sup
f\in Lip(\scrZ ,1), \| f\| \infty \leq D/2

\bigm| \bigm| \bigm| \bigm| \int 
\BbbY 
f (z1 (z

\prime 
0, u, y1))P (dy1 | z\prime 0, u)

 - 
\int 
\BbbY 
f (z1 (z0, u, y1))P (dy1 | z0, u)

\bigm| \bigm| \bigm| \bigm| .(A.2)

For any f :\scrZ \rightarrow \BbbR such that \| f\| L \leq 1 and \| f\| \infty \leq D/2, we have\bigm| \bigm| \bigm| \bigm| \int 
\BbbY 
f (z1 (z

\prime 
0, u, y1))P (dy1 | z\prime 0, u) - 

\int 
\BbbY 
f (z1 (z0, u, y1))P (dy1 | z0, u)

\bigm| \bigm| \bigm| \bigm| (A.3)

\leq 
\bigm| \bigm| \bigm| \bigm| \int 

\BbbY 
f (z1 (z

\prime 
0, u, y1))P (dy1 | z\prime 0, u) - 

\int 
\BbbY 
f (z1 (z

\prime 
0, u, y1))P (dy1 | z0, u)

\bigm| \bigm| \bigm| \bigm| 
+

\int 
\BbbY 
| f (z1 (z\prime 0, u, y1)) - f (z1 (z0, u, y1))| P (dy1 | z0, u)

\leq D

2
\| P (\cdot | z\prime 0, u) - P (\cdot | z0, u)\| TV

+

\int 
\BbbY 
| f (z1 (z\prime 0, u, y1)) - f (z1 (z0, u, y1))| P (dy1 | z0, u) .(A.4)

For the first term,

\| P (\cdot | z\prime 0, u) - P (\cdot | z0, u)\| TV(A.5)

= sup
\| g\| \infty \leq 1

\bigm| \bigm| \bigm| \bigm| \int g (y1)P (dy1 | z\prime 0, u) - 
\int 
g (y1)P (dy1 | z0, u)

\bigm| \bigm| \bigm| \bigm| 
\leq (1 - \delta (Q))\| \scrT (dx1 | z\prime 0, u) - \scrT (dx1 | z0, u)\| TV ,(A.6)

and by the Dobrushin contraction Theorem [8],

\| \scrT (dx1 | z\prime 0, u) - \scrT (dx1 | z0, u)\| TV(A.7)

= sup
\| g\| \infty \leq 1

\biggl( \int 
g (x1)T (dx1 | z\prime 0, u) - 

\int 
g (x1)T (dx1 | z0, u)

\biggr) 
= sup

\| g\| \infty \leq 1

\biggl( \int 
\~gg(x0)z

\prime 
0(dx0) - \~gg(x0)z0(dx0)

\biggr) 
,(A.8)
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AVERAGE COST OPTIMALITY OF PARTIALLY OBSERVED MDPs 2879

where

\~gg(x) =

\int 
g (x1)T (dx1 | x,u) .

For all x\prime 0, x0 \in \BbbX , we have

\| \scrT (dx1 | x\prime 0, u) - \scrT (dx1 | x0, u)\| TV \leq \alpha d(x0, x
\prime 
0).

As a result, we get \~g/\alpha \in Lip(\BbbX ,1).
Then, by inequalities (A.5) and (A.7) we can write

\| P (\cdot | z\prime 0, u) - P (\cdot | z0, u)\| TV \leq \alpha (1 - \delta (Q))W1 (z
\prime 
0, z0) .(A.9)

Finally, we can analyze the second term in (A.4),\int 
\BbbY 
| f (z1 (z\prime 0, u, y1)) - f (z1 (z0, u, y1))| P (dy1 | z0, u)

\leq 
\int 
\BbbY 
W1(z1 (z

\prime 
0, u, y1) , z1 (z0, u, y1))P (dy1 | z0, u)

=

\int 
\BbbY 

sup
g\in Lip(\BbbX )

\biggl( \int 
\BbbX 
g(x1)wy1

(dx1)

\biggr) 
P (dy1 | z0, u) ,(A.10)

where wy1
= (z1 (z

\prime 
0, u, y1) - z1 (z0, u, y1)), which is a signed measure on \BbbX . By the

measurable selection theorem,2 choose measurable

gy \in arg sup
g\in Lip(\BbbX ,1)

\biggl( \int 
\BbbX 
g(x)wy(dx)

\biggr) 
.

After that we can continue with (A.10),\int 
\BbbY 

sup
g\in Lip(\BbbX ,1)

\biggl( \int 
\BbbX 
g(x1)wy1

(dx1)

\biggr) 
P (dy1 | z0, u)(A.11)

=

\int 
\BbbY 

\int 
\BbbX 
gy1

(x1)z1 (z
\prime 
0, u, y1) (dx1)P (dy1 | z0, u)

 - 
\int 
\BbbY 

\int 
\BbbX 
gy1

(x1)z1 (z
\prime 
0, u, y1) (dx1)P (dy1 | z\prime 0, u)(A.12)

+

\int 
\BbbY 

\int 
\BbbX 
gy1(x1)z1 (z

\prime 
0, u, y1) (dx1)P (dy1 | z\prime 0, u)(A.13)

 - 
\int 
\BbbY 

\int 
\BbbX 
gy1

(x1)z1 (z0, u, y1) (dx1)P (dy1 | z0, u).(A.14)

For the first term, we can write by the same argument as earlier\bigm\| \bigm\| \bigm\| \bigm\| \int 
\BbbX 
gy1

(x1)z1 (z
\prime 
0, u, y1) (dx1)

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

\leq \| gy1
\| \infty \leq D/2.

So,

2 See [15, Theorem 2, the Kuratowski--Ryll-Nardzewski measurable selection theorem]. Let \BbbX ,\BbbY 
be Polish spaces, let \Gamma = (x,\psi (x)) where \psi (x)\subset \BbbY be such that, \psi (x) is closed for each x\in \BbbX , and let
\Gamma be a Borel measurable set in \BbbX \times \BbbY . Then, there exists at least one measurable function f :\BbbX \rightarrow \BbbY 
such that \{ (x, f(x)), x\in \BbbX \} \subset \Gamma .
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2880 Y. E. DEMIRCI, A. D. KARA, AND S. Y\"UKSEL\int 
\BbbY 

\int 
\BbbX 
gy1

(x1)z1 (z
\prime 
0, u, y1) (dx1)P (dy1 | z0, u)(A.15)

 - 
\int 
\BbbY 

\int 
\BbbX 
gy1(x1)z1 (z

\prime 
0, u, y1) (dx1)P (dy1 | z\prime 0, u)(A.16)

\leq D

2
\| P (\cdot | z\prime 0, u) - P (\cdot | z0, u)\| TV

\leq \alpha 
D

2
(1 - \delta (Q))W1 (z

\prime 
0, z0)

by inequality (A.9).
For the second term, we can write by smoothing\int 

\BbbY 

\int 
\BbbX 
gy1(x1)z1 (z

\prime 
0, u, y1) (dx1)P (dy1 | z\prime 0, u)(A.17)

 - 
\int 
\BbbY 

\int 
\BbbX 
gy1

(x1)z1 (z0, u, y1) (dx1)P (dy1 | z0, u)(A.18)

=

\int 
\BbbX 
\omega (x1)\scrT (dx1 | z\prime 0, u) - 

\int 
\BbbX 
\omega (x1)\scrT (dx1 | z0, u) ,

where

\omega (x1) =

\int 
\BbbY 
gy1(x1)Q (dy1 | x1) .

For any x\prime , x\prime \prime \in \BbbX ,\int 
\BbbX 
\omega (x)\scrT (dx | x\prime \prime , u) - 

\int 
\BbbX 
\omega (x)\scrT (dx | x\prime , u)\leq \| \omega \| \infty \| \scrT (\cdot | x\prime \prime , u) - \scrT (\cdot | x\prime , u)\| TV

\leq \| \omega \| \infty \alpha d(x\prime \prime , x\prime )\leq \alpha 
D

2
d(x\prime \prime , x\prime ).

So, by definition of the W1 norm (1.7), we have\int 
\BbbX 
\omega (x1)\scrT (dx1 | z\prime 0, u) - 

\int 
\BbbX 
\omega (x1)\scrT (dx1 | z0, u)(A.19)

=

\int 
\BbbX 

\int 
\BbbX 
\omega (x1)\scrT (dx1 | x0, u)z\prime 0(dx0) - 

\int 
\BbbX 

\int 
\BbbX 
\omega (x1)\scrT (dx1 | x0, u)z0(dx0)

\leq \alpha 
D

2
W1 (z0, z

\prime 
0) .

So, by the inequalities (A.12), (A.14), (A.15), (A.17), (A.19) we get

\int 
\BbbY 
| f (z1 (z\prime 0, u, y1)) - f (z1 (z0, u, y1))| P (dy1 | z0, u)\leq \alpha 

D

2
(2 - \delta (Q))W1 (z

\prime 
0, z0) .

(A.20)

If we take the supremum of the equation over all f \in Lip(\scrZ ), then by using the
inequalities (A.4), (A.9), and (A.20), we can write

W1 (\eta (\cdot | z0, u), \eta (\cdot | z\prime 0, u))\leq 
\biggl( 
\alpha D(3 - 2\delta (Q))

2

\biggr) 
W1 (z0, z

\prime 
0) .(A.21)

Appendix B. Proof of Lemma 2.5. We present a specialization of [34, The-
orem 7.3.3] to the compact case, as in the paper we have that \scrZ is compact.

Let us first recall the Arzel\'a--Ascoli theorem.
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AVERAGE COST OPTIMALITY OF PARTIALLY OBSERVED MDPs 2881

Theorem B.1 ([9, Theorem 2.4.7]). Let F be an equicontinuous family of func-
tions on a compact space \BbbX , and let hn be a sequence in F such that the range of
fn is compact. Then, there exists a subsequence hnk

which converges uniformly to a
continuous function.

Proof of Lemma 2.5. First, since the cost function \~c is bounded (assume it is
bounded by M < \infty ) the expression (1  - \beta )J\beta (z) is uniformly bounded by M for
every \beta \in (0,1) and z \in \scrZ . By the Bolzano--Weierstrass theorem, for a fixed z and any
sequence \beta \uparrow 1, there exists a subsequence \beta (k) \uparrow 1 such that (1 - \beta (k))J\beta (k)(z)\rightarrow \rho \ast 

for some \rho \ast . Observe that for any z \in \scrZ ,

(1 - \beta (k))J\beta (k)(z) = (1 - \beta (k))
\bigl( 
J\beta (k)(z) - J\beta (k) (z0)

\bigr) 
+ (1 - \beta (k))J\beta (k) (z0) ,

which, by the uniform boundedness of h\beta (k)(z) = J\beta (k)(z)  - J\beta (k) (z0), implies that
the limit \rho \ast does not depend on z.

By Assumption 9(6), h\beta (k) is equicontinuous. By Theorem B.1, there exists a
further subsequence of h\beta (k),

\bigl\{ 
h\beta (kl)

\bigr\} 
, which converges (uniformly on compact sets)

to a continuous and bounded function h. Since \BbbU is compact and the cost function
is continuous and the transition kernel is weakly continuous, we have by the Bellman
equation that

J\beta (z) - J\beta (z0) =min
u\in \BbbU 

\biggl( 
c(z,u) + \beta 

\int 
\eta (dz\prime | z,u) (J\beta (z\prime ) - J\beta (z0)) - (1 - \beta )J\beta (z0)

\biggr) 
.

(B.1)

Taking the limit in (B.1) along the subsequence \beta (kl), we get

h(z) = lim
l
min
\BbbU 

\biggl[ 
c(z,u) + \beta (kl)

\int 
\scrZ 
h\beta (kl)(y)\eta (dy | z,u) - (1 - \beta (kl))J\beta (kl) (z0)

\biggr] 
= lim

l
min
\BbbU 

\biggl[ 
c(z,u) + \beta (kl)

\int 
\scrZ 
h\beta (kl)(y)\eta (dy | z,u)

\biggr] 
 - \rho \ast .

From this we obtain

lim
l
min
\BbbU 

\biggl[ 
c(z,u) + \beta (kl)

\int 
\scrZ 
h\beta (kl)(y)\eta (dy | z,u)

\biggr] 
= h(z) + \rho \ast .(B.2)

We now show that in the above, the order of limit and minimization can be
swapped: Using the compactness of \BbbU , the continuity of

c(z,u) + \beta (kl)

\int 
\scrZ 
h\beta (kl)(y)\eta (dy| z,u)

on \BbbU , and the equicontinuity of
\bigl\{ 
h\beta (k)

\bigr\} 
we can define a sequence ul such that

Al := c (z,ul) + \beta (kl)

\int 
\scrZ 
h\beta (kl)(y)\eta (dy | z,ul)

=min
\BbbU 

\biggl[ 
c(z,u) + \beta (kl)

\int 
\scrZ 
h\beta (kl)(y)\eta (dy | z,u)

\biggr] 
.

By the compactness of the action space \BbbU , there exists a further subsequence such
that uln \rightarrow u\ast for some u\ast along this further subsequence. By weak continuity of
the kernel, we then have that \eta (dy | z,uln) \rightarrow \eta (dy | z,u\ast ). Since h\beta (kl) is uniformly
bounded, we have limAl = limAln = c(z,u) +

\int 
\scrZ h(y)\eta (dy | z,u

\ast ).
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2882 Y. E. DEMIRCI, A. D. KARA, AND S. Y\"UKSEL

On the other hand, for any fixed action \=u, we know that

c (z, \=u) + \beta (kl)

\int 
\scrZ 
h\beta (kl)(y)\eta (dy | z, \=u)\geq Al,

and taking the limit as l\rightarrow \infty , by the same argument,

c(z, \=u) +

\int 
\scrZ 
h(y)\eta (dy | z, \=u)\geq limAl = c(z,u) +

\int 
\scrZ 
h(y)\eta (dy | z,u).

Therefore,

limAl =min
\BbbU 

\biggl[ 
c(z,u) +

\int 
\scrZ 
h(y)\eta (dy | z,u)

\biggr] 
.

Combining this with (B.2), we obtain

h(z) + \rho \ast =min
\BbbU 

\biggl[ 
c(z,u) +

\int 
\scrZ 
h(y)\eta (dy | z,u)

\biggr] 
.

Thus, we have found a bounded solution to the ACOE equation, completing the
proof.
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