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Observability of a Linear System Under
Sparsity Constraints

Wei Dai and Serdar Yüksel

Abstract—Consider an -dimensional linear system where it is known
that there are at most nonzero components in the initial state.
The observability problem, that is the recovery of the initial state, for such
a system is considered. We obtain sufficient conditions on the number of
available observations to be able to recover the initial state exactly for
such a system. Both deterministic and stochastic setups are considered for
system dynamics. In the former setting, the system matrices are known
deterministically, whereas in the latter setting, all of the matrices are
picked from a randomized class of matrices. The main message is that one
does not need to obtain full observations to be able to uniquely identify
the initial state of the linear system, even when the observations are picked
randomly, when the initial condition is known to be sparse.

Index Terms—Linear systems, observability, stochastic systems.

I. INTRODUCTION

A discrete-time linear system of dimension is said to be observ-
able if an ensemble of at most successive observations guarantees
the recovery of the initial state. Observability is an essential notion in
control theory as, with the sister notion of controllability, these form
the essence of modern linear control theory.
In this technical note, we consider the observability problem when

the number of nonzeros in the initial state in a linear system is strictly
less than the dimension of the system. This might arise in systems
where natural or external forces give rise to a certain subset of com-
ponents of a linear system to be activated or excited, for example an
external force may give rise to a subset of locally unstable states while
keeping certain other states intact.
Furthermore, with the increasing emphasis on networked control

systems, it has been realized that the controllability and observability
concepts for linear systems with controllers having full access to sen-
sory information is not practical. Many research efforts have focused
on both stochastic settings, as well as information theoretic settings to
adapt the observability notion to control of linear systems with limited
information. One direction in this general field is the case when the ob-
servations available at a controller comes at random intervals. In this
context, in both the information theory literature as well as automatic
control literature, a rich collection of papers have studied the recursive
estimation problem and its applications in remote control.
Before proceeding further, we introduce the notation adopted in the

technical note. In this note, bold-face, capital letters refer to matrices,
and bold-face, lower-case letters denote vectors. Calligraphic letters,
e.g., , denote sets. The symbols , , and represent the sets of
integers, positive integers, and real numbers, respectively. The set
is defined as . For a given set ,
denotes the sub-vector formed by the entries indexed by , and
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refers to the sub-matrix formed by the columns indexed by . The
superscript denotes the transpose operation. For a given vector ,

gives the number of nonzero components in ( is often
referred to as the -norm [1, eq. (1.1)], even though it is not a well-
defined norm), and denotes the -norm of .
In the following, we describe the system model. Preliminaries on

compressive sensing are presented in Section III. A formal discussion
of observability of linear systems follows: since the analytical tools and
results are significantly different for different cases, we study first a de-
terministic setup in Section IV and then a stochastic setup in Section V.
Detailed proofs are given in Section VI. Concluding remarks are dis-
cussed in Section VII.

II. PROBLEM FORMULATION

For the purpose of observability analysis, we consider the following
discrete-time linear time-invariant system (with zero control input):

, , where denotes the discrete time
instant, and are the state of the system and the
observation of the system respectively, the matrices and

denote the state transfer matrix and the observation ma-
trix respectively, and takes value either 0 or 1 ( means an
observation at time is available, and otherwise).
The problem we are interested in is the observability of a system

with a sparse initial state. Given observations ( instances
where ), can we reconstruct the initial state
exactly? Suppose that the receiver observes the output of the
system at the (stopping) time instances . Let the
overall observation matrix be the stacked observation matrices

and the overall
observation be where the sub-
script emphasizes that only the observations at time instants

are available. Then . In
order to infer the initial state from , the columns of have
to be linearly independent, or equivalently, the null-space of the matrix

must be trivial.
While the general setup has been well understood, the problem of

our particular interest is the observability when the initial state is
sparse.
Definition 1: Let be an orthonormal basis, i.e., con-

tains orthonormal columns. A vector is -sparse under
if for some with .

We recall that gives the number of nonzero components in the
vector . Our formulation appears to be new in the control theory lit-
erature, except for a paper [2] which considers a similar setting for
observability properties of a stochastic model to be considered later in
the technical note. The differences between the approaches in the sto-
chastic setup are presented in Section V. Another related work is [3]
which designs control algorithms based on sparsity in the state, where
compressive sensing tools are used to reconstruct the state for control
purposes.

III. PRELIMINARIES AND COMPRESSIVE SENSING

Compressive sensing is a signal processing technique that encodes
a signal of dimension by computing a measurement vector
of dimension via linear projections, i.e., , where

is referred to as the measurement matrix. In general, it
is not possible to uniquely recover the unknown signal using mea-
surements with reduced-dimensionality. Nevertheless, if the input
signal is sufficiently sparse, exact reconstruction is possible. In this
context, suppose that the unknown signal is at most -sparse,
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i.e., there are at most nonzero entries in . A naive reconstruction
method is to search among all possible signals and find the sparsest
one which is consistent with the linear measurements. This method
requires only random linear measurements, but finding the
sparsest signal representation is an NP-hard problem. On the other
hand, Donoho and Candés et al. [1], [4] demonstrated that reconstruc-
tion of from is a polynomial time problem if more measurements
are taken. This is achieved by casting the reconstruction problem as
an -minimization problem, i.e., min subject to . It is a
convex optimization problem and can be solved efficiently by linear
programming (LP) techniques. The reconstruction complexity equals

if the convex optimization problem is solved using inte-
rior point methods [5]. More recently, an iterative algorithm, termed
subspace pursuit (SP), was proposed independently in [6] and [7]. The
corresponding computational complexity is , which
is significantly smaller than that of -minimization when .
A sufficient and necessary condition for -minimization to perform

exact reconstruction is the so called the null-space condition [8].
Theorem 1: The -minimization method reconstructs exactly if

and only if for all such that , the property
holds for some constant and for all sets such

that . Here, denotes the set .
A sufficient condition for both the -minimization and SP algo-

rithms to perform exact reconstruction is based on the so called re-
stricted isometry property (RIP) [1]. A matrix is said to
satisfy the Restricted Isometry Property (RIP) with coefficients
for , , if for all index sets such that

and for all , one has

where denotes the matrix formed by the columns of with indices
in . The RIP parameter of a given matrix is defined as inf {
satifies RIP with }. It was shown in [1], [6], [9] that both -min-
imization and SP algorithms lead to exact reconstructions of -sparse
signals if the matrix satisfies the RIP with a constant parameter, i.e.,

where and is linear in the sparsity .

IV. THE DETERMINISTIC MODEL

This section characterizes the number of measurements needed for
observability for different scenarios. We follow Definition 1 to assume
that is -sparse under a given basis . Recall that
observability generally requires that the observability matrix has
full rank, i.e., at least measurements should be collected. When
is sparse, the number of observations required for observability can
be significantly reduced. In the following, the cases where the state
transfer matrix is of a diagonal form, a Jordan canonical form (block
diagonal form), and the general form will be discussed.
We start with a special case where the number of required observa-

tions is .
Proposition 1: Suppose that is -sparse under the natural basis

. Assume that is diagonal, and that all diagonal
entries are nonzero and distinct. Let all of the entries of

be nonzero. Then can be exactly reconstructed after ex-
actly measurements by algorithms with polynomial complexity
in .
See Section VI-A for the proof. Note that the reconstruction relies on

the Reed-Solomon decoding method [10], which is not robust to noise.
The following proposition considers the case where -minimization is
used for reconstruction. We have further restrictions on the initial state
and observation time.

Proposition 2: Suppose that is -sparse under . Let all of
the entries of be nonzero. Suppose for
all , where .1Further assume that is diag-
onal, and that the diagonal entries are nonzero and distinct. If the de-
coder receives successive observations at times ,
the decoder can reconstruct the initial state perfectly and the unique so-
lution can be obtained by the solution of the linear program
s.t. , where .
The proof is presented in Section VI-B. We note that, one can relax

the above to the case when the observations are periodic such that
, where are the

observation times.
In the following, we consider the case where is of a Jordan canon-

ical form.
Proposition 3: Suppose that is -sparse under . Suppose

that is of Jordan canonical form, all diagonal entries
are nonzero, and the eigenvalues corresponding to different Jordan
blocks are distinct. Let the entries of be nonzero
for all the leading components of Jordan blocks (that is, for the first
entry corresponding to a Jordan block). If the decoder receives
random observations, at random times , let

. Let denote
the column of for . Define

Suppose that .2Then can be exactly reconstructed after
measurements if by algorithms with

polynomial complexity in . In particular, a linear program (LP) can
be used to recover the initial state.

Proof: See Section VI-C.
Remark 1: We recall that the observability of a linear system de-

scribed by the pair can be verified by the following criterion,
known as the Hautus-Rosenbrock test: The pair is observable if and
only if for all , the matrix is full rank.
Clearly, one needs to check the rank condition only for the eigenvalues
of . It is a consequence of the above that, if the component of cor-
responding to the first entry of a Jordan block is zero, then the corre-
sponding component cannot be recovered even with successive ob-
servations, since this is a necessary condition for observability.
The next proposition considers the general setting.
Proposition 4: Given , and

, if satisfies the null-space condition speci-
fied in Theorem 1, then -minimization s.t.
reconstructs and exactly. Suppose that satisfies the RIP
with proper parameters, both -minimization and SP algorithm lead
to exact reconstruction of the initial state .
This proposition is a direct application of the results presented in

Section III. This result implies a protocol in which one keeps collecting
available observations until the null-space or RIP condi-
tion is satisfied. However, the computation complexity of verifying ei-
ther of them generally increases exponentially with . There are two
approaches to avoid this extremely expensive computational cost. The
first approach is reconstruction on the fly by trying to reconstruct the

1In some control systems, the initial state is known to belong to a particular
polytope (see for example [11] and the references therein). Hence, there may be
some side information about where the system starts itself.
2By the Cauchy-Schwarz inequality, . Note that

implies that there exists two rows in that are linearly dependent. We as-
sume to exclude any “repeated” observations.
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unknown initial state every time when certain number of new ob-
servations are received; and continue this process until the reconstruc-
tion is good enough. In the second approach, certain suboptimal but
computationally more efficient conditions, for example, the incoher-
ence condition, are employed to judge whether current observations
are sufficient for reconstruction.

V. THE STOCHASTIC MODEL

In this section, we discuss a stochastic model for the system ma-
trices. We note that, even though the general case under the determin-
istic model has been discussed in Proposition 4, there is no explicit
quantification on the required number of observations. However, under
the stochastic model, such a quantification is possible, see Corollary 1.
Our analysis is based on the concept of rotational invariance, defined in
Section V-A. The intuition is that rotational invariance provides a rich
structure to “mix” the nonzeros in the initial state and this “mixing”
ensures an observability with significantly reduced number of obser-
vations.
During the preparation of this technical note, we noticed that the

stochastic model was also discussed in an independent work [2].
The major differences between our approach and that in [2] are as
follows. First, in [2], the observation matrix ’s are assumed to be
randomGaussian matrices. In contrast, our model relies on rotationally
invariant random matrices, which are much more general. Second,
though the work [2] is targeted for general state transition matrix ,
the analysis and results best suit for the matrices with concentrated
spectrum, for example, unitary matrices. As a comparison, in our sto-
chastic model, we separate the rotational invariance and the spectral
property and hence the spectral property can be very much relaxed.

A. The Isotropy of Random Matrices

To define rotational invariance, we need to define the set of rotational
matrices, often referred to as the Stiefel manifold. Formally, the Stiefel
manifold is defined as

, where is the identity matrix. When , a matrix
in is an orthonormal matrix and represents a rotation. A left
rotation of a measurable set under a given rotation repre-
sented by is given by the set

. Similarly define the right rotation of given by for a given
. An invariant/isotropic probability measure [13, Sec-

tions 2 and 3] is defined by the property that for any measurable set
and rotation matrices and ,

. The invariant probability on the
Stiefel manifold is essentially the uniform probability measure, i.e.,

is independent of the choice of
.

The main results in this subsection are Lemmas 1 and 2, which
show that an rotationally invariant random matrix admits rotationally
invariant matrix products and decompositions. These results are key
for proving results regarding observability in Section V-B. Due to the
space constraints, the proofs are omitted here. The reader can find de-
tailed proofs in the corresponding technical report [14].
Lemma 1: Let be isotropically distributed. Let

be random. Let . Then is isotropically
distributed and independent of .
Let be a standard Gaussian random matrix, i.e., the en-

tries of are independent and identically distributed Gaussian random
variables with zero mean and unit variance. Consider the Jordan ma-
trix decomposition , where is often referred to as the
Jordan normal form of . Let be the singular value
decomposition of , where is the diagonal matrix composed of
singular values of . Then . The following lemma
states that the orthogonal matrix is isotropically distributed.

Let be a standard Gaussian random matrix, let
be the corresponding Jordan matrix decomposition, and let

be the singular value decomposition of . Then
is isotropically distributed and independent of , and .

Remark 2: Although Lemma 2 only treats standard Gaussian
random matrices, the same result holds for general random matrix
ensembles whose distributions are left and right rotationally invariant:
the proof of Lemma 2 can be carried over.

B. Results for Stochastic Models

Recall that a general linear system is observable if and only if the
observability matrix has full row rank. One may expect that the
row rank of still indicates the observability of a linear systemwith
sparse initial state and partial observations. The next theorem confirms
the intimate relation between the row rank and the observability. The
difference between our results and the standard results is that the re-
quired minimum rank is much smaller than the signal dimension in
our setting.
Theorem 2: Suppose that and are inde-

pendent drawn from random matrix ensembles whose distributions are
left and right rotationally invariant. Let be the row rank of the overall
observation matrix . If , then the -mini-
mization method perfectly reconstructs from (where
we write for notational convenience) with high probability (at
least for some positive constant independent of and ).
Note that the positive constant appearing in the probability
depends on the specific underlying probability distribution and

is difficult to quantify [15]. The common experience is that when is
in hundreds, the probability of perfect reconstruction is practically one
[1], [4], [6]–[8]. The proof of Theorem 2 rests on the following Lemma.
Lemma 3: Assume the same set-ups as in Theorem 2 and let
for notational convenience. Let be the corre-

sponding singular value decomposition, where ,
are the left and right singular vector matrices respec-

tively. Then is isotropically distributed and independent of and
.
While Lemma 3 is proved in Section VI-D, the detailed proof of

Theorem 2 is presented in Section VI-E. The detailed reconstruction
procedure using -minimization is explicitly presented in the proof.
The next corollary presents a special case where the diagonal form

is involved.
Corollary 1: Suppose that and

are independent drawn from random matrix ensembles whose distri-
bution is left and right rotationally invariant. Suppose that the Jordan
normal form is diagonal with distinct diagonal entries
with probability one. Then after measurements,
the -minimization method perfectly reconstructs with high prob-
ability (at least for some positive constant ).
The proof is presented in Section VI-F. Note that if

where is a standard Gaussian random matrix, and if
is also drawn from the standard Gaussian random matrix en-

semble, then all the assumptions in this corollary hold. Hence, blindly
collecting observations is sufficient for perfect
reconstruction with high probability.

VI. PROOFS

A. Proof of Proposition

Let where is
the vector containing the diagonal entries of . Let

denote the entry of the row vector . Then,
,
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where is the diagonal matrix whose diagonal entry is
. Hence

...
...

. . .
...

Since all the entries of are nonzero, is -sparse under
the natural basis. On the other hand, since are all dis-
tinct, the matrix is a truncation of the full rank Vandermonde matrix
[17]. Now according to the Reed-Solomon decoding method presented
in [10] and the corresponding proof, as long as , one
can exactly reconstruct and therefore from with the
number of algebraic operations polynomial in . This proposition is
therefore proved.

B. Proof of Proposition 2

Since is diagonal, it is of the form . Fur-
thermore, assume that is a row vector. With many
successive observations, we have a linear system described by

...
...

. . .
...

Define such that . Then the corresponding
-minimization problem becomes

(1)

Once we solve the above optimization prolem, it is clear that
where .

For this case, we first show that the -minimization has a unique
solution. Via duality theory, for a constrained minimization problem
of a convex function with an equality constraint, the minimization has
a unique solution if one can find a Lagrange multiplier (in the dual
space) for which the Lagrangian at the solution is locally stationary.
More specifically, let be the column of the matrix .
Let be the indices of the nonzero entries of . Clearly,

are also the indices of the nonzero entries of the corre-
sponding . If there exists a vector

so that

then the duality theory implies that the optimization problem in (1) has
a unique minimizer that is -sparse and has nonzero entries at indices

.
In the following we construct a subdifferential which is essentially

what Fuchs constructed in [18]. Consider a polynomial in of the form
. It is

clear that

where the inequality holds since ’s are distinct. Let
. It can be verified that the

inner product .
Now, define a vector as . Then

. The vector is the desired
Lagrange vector. Hence, the optimization problem (1) has a unique
minimizer.
What now needs to be shown is that there is a unique solution to the

original problem under the constraint. In other words, we wish to
show that there is a unique sparse such that . Now,
let there be another sparse solution . Then, .
But, since any columns of the Vandermonde matrix are linearly
independent, has to be the zero vector. Hence, this ensures the
the found solution is the sought solution.

C. Proof of Proposition 3

We now consider a Jordan matrix . Observe that

Thus, it follows that if is of Jordan canonical form, then the obser-
vation matrix writes as

...
...

. . .
...

If is nonzero, and the entries corresponding to leading entries of
Jordan blocks are nonzero, the columns of the matrix become linearly
independent. By multiplying the initial condition with a diagonal
matrix, we can normalize the columns such that the norm of each
column is equal to 1. The rest of the proof follows from Theorem 3 of
[19].

D. Proof of Lemma 3

Consider the Jordan decomposition and the
singular value decomposition . It is clear
that . For notational convenience, let

so that . It is elementary

to verify that . Hence

...
...

We shall show that is independent of both and . Since
is left and right rotation-invariantly distributed, according to Remark
2, is isotropically distributed and independent of . In order to
show that is independent of , we resort to the singular value
decomposition . Since is right rotation-invariantly
distributed, is isotropically distributed. Thus is
isotropically distributed and independent of according to Lemma
1. As a result, is independent of . Write

, where . Since
is independent of both and , is independent of . Write
the singular value decompositions of and as
and . Clearly . Since is isotropically
distributed and independent of , is isotropically dis-
tributed and independent of both and according to Lemma 1.

E. Proof of Theorem 2

We transfer the considered reconstruction problem to the standard
compressive sensing reconstruction. Let be the
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nonzero singular values of and . The
singular value decomposition of can be written in the form

where is the diagonal matrix generated from . Note that

The entries of are zeros: they do not carry
any information about . Define be the vector containing the first
entries of . We have and therefore

where is the identity matrix. The unknown ( -sparse) can
be reconstructed by -minimization with high probability. Since
is isotropically distributed and independent of , the matrix is
isotropically distributed. The matrix , con-
taining the first rows of as columns, is therefore isotropically
distributed. Provided that , the unknown signal
can be exactly reconstructed from via -minimization
[15]. Theorem 2 is proved.
Remark 3: The reconstruction procedure involves singular value de-

composition, matrix production, and -minimization. The numbers of
algebraic operations required for all these steps are polynomial in .
Hence, the complexity of the whole reconstruction process is polyno-
mial in .

F. Proof of Corollary

Since both and are left and right rotation-invariantly distributed,
Theorem 2 can be applied. Let be a Jordan decomposi-
tion. Corollary 1 holds if

...
...

is full row ranked with probability one, i.e.,
with probability one.

Suppose that the Jordan normal form is diagonal.
Denote the diagonal entry of by . Note that

where is the diagonal matrix generated from the row vector
. Define and , respectively, as

...
...

. . .
...

...
...

. . .
...

Then . Note that is a sub-matrix com-
posed of rows of the Vandemonde matrix , which has full rank.
Hence, the matrix has full row rank. By definition of , has
full rank as well. Therefore, has full row rank if and only if
does not contain any zero entries.
The fact that the row vector does not contain any zero entries

holds with probability one. This fact will be established by the isotropy

of . Let denote the column of . Since is full rank,
for all . By assumption, is isotropically dis-

tributed. This implies that with probability one [13].
is composed of finite columns. It follows that with probability one, no
entry of is zero.
So far, we have proved that has full row rank with probability

one if the Jordan normal form is diagonal. Note that by
assumption, the Jordan normal form is diagonal with probability one.
We have with probability one.

VII. CONCLUDING REMARKS

In this technical note, we discussed the observability of a linear
system where the number of nonzeros in the initial state is smaller than
the dimensionality of the system. We observed that a much smaller
number of observations (even when the observations are randomly
picked) can be used to recover the initial condition.
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