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Decentralized Learning for Optimality in Stochastic
Dynamic Teams and Games with Local Control and

Global State Information
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Abstract—Stochastic dynamic teams and games are rich
models for decentralized systems and challenging testing grounds
for multi-agent learning. Previous work that guaranteed team op-
timality assumed stateless dynamics, or an explicit coordination
mechanism, or joint-control sharing. In this paper, we present
an algorithm with guarantees of convergence to team optimal
policies in teams and common interest games. The algorithm
is a two-timescale method that uses a variant of Q-learning on
the finer timescale to perform policy evaluation while exploring
the policy space on the coarser timescale. Agents following
this algorithm are “independent learners”: they use only local
controls, local cost realizations, and global state information,
without access to controls of other agents. The results presented
here are the first, to our knowledge, to give formal guarantees
of convergence to team optimality using independent learners in
stochastic dynamic teams and common interest games.

Index Terms—Stochastic games; Stochastic optimal control;
Cooperative control; Game Theory; Machine learning.

I. INTRODUCTION

In modern control engineering applications, two challenges
are becoming increasingly common: online problems and de-
centralization. In online problems, the system to be controlled
is not initially known by the agent and must be learned. In
decentralized systems, several autonomous decision-makers
act in a shared environment. This paper is concerned with
multi-agent reinforcement learning (MARL), which is at the
intersection of these two challenges. We use stochastic games
to model the shared environment, and we present algorithms
suitable for stochastic dynamic teams under a particular de-
centralized information structure.

In online problems, important knowledge of the system
to be controlled is initially unavailable to the controller.
Classical methods for solving control problems, such as linear
programming, dynamic programming, and convex analytic
methods, cannot be implemented without access to the system
model. Instead, the control agent must use observed feedback
to learn control policies. Reinforcement learning has had
considerable success in single-agent control problems, both in
applications and in theory, where methods such as Q-learning
[2], [3], [4] recover optimal policies when used in a stationary
environment.

A conference version [1] was presented at the 2019 Conference on Decision
and Control and serves as an announcement of the partial results presented
here without details. The conference version [1] does not contain the results
on weakly acyclic games or any of the proofs presented here.
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A second challenge comes from decentralization. Decen-
tralized systems are characterized by multiple agents acting in
a common environment with some local information available
to each agent. The costs incurred by one agent in a decentral-
ized system depend, in general, on its own actions, the actions
of other agents, and the history of the system. Such coupled
interactions are common in complex, real-world engineering
applications. Some examples of systems that are inherently de-
centralized are sensor networks, stochastic networked control
systems, the Internet of Things, and energy systems.

Compared to the success of reinforcement learning in
stationary single-agent problems, there are relatively few
formal results on MARL. This is partly explained by the
loss of stationarity: when multiple learning agents interact,
a given agent will change its behaviour to exploit learned
information. From the point-of-view of the remaining agents,
this agent is a part of the environment, and so the environment
is non-stationary [5]. Consequently, one of the fundamental
assumptions made for single-agent theory does not hold in
MARL, and theoretical guarantees do not carry over.

Stochastic games [6], [7], [8], [9] generalize both repeated
games [10] and Markov decision problems (MDPs). Like
repeated games, players in stochastic games must be strategic
and respond to the policies used by other agents. Unlike
repeated games, in which the same stage game is played at
every time step, the stage game played at a given time in
a stochastic game depends on the history of play, which is
summarized by a state. As in MDPs, agents in stochastic
games must select actions with the state process and its long-
term cost implications in mind. As stochastic games provide
a rich model for dynamic, strategic decision making, they are
a popular framework for studying MARL [11].

Stochastic dynamic teams [12], [13] and common-interest
games [14], [15] model cooperative systems and so are of spe-
cial interest to decentralized control. In teams, all players incur
the same costs and interests are perfectly aligned. Common
interest games generalize teams in a natural way: in common
interest games, agents to not necessarily incur identical costs,
but there are a subset of joint policies which each agent strictly
prefers to all other policies. Despite the incentive to coordinate
behavior in common interest games, coordination is generally
difficult in online problems when information is decentralized.

As we will outline in detail in Section II, there are
relatively few theoretical results for stochastic games without
control-sharing. Even when assuming full state observability at
each agent rather than the more general assumption of partial
state observability, there are no rigorous results that guarantee
team optimality in truly stochastic teams without relying on
control-sharing.
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A. Contributions

In this paper, we present a decentralized learning algo-
rithm for playing stochastic common interest games, a class
of games which model decentralized control problems and
contain stochastic teams as a special case. We give formal
guarantees of convergence to team optimal policies without
use of control sharing among agents.

(i) In Theorem 1, we consider stochastic common interest
games and introduce an algorithm (that only uses local
cost and local action history and the common state of the
system) that provably converges to a team optimal policy
in a probabilistic sense that is made precise in the theo-
rem. What makes this algorithm different from our prior
work [16], which guaranteed convergence to equilibrium
but not team optimal policies, is the utilization of a finite
window of the most recent (noisy) aggregate cost scores
to adaptively estimate the lowest possible cost for each
decision maker.

(ii) Theorem 2 considers a specific implementation of our
main algorithm in the context of weakly acyclic games.
We show this algorithm leads to equilibrium policies in
weakly acyclic games and, furthermore, if the game is
also a common interest game then play will settle to a
team optimal policy. This theorem strengthens one of the
main results from [16].

(iii) In Theorem 3, we obtain convergence to team optimality
in the stronger sense of almost sure convergence by using
constant, preset aspiration levels. This result requires
a stronger assumption that the preset aspiration levels
separate the team optimal policies from the other policies.
Theorem 3 also describes the long-run behaviour of
the algorithm with constant aspirations when used in a
general stochastic game.

These contributions are the first formal guarantees of achieving
team optimality in stochastic common interest games under
full state observability but no action sharing.

The remainder of the paper is organized as follows: Section
II surveys related literature. In Section III, we specify the
stochastic game model and provide relevant background. In
Section IV, we present our main algorithm and state The-
orem 1. Section V presents Theorem 2, which strengthens
a result from [16]. Section VI considers a variant of the
main algorithm and presents Theorem 3, which studies the
variant algorithm’s long-term behaviour in general sum games.
Section VII contains numerical results from a simulation study,
and Section VIII concludes the paper. The proofs of our main
technical results are contained in the appendices.

B. Notation

R denotes the real numbers, N and N+ denote the nonneg-
ative and positive integers, respectively. Pr(·) and E(·) denote
the probability and the expectation, respectively. For a finite
set S, P(S) denotes the set of probability distributions over S.
For finite sets S, S′, we let P(S′|S) denote the set of stochastic
kernels on S′ given S. An element T ∈ P(S′|S) is a collection
of probabilities distributions on S′, with one distribution for
each s ∈ S, and we write T (·|s) for s ∈ S to make this
distributional dependence on s explicit. We write Y ∼ f to
denote that the random variable Y has distribution f . If the
distribution of Y is a mixture of other distributions, say with

mixture components fi and weights pi for 1 ≤ i ≤ n, we
write Y ∼

∑n
i=1 pifi. The Dirac distribution concentrated at

x ∈ R is denoted Ix. For a finite set S, Unif(S) denotes the
uniform distribution over S and 2S denotes the set of subsets
of S. (x)+ := max{x, 0}, for x ∈ R.

II. LITERATURE REVIEW

Interest in using single-agent reinforcement learning in
multi-agent environments dates at least as far back as [17],
in which Q-learning is studied in a cooperative predator-prey
simulation. In [18], multiple agents run Q-learning in a block-
pushing task without sharing actions with one another, and the
authors suggest that cooperative behaviour may emerge even
without explicit communication between agents.

In addition to presenting empirical results and formal
conjectures, an important terminological distinction was pop-
ularized in [19], where the authors distinguish between joint
action learners and independent learners: joint action learners
use the past actions of all agents in their learning, while
independent learners use only local action histories.

Early rigorous work on MARL in games was concerned
mostly with joint-action learners. In [11], Littman proposed
stochastic games as a framework for studying MARL and
presented the Minimax Q-learning algorithm, a joint-action
learner designed for two-player zero-sum games. Convergence
results for this method were proved in [20]. The main idea
from [11] was extended in [21] and [22], which present
Nash Q-learning, another joint-action learner with conver-
gence guarantees under certain restrictive assumptions. Further
contributions in this line include Friend-or-Foe Q-learning
[23], Team Q-Learning [24], and several others, e.g. [25],
[26]. A considerably different approach is taken in [27], which
presents Optimal Adaptive Play (OAP), a joint-action learner
based on adaptive play [28] rather than on Q-learning. OAP
is shown to converge to a team optimal policy when used in
a stochastic team.

Though early rigorous work focused on joint action learn-
ers, there has also been persistent interest in independent
learners. As the number of joint actions is exponential in the
number of agents, the computational burden of a joint action
learner at any one agent becomes intractable for problems
of even a moderate size. Scalability, robustness, and faster
convergence are potential advantages of independent learners
over joint action learners [29], [30]. The applicability of the
set-up considered here and other advantages are covered in
greater detail in [29] and [31]. For a recent survey of MARL
that discusses other decentralized set-ups, see [32].

Distributed Q-learning, an independent learner designed
for teams, was presented in [33], along with a guarantee of
convergence to team optimality in teams with deterministic
state dynamics and costs. When using this algorithm, an
agent only updates its Q-factors when an improvement is
observed, attributing unfavourable feedback to its teammates’
experimenting with other actions. This optimistic approach
leads to poor performance in problems with random state
transitions or cost readings [29].

An algorithm called Win or Learn Fast Policy Hill Climb-
ing (WoLF-PHC) was introduced in [34]. An agent using
WoLF-PHC selects actions according to an exploration policy
and iteratively improves its exploration policy using its learned
Q-factors by updating toward a best-response. Although no
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formal results are presented for stochastic games, the key
innovation of [34] is its policy update: the agent compares
the performance of the current exploration policy to that of
a distinguished “average policy.” When the current policy
outperforms the average policy, the agent changes its policy
relatively slowly; when the current policy is underperforming,
the agent changes its policy more rapidly.

Following [33] and [34], a number of algorithms based
on Q-learning were proposed for stochastic games. Some of
these algorithms, such as Hysteretic Q-learning [35], modify
the Q-factor update. Other methods, including the Frequency
Maximum Q heuristic presented in [36] and its extensions
to stochastic games [37], modify action selection. Still other
methods, such as lenient learning [38], [39], modify both the
Q-factor update as well as the action selection mechanism
in an attempt to achieve optimality in cooperative games.
With the exception of [33] described above, these works offer
only empirical support for their algorithms, rather than formal
guarantees of convergence to team optimality. For a survey on
this line of research and a description of obstacles in MARL,
see [29].

While researchers in the machine learning community
sought empirically successful algorithms for stochastic games,
a parallel line of research in the control and operations research
communities sought rigorous results in the more restricted
class of stateless repeated games.

Among the literature on MARL for repeated games, [40],
[41] and [42] are most relevant to this paper. Although the
algorithms and analysis presented in these works differ from
one another, each operates using the principle of exploring
an agent’s set of actions more aggressively when the agent
perceives it is underperforming.

Reference [41] presents three algorithms, including Safe
Experimentation Dynamics, which is shown to lead to team
optimality in repeated teams with high probability. Using this
method, an agent maintains a baseline action and baseline cost
while experimenting with other actions. Each time an action is
taken, its immediate cost is compared with the baseline cost;
the baseline cost is adjusted when a lower cost is observed, and
the action achieving this lower cost becomes the new baseline.

Agents using the algorithm from [42] maintain a binary
“mood” variable, which is meant to capture whether the agent
is content with its current performance. It is shown that all
stochastically stable outcomes maximize the sum of joint
payoffs across all agents.

Aspiration learning for repeated coordination games is
presented in [40], along with formal results on the stochastic
stability of efficient outcomes. An agent using this algorithm
iteratively sets its aspiration level, a scalar threshold value that
represents the highest cost (or lowest reward) that the agent
finds acceptable. When receiving costs higher than its aspi-
ration level, the agent is unsatisfied and explores alternative
actions more aggressively.

Other work in this area includes [43], [44] and [45].
Variants of log-linear learning for repeated games were studied
in [43], [44] and come with guarantees on the stochastic sta-
bility of efficient outcomes. The stochastic imitation dynamics
introduced in [45] assign probability one to efficient outcomes
in large class of repeated games.

One explanation for the greater number of rigorous results
on independent learners in a repeated game setting is the lack

of state dynamics. In repeated games, the same stage game
is played in each period and there is no tradeoff between
short- and long-term costs. As such, the scalar cost realizations
can be used directly when setting aspiration levels (as in
[40]) or baseline costs (as in [41] and [42]). In contrast,
policy evaluation is inherently slow (due to delayed rewards),
noisy, and algorithm dependent in games with random state
dynamics, and this is only exacerbated by the presence of
other learning agents. Consequently, extending the preceding
methods is a significant challenge.

In this paper, we study stochastic teams and common
interest games with full state information at each agent but no
action sharing between agents. This set-up arises naturally in
problems where the state can be sensed by a global sensor and
broadcast to agents. In [46], a (physically) distributed array of
micro-electro-valves producing controlled and directed micro-
air-jets is used to steer the motion of a small object on a smart
surface. The state of this system is the current and previous
positions of the object which is sensed by an overhead camera
and accessed by all control units each controlling a separate
valve. Each control unit implements a standard Q-learning
algorithm based on the global state and its own control
observations (by ignoring the other control units) for reasons
stated as follows: “A fully centralized control architecture is
not suitable due to processing complexity and the number of
communication channels required”. In [31], robotics problems
involving multi-dimensional action spaces are considered. The
authors observe that centralized approaches in problems with
multiple actuators are often intractable due to a combinato-
rial explosion of the joint state-action space. Among other
decentralization schemes, the authors consider the case with
full state but only local actions, wherein the actuators are
able to sense the global state variable (e.g. two dimensional
position and velocity in a vehicle navigation problem; three
dimensional position in a joint manipulation task) but do
not attempt to sense one another’s actions for computational
tractability. Other applications for which this information
structure is appropriate include problems where the state
variable is a commonly observed price as well as problems in
traffic networks, where link latencies can be broadcast using
a mobile application.

Another motivation for studying this set-up is that algo-
rithms designed for problems with full state information but
no action-sharing have been successful even when used in
problems possessing a different information structure, such
as partial state observability. Examples of studies that use
partial state observations as a surrogate for complete state
observations and then use methods designed for our informa-
tion structure include interference control in wireless networks
[47], [48] and cache placement in wireless networks [49].
Many further examples can be found in the area of cognitive
radio; see [50] and the references therein.

In [16], we introduced an independent learner that provably
leads to equilibrium in weakly acyclic stochastic games in
general and in teams in particular. However, stochastic teams
generally have both team optimal equilibrium policies and
suboptimal equilibrium policies, and suboptimal equilibria
can perform arbitrarily worse than an optimal equilibrium.
A simple but illustrative example is offered in Section III.
Thus, guarantees of finding an equilibrium joint policy are
not satisfactory in the context of decentralized control when
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cost minimization is a design goal. In this paper, we modify
the main algorithm from [16] to guarantee convergence to
team optimality when possible.

III. BACKGROUND

A. Stationary Markov Decision Problems and Q-Learning
A stationary Markov Decision Problem (MDP) with a dis-

counted cost criterion is a discrete time process characterized
by the following:

1) A finite set of states X
2) A random initial state x0 ∈ X
3) A finite set of control actions U
4) A discount factor β ∈ (0, 1)
5) A cost function c : X× U→ R
6) A transition probability kernel P ∈ P(X|X × U) for

determining the next state given the current state-action.
At time t ∈ N, the system is in state xt ∈ X and

the decision maker1 (DM) selects a control action ut ∈ U.
The DM then incurs a stage cost c(xt, ut), and the system
randomly transitions to the next state, xt+1, according to
the probability distribution P (·|xt, ut). We assume that, prior
to selecting ut at time t ∈ N, the DM has access to the
information It defined by

I0 = {x0}, It+1 = It ∪ {xt+1, ut, c(xt, ut)}, t ∈ N.

A policy is a rule for selecting control actions based on the
information available. In principle, the DM may use any func-
tion of It to choose ut, possibly with randomization. Fixing a
policy θ induces a probability distribution on the sequence of
state-actions {(xt, ut)}t∈N. This induced probability measure
is used to define the cost criterion:

Jx(θ) := Eθ

(∑
t∈N

βtc(xt, ut)

∣∣∣∣∣x0 = x

)
, ∀x ∈ X

where Eθ denotes that the stochastic process {(xt, ut)})t∈N
is determined by the policy θ.

The DM’s goal is to select a policy that minimizes the cost
functional Jx in every initial state x ∈ X. Although the agent
can use an arbitrarily complicated, history dependent policy, it
is well-known (see, for example, [51]) that this minimum can
be achieved within the simpler set of stationary randomized
policies, which we identify with the set ∆ = P(U|X). A
stationary randomized policy θ ∈ ∆ uses only the most
recent state xt to (randomly) select an action ut in a time-
invariant manner; that is, when the agent follows a policy
θ ∈ ∆, we have ut ∼ θ(·|xt). Within ∆, we can further
restrict our attention (without loss of optimality [51]) to the
set of stationary deterministic policies Π, which we identify
as Π = {π : X → U}. An agent following a policy π ∈ Π
selects its action as a deterministic function of the state, and
we write ut = π(xt) or ut ∼ Iπ(xt).

When the cost function and transition kernel are known,
iterative methods such as value iteration can be used to
obtain an optimal policy. Otherwise, model-free reinforcement
learning techniques such as Q-learning [3] can be used to
recover an optimal policy. In standard online Q-learning, the

1We use the terms agent, decision maker, and player interchangeably.

DM begins with arbitrary Q-factors Q0 ∈ RX×U and updates
its Q-factors as follows:

Qt+1(xt, ut) =(1− αt(xt, ut))Qt(xt, ut)
+ αt(xt, ut)(c(xt, ut) + βmin

v∈U
Qt(xt+1, v))

Qt+1(x, u) =Qt(x, u), ∀(x, u) 6= (xt, ut)

where αt(xt, ut) ∈ [0, 1] is the step-size at time t ∈ N. If all
state-action pairs are visited infinitely often and the step-sizes
vanish properly, then Pr(Qt → Q∗) = 1, where Q∗ is the
vector of optimal Q-factors, the unique solution of a Bellman
fixed point equation [2], [4].

Once Q∗ is attained, one can recover the value function
V ∗, using V ∗(x) = minu∈UQ

∗(x, u), or an optimal policy π∗,
using π∗(x) ∈ arg minu∈UQ

∗(x, u). Moreover, learned Q-
factors can be exploited during play: [52] presents a Q-learning
algorithm in which the DM’s action selection converges to that
of an optimal policy.

The popularity of Q-learning in stationary MDPs is justi-
fied: it is easy to implement and asymptotically recovers an
optimal policy. However, this theoretical guarantee is predi-
cated on the stationarity of the system. When a state-action
(xt, ut) is visited, the feedback received (in the form of a
cost c(xt, ut) and next state xt+1) is always generated by the
same Markovian source. If the system is not stationary, then
convergence to the Q-factors Q∗ is not guaranteed.

B. Stochastic Games and Decentralized Q-learning
A finite (discounted) stochastic game is a multi-agent

generalization of a stationary MDP, and is characterized by
1) N ∈ N+ decision makers, the ith denoted by DMi

2) A finite set of states X
3) A random initial state x0 ∈ X
4) For each DMi:

A finite set of control actions Ui
A discount factor βi ∈ (0, 1)
A cost function ci : X× U→ R, where U := ×Ni=1Ui

5) A transition probability kernel P ∈ P(X|X × U) for
determining the next state given the current state and joint
action.

At time t ∈ N, the system is in state xt, and each DMi

chooses a control action uit. While DMi only selects uit, its
incurred cost is given by ci(xt,ut), where ut := (u1

t , . . . , u
N
t ).

Following the play of this stage game, the system randomly
transitions to state xt+1 according to P (·|xt,ut). We consider
the situation in which DMi observes only the state variable,
its own actions, and its own cost realizations (DMi need not
know the functional form of its cost). More precisely, prior to
selecting uit at time t ∈ N, DMi has access to the information
Iit defined by

Ii0 = {x0}, Iit+1 = Iit ∪ {xt+1, u
i
t, c

i(xt,ut)}, t ∈ N.

In particular, DMi cannot see the past actions of the other
DMs, ujs, for any j 6= i, s ∈ N. This is in contrast to previous
works such as [21], [23], [27] and [53].

A policy for DMi is a rule for selecting the sequence of
local actions given the information available to DMi. As in
MDPs, DMi’s goal is to minimize its long-term expected dis-
counted cost. Unlike MDPs, however, DMi’s cost is affected
by the control actions of the other agents. We again restrict
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our attention to stationary randomized policies, which will be
justified below. We denote the set of stationary randomized
policies for DMi by ∆i := P(Ui|X), and similarly we use
Πi = {πi : X → Ui} to denote the set of stationary
deterministic policies for DMi.

We use boldface symbols to denote joint objects, i.e. lists
of objects with one entry per agent, and we omit the agent
superscript. The set of stationary joint policies is thus denoted
by ∆ := ×Ni=1∆i and the set of stationary deterministic joint
policies is denoted Π := ×Ni=1Πi.

For notational convenience, we will use the agent su-
perscript −i to refer to a joint quantity for which DMi’s
position has been removed. Using this standard convention,
the set of stationary joint policies for all agents except DMi

is denoted ∆−i := ×j 6=i∆j . Similarly, Π−i = ×j 6=iΠj and
U−i = ×j 6=iUj . By convention, we may write U = Ui ×U−i
for any DMi, and similarly for the sets ∆ and Π. This
allows us to re-write joint objects while isolating DMi’s role:
for instance, a joint action u ∈ U can be re-written as
u = (ui,u−i) and a joint policy θ ∈ ∆ can be re-written
as θ = (θi,θ−i).

A joint policy θ ∈ ∆ induces a probability measure on
sequences of states and joint actions, which we use in defining
DMi’s cost

J ix(θ) := Eθ
(∑
t∈N

(βi)tci(xt,ut)
∣∣∣x0 = x

)
, ∀x ∈ X

where Eθ denotes that the stochastic process {(xt,ut)}t∈N is
determined by the policy θ. Then, each DMi’s goal is to select
a policy πi ∈ ∆i to minimize this cost.

Definition 1. A policy π∗i ∈ ∆i is called a best reply to
θ−i ∈∆−i (for DMi) if

J ix(π∗i,θ−i) = min
πi∈∆i

J ix(πi,θ−i), ∀x ∈ X.

Any best reply π∗i ∈ ∆i to θ−i ∈∆−i is called a strict best
reply with respect to (πi,θ−i) if

J ix(π∗i,θ−i) < J ix(πi,θ−i), for some x ∈ X.

For any fixed θ−i ∈ ∆−i, DMi faces a stationary MDP;
hence, DMi always has a deterministic best reply to any θ−i ∈
∆−i. We denote the set of deterministic best replies by

BRi(θ−i) := {π∗i ∈ Πi : π∗i is a best reply to θ−i}.

We can describe the set BRi(θ−i) using the optimal Q-factors
for the MDP faced by DMi when playing against the policy
θ−i. The vector of optimal Q-factors for this environment is
denoted Q∗iθ−i ∈ RX×Ui . We include the policy θ−i in this
notation as a reminder that the MDP and optimal Q-factors
both depend on the policy used by all other players. Then,
BRi(θ−i) can be expressed as

BRi(θ−i)

= {πi ∈ Πi : Q∗iθ−i(x, πi(x)) = min
vi∈Ui

Q∗iθ−i(x, vi), ∀x ∈ X}.

Definition 2. A joint policy θ∗ ∈ ∆ is called a (Markov
perfect) equilibrium if θ∗i is a best reply to θ∗−i, for all i.

We denote the set of all Markov perfect equilibrium poli-
cies by ∆eq and we denote the set of stationary deterministic

equilibrium policies by Πeq := ∆eq ∩ Π. In any finite
discounted stochastic game, the set ∆eq is non-empty [10].
Note, however, that the set Πeq may be empty in general
stochastic games.

Definition 3. A stochastic game is called a stochastic team
(or simply a team) if there exists c : X×U→ R and β ∈ (0, 1)
such that

ci = c, βi = β, ∀ DMi.

Definition 4. A joint policy π∗ ∈ Π is called team-optimal if

J ix(π∗) = inf
π∈Π

J ix(π) ∀i, x ∈ X. (1)

We use Πopt to denote the set of team optimal policies,
which are stationary deterministic policies by definition. It is
easy to see that Πopt may be empty in a general stochastic
game but that Πopt is non-empty in any stochastic team.

Definition 5. A stochastic game is called a common interest
game if (i) Πopt is non-empty, and (ii) for any π̃ ∈ Π\Πopt,
we have

inf
π∈Π

∑
x∈X

J ix(π) <
∑
x∈X

J ix(π̃), ∀DMi.

This definition is consistent with the definition of a com-
mon interest game introduced in [14] and used in other
literature, e.g., [15]. Teams are a proper subclass of common
interest games. The repeated game (|X|= 1) with the stage
cost functions shown in Figure 1 is a common interest game
for a, b > 0 but not a team unless a = b and β1 = β2.

u1t :

u2t :
1 2

1 a, b a+ 1, b+ 1
2 a+ 1, b+ 1 −a,−b

Fig. 1. Stage cost for a two-DM game where DM1 (DM2) chooses a row (a
column) and its cost is the first (the second) entry in the chosen cell.

It is immediate that a team-optimal policy is an equi-
librium; however, the converse need not be true. For an
illustration of how poorly an equilibrium policy can perform
with respect to team-optimality, consider again the repeated
game presented in Figure 1 with a = b > 0 and β1 =
β2 = β ∈ (0, 1). Clearly, the joint policy πsub := (1, 1)
is an equilibrium policy, and so is the team-optimal policy
π∗ := (2, 2). We have that J i(πsub) − J i(π∗) = 2a

1−β , for
each agent i ∈ {1, 2}, which shows that the performance
gap between an equilibrium policy and a team-optimal policy
can be arbitrarily large. This provides the motivation for
designing decentralized algorithms that allow agents to learn
team-optimal policies, when they exist.

Our objective is the following: given a common interest
game, we wish to provide each DM with a decentralized
learning algorithm that does not use control sharing and that
provably leads, in some appropriate sense, to a team optimal
policy.

In [16], we presented an algorithm that leads to equilibrium
policies in weakly acyclic games, another class of games (dif-
ferent from common interest games) that generalizes teams.
These algorithms instruct DMs to use the same stationary pol-
icy, called baseline policies, for a large number of consecutive
stages, the collection of which is called an exploration phase.
At the end of an exploration phase, DMs update their baseline
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policies in a synchronized manner. In this way, the system is
stationary for long enough for Q-learning to return meaningful
Q-factors. The Q-factors acquired during an exploration phase
are used to construct best replies; Q-factors are then reset
for the next exploration phase. The DMs use inertial best-
responding to update their baseline policies, and it is shown
that this process leads to equilibrium policies in weakly acyclic
games.

In the next section, we present a decentralized learning
algorithm that leads to team-optimal policies, when they exist.
The algorithm here uses the exploration phase technique from
[16], but modifies the baseline policy update in order to
exploit the following structural result on Q-factors in teams
and common interest games.

Lemma 1. In a common interest game, for all i, π∗ ∈ Πopt,
π̃ ∈ Π \Πopt, we have∑

x∈X
Qiπ∗−i(x, π∗i(x)) <

∑
x∈X

Qiπ̃−i(x, π̃i(x)).

This fact provides for us an avenue for separating team-
optimal policies from the other policies by focusing on Q-
factors.

Proof. For all i, π∗ ∈ Πopt, π̃ ∈ Π \Πopt, we have∑
x∈X

Qiπ∗−i(x, π∗i(x)) =
∑
x∈X

J ix(π∗) <
∑
x∈X

J ix(π̃)

If π̃i ∈ BRi(π̃−i), then J ix(π̃) = Qiπ̃−i(x, π̃i(x)); otherwise,∑
x∈X

J ix(π∗) ≤
∑
x∈X

min
ui∈Ui

Qiπ̃−i(x, ui) <
∑
x∈X

Qiπ̃−i(x, π̃i(x)).

IV. LEARNING TEAM OPTIMALITY

In this section, we introduce a learning algorithm for
achieving team optimality in teams and common interest
games. To motivate our algorithm, we first study a time-
homogenous Markov chain {πk}k≥0, taking values in the set
of joint stationary deterministic policies Π. The dynamics
of this Markov chain will be determined by the Idealized
Update Procedure (IUP), detailed in Algorithm 1. While the
IUP cannot be implemented in a stochastic common interest
game under the information structure of interest, the resulting
Markov chain will be used in approximation arguments in the
proofs of our main results.

Under inertial best-responding with inertia parameter λi ∈
(0, 1), at time k ∈ N, DMi checks whether its current policy
πik is a best-reply to the policy being used by other players,
i.e. it checks if πik ∈ BRi(π−ik ); if it is, then πik+1 = πik.
Otherwise DMi is not best-replying and selects

πik+1 ∼ (1− λi)Unif(BRi(π−ik )) + λiIπik ,

that is, switches to a random best-reply with probability
1 − λi or is inert (does not change away from πik) with
probability λi. Including inertia in one’s policy update can
be used to avoid cycling in best-reply dynamics. For example,
in the game in Figure 1, if play starts at either joint policy
(1, 2) or at (2, 1) and both players switch to a best-reply at
each step, the joint policy will cycle between (1, 2) and (2, 1)
perpetually. Such cycling can be avoided by using explicit

coordination mechanisms for determining which DM should
change its policy and at what time, but such mechanisms may
not be feasible in decentralized settings. Simple decentralized
mechanisms such as inertia can been used with the same effect
[43], [41].

The condition-dependent nature of inertial best-responding
can be captured using a stochastic kernel Ri,λ

i ∈ P(Πi|Πi ×
2Πi), where Ri,λ

i

selects a successor policy randomly, con-
ditioning on the current policy and the current (perhaps esti-
mated) best-reply set. To allow for uncertainty of BRi(π−ik ),
we define Ri,λ

i

as follows:

Ri,λ
i

(π̃i|πi, Bi) :=


1, if πi ∈ Bi, π̃i = πi

λi, if πi 6∈ Bi, π̃i = πi

1−λi
|Bi| , if πi 6∈ Bi, π̃i ∈ Bi
0, otherwise

, (2)

for any πi ∈ Πi, Bi ∈ 2Πi and π̃i ∈ Πi.
Note that selecting πik+1 ∼ Ri,λ

i

(·|πi,BRi(π−ik )) is
equivalent to selecting πik+1 according to inertial best-
responding with parameter λi.

Under the Idealized Update Procedure (IUP), presented in
Algorithm 1, DMi chooses πik+1 according to a mixture of
uniform random experimentation and inertial best-responding
when the joint policy is team optimal, i.e. πk ∈ Πopt.
When πk /∈ Πopt, DMi uses a mixture of uniform random
experimenting and a player selected stochastic kernel hi ∈
P(Πi|Πi × 2Πi) to choose πik+1.

Algorithm 1: Idealized Update Procedure (IUP) for DMi

1 Set Parameters
2 λi ∈ [0, 1]: inertia probability
3 hi ∈ P(Πi|Πi × 2Πi), a policy update kernel
4 γi, κi ∈ (0, 1): exploration probabilities

5 for k ≥ 0
6 if πk ∈ Πopt then

πik+1 ∼ (1−γi)Ri,λi(·|πik,BRi(π−ik ))+γiUnif(Πi)

7 else (πk /∈ Πopt)
8 πik+1 ∼ (1−κi)hi(·|πik,BRi(π−ik ) +κiUnif(Πi)
9 end

10 end

We will require that DMi randomly explores Πi more
when the joint policy is not team optimal, i.e. κi � γi.
Qualitatively, this results in shifting away from suboptimal
joint policies more quickly than team optimal policies, and as
a result the process spends a large fraction of time in Πopt.
We formalize this intuition below, and note that the guarantee
of Lemma 2, on attaining team-optimality in common interest
games, holds for arbitrary {hi}Ni=1. That is, DMi has some
flexibility in how it updates its policies when not experiment-
ing and when the current joint policy is not team optimal.

Lemma 2. Consider a common interest game, and suppose
each DMi updates its policies according to the IUP in
Algorithm 1. Let Aγ,κ,h denote the matrix of the transition
probabilities for the induced time-homogenous Markov chain
on Π, where γ := {γi}Ni=1, κ := {κi}Ni=1, h = {hi}Ni=1. We
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denote the associated unique stationary distribution by µ∗γ,κ,h.
For any ε ∈ (0, 1), κ ∈ (0, 1)N , there exists γ̄ε(κ) > 0 such
that if γi ∈ (0, γ̄ε(κ)) for all i, then

µ∗γ,κ,h(Πopt) ≥ 1− ε/2. (3)

Moreover, for all µ0 ∈ P(Π), we have

lim
n→∞

µ0A
n
γ,κ,h = µ∗γ,κ,h.

Proof. Since γi, κi > 0 for all i, the induced Markov chain
is irreducible, hence there exists unique µ∗γ,κ,h such that
µ∗γ,κ,h = µ∗γ,κ,hAγ,κ,h. We have ∑

π∗∈Πopt

µ∗γ,κ,h(π∗)

=
∑

π∗∈Πopt

∑
π∈Πopt

µ∗γ,κ,h(π)Aγ,κ,h(π,π∗)

+
∑

π∗∈Πopt

∑
π/∈Πopt

µ∗γ,κ,h(π)Aγ,κ,h(π,π∗)

≥
∑

π∈Πopt

µ∗γ,κ,h(π)
∏
i

(1− γi)

+
∑

π/∈Πopt

µ∗γ,κ,h(π)
∏
i

(κi/|Πi|)

This leads to∑
π∗∈Πopt

µ∗γ,κ,h(π∗) ≥ 1−
∑
i γ

i∑
i γ

i +
∏
i(κ

i/|Πi|)

which implies (3). The last part follows from the aperiodicity
of the Markov chain.

Lemma 2 shows that if DMs follow the IUP, then they
would choose a team-optimal policy in the long run with
arbitrarily high probability provided the experimentation prob-
abilities of γ are positive but sufficiently small relative to κ.

It is clear that the IUP cannot be directly implemented in
our study of decentralized, online teams. The first issue relates
to decentralization: DMi cannot observe the policy π−ik . The
second issue relates to the online nature of the problem: even if
π−ik were known, DMi may not know its best-reply set or the
set of team optimal policies. Nevertheless, the IUP motivates
our decentralized learning algorithm, Algorithm 2, which can
be viewed as a two timescale approximation of the IUP. We
expand on this point below, after presenting the main result of
this section.

We emphasize that Algorithm 2 is decentralized in the
sense that it can be implemented by “independent learners,”
in the terminology of [29], [32]. That is, each DMi can run a
separate copy of this algorithm without reference to the joint
actions or policies of the remaining players. We recall that
each DMi’s interaction with its environment at any time t
consists of sending its control decision uit and receiving its
cost realization ci(xt, u

1
t , . . . , u

N
t ) as well as the next state

xt+1 without observing any information about the other DMs,
in particular, without observing the control decisions u−it of
the other DMs. In fact, each DMi need not even be aware
of the presence of the other DMs or the fact it is engaged in
learning in a multi-player game. Simply, each DM is running
a single-agent algorithm similar to standard Q-learning (that is
re-initialized after its baseline policy is updated at the end of

Algorithm 2: Independent Team Q-Learning for DMi

1 Set Parameters
2 Qi ⊂ RX×Ui : a compact set
3 {Tk}k≥0: a sequence in N+ of exploration phase

lengths (common to all DMs)
4 Set t0 = 0 and tk+1 = tk + Tk for all k ≥ 0.
5 ρi ∈ (0, 1): action experimentation probability
6 γi, κi ∈ (0, 1): policy experimentation probabilities
7 λi ∈ [0, 1]: probability of inertia when updating

baseline policy
8 δi > 0: tolerance for sub-optimality when

constructing best-reply sets
9 di > 0: a tolerance for sub-optimality when setting

the aspiration level
10 W i ∈ N+: a window for setting aspiration levels
11 hi ∈ P(Πi|Πi × 2Πi), a policy update kernel
12 {αin}n≥0: step sizes such that αin ∈ [0, 1],∑

n α
i
n =∞,

∑
n (αin)

2
<∞

13 Initialize (arbitrary) πi0 ∈ Πi, Qi0 ∈ Qi
14 Receive x0

15 for k ≥ 0 (kth exploration phase)
16 for t = tk, tk + 1, . . . , tk+1 − 1 // Learn

best-replies for kth EP
17 Select uit ∼ (1− ρi)Iπik(xt) + ρiUnif(Ui)
18 Receive cost ci(xt, uit,u

−i
t )

19 Receive state xt+1 ∼ P (·|xt,ut)
20 Set nit = number of visits to (xt, u

i
t) in [tk, t]

21 Qit+1(xt, u
i
t) = (1− αi

nit
)Qit(xt, u

i
t) +

αi
nit

[ci(xt, u
i
t,u
−i
t ) + βi minvi Q

i
t(xt+1, v

i)]

22 Qit+1(x, ui) = Qit(x, u
i), ∀(x, ui) 6= (xt, u

i
t)

23 end
24 BRi

k = {πi ∈ Πi : Qi
tik+1

(x, πi(x)) ≤
minvi Q

i
tik+1

(x, vi) + δi,∀x ∈ X}
25 Sik =

∑
x∈XQ

i
tik+1

(x, πik(x))

26 Λik = min{Sik−1, . . . , S
i
(k−W i)+}+ di

27 if Sik ≤ Λik then
πik+1 ∼ (1− γi)Ri,λi(·|πik,BRik) + γiUnif(Πi)

28 else (Sik > Λik, not achieving aspiration)
29 πik+1 ∼ (1− κi)hi(·|πik,BRik) + κiUnif(Πi)
30 end
31 Reset Qi

tik+1
to any Qi ∈ Qi (e.g., project onto Qi)

32 end

each exploration phase). As such, all quantities computed by
DMi’s copy of Algorithm 2 are indexed by i. These remarks
also apply verbatim to Algorithm 3 introduced in Section VI.

Assumption 1. For all x, x′ ∈ X, there exists H ∈ N and
ũ0, . . . , ũH ∈ U such that

Pr(xH+1 = x′|x0 = x,uj = ũj ,∀j ∈ {0, 1, . . . ,H}) > 0.

Assumption 2. Assume, for all i, δi ∈ (0, δ̄), di ∈ (0, d̄),
ρi ∈ (0, ρ̄), where δ̄, d̄, ρ̄ are constants defined in Appendix A
that depend only on the game.
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Theorem 1. Consider a common interest game in which each
DMi uses Algorithm 2, and let Assumptions 1-2 hold. For any
ε > 0, there exist

γ̄ε(κ) ∈ (0, 1), W̄ε(γ,κ) ∈ N+, T̄ε(γ,κ,Wmax) ∈ N+

where Wmax := maxiW
i such that if, for all i, k ∈ N

γi ∈ (0, γ̄ε(κ)), W i ≥ W̄ε(γ,κ), Tk ≥ T̄ε(γ,κ,Wmax)

then
lim inf
k∈N

Pr(πk ∈ Πopt) ≥ 1− ε

Proof. See Appendix A.

Discussion
Algorithm 2 can be viewed as a two timescale2 approxi-

mation to the IUP in Algorithm 1. The faster timescale is that
where time is indexed by the stage games, comprising lines
16-23 of Algorithm 2. The selection of actions, observation
of costs and state transitions, and Q-factor updates all occur
on this faster timescale. In contrast, the slower timescale is
where time is indexed by the exploration phase. Decisions
on the slower timescale involve processing learned Q-factors
to estimate one’s best-reply set (line 24), computing a “cost
score” and comparing it to historical cost scores (lines 25-27),
and updating one’s baseline policy (lines 27-30).

We note that DMi only uses its learned Q-factors at times
{tik+1}k≥0 in the selection of the policy πik+1. As such, we
are only interested in the sequence {Qit}t≥0 sampled at times
{tik+1}k≥0. In particular, we are concerned with the approxi-
mation of Q∗i

π−i
k

by Qitk+1
. Crucially, the baseline policies are

fixed within an exploration phase and only change between
exploration phases. This means that for any k ≥ 0, from the
point of view of any DMi, the environment is stationary within
the kth EP and equivalent, during the interval [tk, tk+Tk−1],
to an MDP determined by π−ik . It was shown in [16] that under
certain conditions—satisfied here by Assumptions 1 and 2—
that Q-learning within an EP leads to informative Q-factors
that can be used, among other things, to recover one’s best-
reply set BRi(π−ik ) with high probability. After the policy
update suite (lines 27-30), DMi resets its Q-factors and its
counters ahead of the (k+1)th EP, and the Q-learning process
restarts. We make no claims about the asymptotic behaviour
of the entire sequence {Qit}t≥0, as this is not needed for the
analysis of policy updating.

The analogy between Algorithm 2 and the IUP can be seen
by comparing the if-suite (lines 6-9) in Algorithm 1 with its
counterpart (lines 27-30) in Algorithm 2. The unobservable
condition πk ∈ Πopt of the IUP has been replaced by a
surrogate condition Sik ≤ Λik. Here, Sik is a “cost score,”
which aggregates DMi’s policy performance across all states
for the kth exploration phase, and Λik is a measure of DMi’s
best performance during the preceding W i exploration phases.

2In two timescale algorithms in the literature (e.g. [54]), both the Q-factors
and the policies would be updated incrementally at each time t = 1, 2, . . . .
The step size sequences for Q-learning and policy updating would be selected
so that policies are effectively fixed while Q-factors are learned. In our
algorithms, the policies are updated without using any step sizes but only only
at t = t1 − 1, t2 − 1, . . . whereas the Q-factors are updated at each time
t = 1, 2, . . . using step sizes that are re-initialized at t = t1− 1, t2− 1, . . .
and are reduced during t ∈ [tk, tk+1−1) at a rate satisfying the assumptions
of the standard (i.e., one time scale) stochastic approximation theory.

Importantly, the condition Sik ≤ Λik can be verified by
independent learners.

Algorithm 2 is in the spirit of aspiration learning algo-
rithms [40], where Λik plays the role of DMi’s aspiration
level, a scalar quantity against which DMi compares the
performance of its policy πik during the kth exploration phase.
Each DMi aspires to perform at least as well as its aspiration
level, which is updated at the end of each exploration phase
and may be thought of as a maximum tolerable cost, i.e., if
the baseline policy yields higher cost, then it is viewed as
unsatisfactory.

Unlike the aspiration learning methods in the literature,
which focus on repeated games with no state dynamics and
players with no look ahead, Algorithm 2 is designed for
stochastic dynamic games with nontrivial state dynamics and
far-sighted players. Due to the long-run cost considerations in
dynamic stochastic games, evaluating of the cost of a policy is
a slow and noisy process, which leads to additional difficulties
in setting the aspiration levels.

In light of Lemma 1, a viable approach is to use the learned
Q-factors to produce cost scores and to set the aspiration levels
to the minimum cost score over some window of the past.
However, scores obtained from the (random) Q-factors are
noisy estimates of the scores corresponding to the true cost
of the policies. In particular, setting the aspiration levels to
the minimum of the cost scores over the entire past based
on the learned Q-factors can result in unattainable aspiration
levels. Hence, to mitigate the effects of the noise present in
the learned Q-factors, we set the aspiration levels of each DMi

to the minimum cost score obtained over a finite window of
the most recent past within some tolerance. This allows DMs
to discard unattainable cost scores in finite time.

Another aspect of Algorithm 2 is the persistent experimen-
tation in the policy space. Experimentation when DMs feel
that they meet their aspiration levels (Sik ≤ Λik) is required
to prevent DMs settling in a policy that is not team-optimal.
This is due to the finite window approach used for setting
the aspiration levels and the possibility of setting suboptimal
aspiration levels. Experimentation when Sik > Λik is also
necessary to aid DMs in searching for team-optimal policies.

Finally, we note that the set of approximate best responses
BRik computed by each DMi within each exploration phase k
is a subset of Πi, the set of stationary and deterministic policies
of DMi. Therefore, |BRik|≤ |Πi|= |Ui||X|. We note that BRik
is computed via the Q-factors Qitk+1 ∈ RX×Ui , which is of
size |X||Ui|.

V. BEYOND TEAM OPTIMALITY: APPLICATION TO
WEAKLY ACYCLIC GAMES

In this section, we consider a special case of Algorithm 2
that has desirable convergence properties in weakly acyclic
games, in addition to providing team-optimality in the sense
of Theorem 1.

Definition 6. A (possibly finite) sequence π0,π1, . . . in Π is
called a multi-DM strict best reply path if, for each k, πk and
πk+1 differ for at least one DM and, for each deviating DMi,
πik+1 is a strict best reply with respect to πk.

Definition 7. A stochastic game is called weakly acyclic
under multi-DM strict best replies (or simply weakly acyclic)
if there is a multi-DM strict best reply path starting from
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each deterministic joint policy and ending at a deterministic
equilibrium policy.

The notion of weak acyclicity used here is with respect
to stationary deterministic policies for stochastic games, and
generalizes the notion of weak acyclicity introduced in [55]
for single-stage games. All teams are weakly acyclic; however,
a common interest game need not be. See [56] for other
examples of single-stage weakly acyclic games.

In weakly acyclic games, inertial best reply dynamics [16]
lead to equilibrium policies. If the policy update functions
satisfy hi = Ri,λ

i

for each DMi, the IUP introduced in the
previous section can be regarded as a perturbed inertial best
reply dynamics, where {πk ∈ Πopt} can be replaced with any
arbitrary event if the game is not a common interest game,
provided the induced Markov chain is time-homogenous.

Assumption 3. For every DMi, hi = Ri,λ
i

, where λi ∈ (0, 1).

Under Assumption 3, each DMi always best replies with
inertia when not experimenting.

Lemma 3. Consider a weakly acyclic game. Suppose that
each DMi updates its policy according to the IUP of Algorithm
1, and let Assumption 3 hold. Let Aγ,κ denote the matrix of
the transition probabilities for the induced time homogenous
Markov chain on Π. Denote the unique stationary distribution
associated to this Markov chain by µ∗γ,κ. For any ε > 0, there
exists κ̄ε ∈ (0, 1) such that max{γi, κi} ∈ (0, κ̄ε), for all i,
implies

µ∗γ,κ(Πeq) ≥ 1− ε/4.
Moreover, uniformly over all such γ,κ, there exists m̄ ∈ N
such that

inf
m≥m̄,µ0∈P(Π)

(µ0A
m
γ,κ)(Πeq) ≥ 1− ε/2.

Proof. For all π∗ ∈ Πeq,

Aγ,κ(π∗,π∗) ≥
∏
i

(1−max{γi, κi}) (4)

Let Lπ < |Π| be the length of a multi-DM strict best reply
path of minimal length from π ∈ Π \Πeq to some π̃ ∈ Πeq,
and L := maxπ∈Π\Πeq

Lπ . For any π 6∈ Πeq, consider a
path π = π0,π1, . . . ,πL where π0,π1, . . . ,πLπ is a multi-
DM strict best reply path and πLπ = · · · = πL = π̃ ∈
Πeq. In each transition πk → πk+1, some DMs switch to one
of their strict best replies and the others stay put. Therefore,
from any π 6∈ Πeq, the IUP with γ = κ ≡ 0 generates
such a path π0,π1, . . . ,πL with probability at least pmin :=∏N
i=1 min{λi, (1 − λi)/|Πi|}L ∈ (0, 1). By taking γi > 0,

κi > 0 into account, this leads to∑
π̃∈Πeq

(Aγ,κ)L(π, π̃) ≥ pmin

∏
i

(1−max{γi, κi})L (5)

for all π ∈ Π \ Πeq. Writing A = Aγ,κ, from (4)-(5), we
have, for all k ∈ N,

(µ0A
k+L)(Π \Πeq) ≤L

∑
i

max{γi, κi}

+ (µ0A
k)(Π \Πeq)(1− pmin).

This leads to, for all j, k ∈ N,

(µ0A
k+jL)(Π\Πeq) ≤ L

∑
i

max{γi, κi}/pmin+(1−pmin)j .

Since |1− pmin|< 1, the desired result follows.

For small experimentation probabilities, the IUP under
Assumption 3 leads to equilibrium policies in the long run. We
will use this to show that Algorithm 2 under Assumptions 1-3
has the same long run behavior.

For weakly acyclic games, decentralized learning algo-
rithms which assign arbitrarily high probabilities to equilib-
rium policies in the long run are presented in [16]. However,
these algorithms do not provide any guarantee on achieving
team-optimality when implemented in teams or common in-
terest games. We now strengthen a result of [16] with respect
to team-optimality.

Theorem 2. Consider a weakly acyclic game in which each
DMi uses Algorithm 2, and let Assumptions 1-3 hold. For any
ε > 0, there exist

κ̃ε ∈ (0, 1), γ̃ε(κ) ∈ (0, 1),

W̃ε(γ,κ) ∈ N+, T̃ε(γ,κ,Wmax) ∈ N+,

where Wmax = maxiW
i, such that if, for all i, k ∈ N,

κi ∈ (0, κ̃ε), γi ∈ (0, γ̃ε(κ)),

W i ≥ W̃ε(γ,κ), Tk ≥ T̃ε(γ,κ,Wmax)

then
lim inf
k∈N

Pr(πk ∈ Πeq) ≥ 1− ε. (6)

Moreover, if the game is a common interest game, then Πeq

can be replaced by Πopt in (6).

Proof. See Appendix B.

VI. LEARNING WITH CONSTANT ASPIRATIONS

In this section, we introduce Algorithm 3, a variant of
Algorithm 2 in which every DMi employs a constant aspiration
level Λi ∈ R throughout, i.e., Λik = Λi for every exploration
phase k ∈ N. Pre-setting the aspiration levels is motivated
by applications where each DM has the prior knowledge of a
conservative estimate of its achievable cost. Such prior knowl-
edge may be available to DMs, for example, from previous
experience or through an initial phase of experimentation,
and can be used to heuristically discern “good” from “bad”
performance. One implication of this assumption is that if
there is indeed a set of joint policies each simultaneously out-
performing all pre-set aspiration levels (i.e., the cost estimates)
and the other joint policies fail to satisfy any DM, we show that
DMs using Algorithm 3 will almost surely outperform their
aspiration levels in the long run (part (1)-(2) of Theorem 3).
This is the case, for example, in a common interest game
when the aspiration levels are between the dominant costs
and the other costs. In contrast, DMs using Algorithm 2
adaptively adjust their aspiration levels and achieve optimal
performance but only in common interest games and in the
weaker sense of eventually assigning arbitrarily high proba-
bility to the set of optimal policies (Theorem 1). In addition,
unlike in Algorithm 2, we characterize the long term behavior
of Algorithm 3 in all games regardless of whether or not
the pre-set aspiration levels are achievable. Loosely speaking,
DMs using Algorithm 3 in any game are likely to use a
certain minimal set of policies in the long run, which are
closed under multi-agent strict best-replies (part (3)-(4) of
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Theorem 3). This minimal set of policies reduces to the set
Πeq of equilibrium policies in any weakly-acyclic game. Thus,
in part (3)-(4) of Theorem 3, we characterize the long-term
behavior of Algorithm 3 in a manner analogous to and, in
fact, more general than Theorem 2, which characterizes the
long-term behavior of Algorithm 2 as Πeq in weakly acyclic
games.

Algorithm 3: for DMi

1 Set Parameters
2 Ji ⊂ RX, Qi ⊂ RX×Ui : compact sets
3 {Tk}k≥0: a sequence in N+ of exploration phase

lengths (common to all DMs)
4 Set t0 = 0 and tk+1 = tk + Tk for all k ≥ 0.
5 ρi ∈ (0, 1): action experimentation probability
6 δi > 0: tolerance for sub-optimality when

constructing best-reply sets
7 {γin}n∈N, κi: policy experimentation probabilities
8 λi ∈ (0, 1): inertia parameter for policy update
9 gi, hi ∈ P(Πi|Πi × 2Πi): policy update kernels

10 Λi ∈ R: an aspiration level
11 {αin}n≥0: step sizes such that αin ∈ [0, 1],∑

n α
i
n =∞,

∑
n (αin)

2
<∞

12 Initialize (arbitrary) πi0 ∈ Πi, J i0 ∈ Ji, Qi0 ∈ Qi
13 Receive x0

14 for k ≥ 0 (kth exploration phase)
15 for t = tk, tk + 1, . . . , tk+1 − 1
16 Select uit ∼ (1− ρi)Iπik(xt) + ρiUnif(Ui)
17 Receive cost ci(xt, uit,u

−i
t )

18 Receive state xt+1 ∼ P (·|xt,ut)
19 Set mi

t = number of visits to xt in [tk, t]
20 J it+1(xt) =

(1−αi
mit

)J it (xt)+αi
mit

(ci(xt,ut)+βiJ it (xt+1))

21 J it+1(x) = J it (x),∀x 6= xt
22 Set nit = number of visits to (xt, u

i
t) in [tk, t]

23 Qit+1(xt, u
i
t) = (1− αi

nit
)Qit(xt, u

i
t) +

αi
nit

[ci(xt, u
i
t,u
−i
t ) + βi minvi Q

i
t(xt+1, v

i)]

24 Qit+1(x, ui) = Qit(x, u
i), ∀(x, ui) 6= (xt, u

i
t)

25 end
26 BRi

k = {πi ∈ Πi : Qi
tik+1

(x, πi(x)) ≤
minvi Q

i
tik+1

(x, vi) + δi,∀x ∈ X}
27 S̃ik =

∑
x∈X J

i
tk+1

(x)

28 if S̃ik ≤ Λi then
πik+1 ∼ (1− γik)gi(·|πik,BRik) + γikUnif(Πi)

29 else
30 πik+1 ∼ (1− κi)hi(·|πik,BRik) + κiUnif(Πi)
31 end
32 Reset J i

tik+1
, Qi

tik+1
to any J i ∈ Ji, Qi ∈ Qi

33 end

The following definitions are introduced to describe the
long-term behavior of Algorithm 3.

Definition 8. For any i, η ∈∆, π ∈ Π, Λ ∈ RN , let

S̃i(η) :=
∑
x

J ix(η).

(i) Let B̃R(π) :=

{π̃ ∈ Π : π̃i 6= πi ⇒ π̃i is a strict best reply to π, ∀i}.

A nonempty set of policies Π̃ ⊂ Π is closed under multi-
DM strict best replies, or a cumber set, if

π ∈ Π̃⇒ B̃R(π) ⊂ Π̃.

A cumber set is minimal if it does not properly contain
another cumber set.

(iii) Let

B̃R
Λ

(π) := {π̃ ∈ Π : π̃i 6= πi ⇒ S̃i(π) > Λi

and π̃i is a strict best reply to π, ∀i}.

A nonempty set of policies Π̃ ⊂ Π is closed under
multi-DM strict best replies with aspiration levels Λ =
{Λi}Ni=1, or a Λ-cumber set, if

π ∈ Π̃⇒ B̃R
Λ

(π) ⊂ Π̃.

A Λ-cumber set is minimal if it does not properly contain
another Λ-cumber set.

Let Πcumber and ΠΛ
cumber denote the union of minimal cumber

sets and the union of Λ-minimal cumber sets, respectively.

The repeated game (|X|= 1) with the stage cost functions
shown in Figure 2 is a common interest game for β1 = β2.
The minimal cumber sets are {(1,1),(2,1),(2,2),(1,2)} (which
is also a strict best-reply path) and {(3, 3)}, which are also
the minimal Λ−cumber sets for Λ1 = Λ2 < 7. For Λ1 =
Λ2 ∈ [7, 10), there are three minimal Λ−cumber sets: {(2,1)},
{(1,2)}, and {(3, 3)}. For Λ1 = Λ2 ∈ [10, 20), there are five
minimal Λ−cumber sets: {(1,1)}, {(2,1)}, {(2,2)}, {(1,2)},
and {(3, 3)}. For Λ1 = Λ2 ≥ 20, any singleton {π}, where
π ∈ Π, is a minimal Λ-cumber set. On the other hand, for
Λ1 ≥ 10, Λ2 < 7, the minimal Λ−cumber sets are {(1,1)},
{(2,2)}, and {(3, 3)}.

u1t :

u2t :
1 2 3

1 10, 3 5, 7 20, 20
2 5, 7 10, 3 20, 20
3 20, 20 20, 20 0, 0

Fig. 2. Stage cost for a two-DM game where DM1 (DM2) chooses a row (a
column) and its cost is the first (the second) entry in the chosen cell.

Allowing only single-DM best replies in the definition of
a cumber set results in the notion of a cusber set introduced
in [45]. The following are true, for any Λ ∈ RN .
• Π is both a cumber set and a Λ-cumber set.
• π ∈ Πeq ⇔ {π} is a (minimal) cumber set.
• π ∈ Πeq ⇒ {π} is a (minimal) Λ-cumber set.
• (π ∈ Π, S̃i(π) ≤ Λi, ∀i) ⇒ {π} is a (minimal) Λ-

cumber set.
• There is a multi-DM strict best reply path from any π ∈
Π \Πcumber to Πcumber.

• There is a multi-DM strict best reply path from any π ∈
Π \ΠΛ

cumber to ΠΛ
cumber.

• Πcumber = Πeq ⇔ the game is weakly acyclic under
multi-DM strict best replies.

Let L̄π < |Π| be the length of a multi-DM strict best
reply path of minimal length from π ∈ Π \Πcumber to some
π̃ ∈ Πcumber, and L̄ := maxπ∈Π\Πcumber

L̄π .
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Assumption 4. Assume, for all i, δi ∈ (0, δ̄), ρi ∈ (0, ρΛ),
where δ̄, ρΛ are constants defined in Appendix A, C, respec-
tively (δ̄ depends only on the game, whereas, ρΛ depends on
the game and Λ). Assume further that, for all i, n ∈ N,
γin ∈ [0, 1],

∑
n∈N γ

i
n <∞, and κi ∈ (0, 1).

Theorem 3. Consider a discounted stochastic game where
each DMi updates its policies by Algorithm 3, and let As-
sumptions 1 and 4 hold.

1) Suppose that gi = Ri,1, ∀i, and that there exists a
nonempty set ΠΛ ⊂ Π satisfying

S̃i(π∗) < Λi < S̃i(π̃), ∀i,π∗ ∈ ΠΛ, π̃ ∈ Π\ΠΛ. (7)

Then, there exist T̃k ∈ N+, k ∈ N, such that if Tk ≥ T̃k,
∀k, then

Pr(πk → π∗, for some π∗ ∈ ΠΛ) = 1.

2) Suppose that gi = Ri,λ
i

, ∀i, and that there exists a
cumber set ΠΛ satisfying (7). Then there exists T̃k ∈ N+,
k ∈ N, such that if Tk ≥ T̃k, ∀k, then

Pr(πk → Π∗, for a minimal cumber set Π∗ ⊂ ΠΛ) = 1.

3) Suppose that gi = Ri,1, hi = Ri,λ
i

, ∀i. Then,

lim inf
k∈N

Pr(πk ∈ ΠΛ
cumber) ≥ 1− (L̄/p̄min)

∑
i

κi

for some p̄min ∈ (0, 1) which is independent of
∑
i κ

i.
4) Suppose that gi = hi = Ri,λ

i

, ∀i. Then,

lim inf
k∈N

Pr(πk ∈ Πcumber) ≥ 1− (L̄/p̄min)
∑
i

κi

for some p̄min ∈ (0, 1) which is independent of
∑
i κ

i.

Proof. See Appendix C.

Algorithm 3 prescribes each DMi to update its policy dif-
ferently (using the policy update kernels gi or hi coupled with
different experimentation probabilities γik or κi) depending on
DMi’s assessment of whether its aspiration is achieved or not.
The experimentation probability needs to vanish asymptoti-
cally for the former case but be positive throughout3 for the
latter case. In practice, the experimentation probabilities for
either case are envisioned to be (asymptotically) small so that
the policy updates are primarily governed by gi and hi. With
this in mind, Theorem 3 can be interpreted as follows.

The first part of Theorem 3 assumes (i) each DMi stays
with its policy when it assesses that its aspiration is achieved,
(ii) each policy π ∈ Π either simultaneously achieves every
DM’s aspiration (i.e., π ∈ ΠΛ) or not a single DM’s aspiration
(i.e., π 6∈ ΠΛ). With this (and regardless of hi), DMs converge
almost surely to an aspiration achieving joint policy. Note that
this does not rule out convergence to a strictly dominated
policy.

The second part assumes that the aspiration achieving
policies are closed under multi-DM strict best replies. That
is, it assumes ΠΛ is a cumber set. Under this condition
(and regardless of hi), DMs converge almost surely to a
subset of the aspiration achieving joint policies, which is a
minimal cumber set. Note that this rules out neither persistent
oscillations within a minimal cumber set (inside the aspiration

3κi can be time-varying as long as it stay uniformly above zero.

achieving policies) nor convergence to a set of strictly dom-
inated policies. However, in a weakly-acyclic game (under
multi-DM strict best replies), convergence to an aspiration
achieving equilibrium is guaranteed; in particular, the equilib-
rium policies not achieving DMs’ aspirations are ruled out.
This implies convergence to an optimal policy in teams if
the aspiration levels are between the cost of suboptimal and
optimal equilibria. If ΠΛ is not a cumber set, DMs can leave
ΠΛ through multi-DM strict best replies and the result may
not hold.

Theorem 3 also predicts the long-term behavior of Al-
gorithm 3 when the joint policies Π cannot be partitioned
as aspiration achieving policies (ΠΛ) and the other policies
in the sense of (7). The third part of Theorem 3 assumes
that each DMi stays with its policy when its aspiration is
achieved, otherwise best replies with inertia, i.e., gi = Ri,1,
hi = Ri,λ

i

. With this (and regardless of the game), DMs’ long-
term probability of choosing a policy in a minimal Λ-cumber
set (a minimal set that DMs cannot exit through the strict
best replies of those whose aspirations are not achieved) can
be arbitrarily close to one if the experimentation probabilities
are sufficiently small. The fourth part assumes that each DMi

always best replies with inertia when it is not experimenting,
i.e., gi = hi = Ri,λ

i

. With this, and regardless of the game,
DMs tend to choose policies in a minimal cumber set (the
equilibria and the minimal multi DM strict best reply cycles)
for small experimentation probabilities. Under the conditions
of the third or the fourth part, DMs may not consistently
achieve their aspirations.

VII. A SIMULATION STUDY

We consider the following two DM stochastic team with
U1 = U2 = X = {1, 2} and common discount factor β = 0.8.
The stage cost for each state is presented in Figure 3.

u1t :

u2t :
1 2

1 1, 1 3, 3
2 3, 3 1, 1

xt = 1

u1t :

u2t :
1 2

1 10, 10 10, 10
2 10, 10 13, 13

xt = 2

Fig. 3. Stage cost for a two-DM game where DM1 (DM2) chooses a row (a
column) and its cost is the first (the second) entry in the chosen cell.

xt = 1 is the low cost state and xt = 2 is the high cost
state. The transition probabilities, given below, are constructed
so that when DMs successfully coordinate their decisions (in a
state-dependent manner) the state transitions with high proba-
bility to the low cost state. Otherwise, the state transitions with
high probability to the high cost state. The transition kernel is
fully described by

P (1|x, a1, a2) = 0.95, if x = a1 = a2

P (2|x, a1, a2) = 0.95, if x 6= a1 or a1 6= a2

In particular, when xt = 2, DMs are faced with the choice
between on the one hand incurring a lower short term cost 10
and likely remaining in the high cost state and on the other
hand paying a higher short term cost 13 with the hopes of
transitioning to the low cost state and avoiding sustained high
costs.

For sufficiently large discount factors, including β = 0.8
as selected, the unique team optimal policy is for both DMs
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to coordinate as u1
t = u2

t = xt, for all t ∈ N. However, there
are three suboptimal equilibrium policies, namely (i) u1

t =
u2
t = 1, for all t ∈ N, (ii) u1

t = u2
t = 2, for all t ∈ N, (iii)

u1
t = u2

t 6= xt, for all t ∈ N.
We simulated Algorithm 2 and 3 with the following

parameter choices.

Case A: Algorithm 2, hi = Ri,λ
i

, λi ∈ (0, 1)

κi = γi + 0.1, W i = 30, Tk = 10000

Case B: Algorithm 2, hi = Ri,λ
i

, λi = 1

κi = 1, W i = 50, Tk = 5000

Case C: Algorithm 3, gi = hi = Ri,λ
i

, λi ∈ (0, 1),Λi = 30

κi = γi + 0.2, Tk = 7500

Case D: Algorithm 3, gi = hi = Ri,λ
i

, λi = 1,Λi = 30

κi = γi + 0.2, Tk = 7500

where the aspiration level Λi used in case C and D was chosen
without extensive tuning.

The algorithms performed generally as expected. The
disparity across different cases owes largely to the parameter
selections. In each case, the percentage of time where the joint
policies are team optimal, i.e., πk ∈ Πopt, are shown below.

Case γ = 0.05 γ = 0.01 γ = 0.005 γ = 0.001
A 0.638 0.902 0.922 0.972
B 0.432 0.776 0.864 0.952
C 0.648 0.908 0.960 0.984
D 0.242 0.564 0.720 0.914

As the experimentation probability γ is reduced, the em-
pirical frequency of the event πk ∈ Πopt increases and, for
γ = 0.001, the joint policies are team optimal for more
than 90% of the time. These numerical results confirm the
theoretical results.

VIII. CONCLUDING REMARKS

In this paper, we presented learning algorithms for stochas-
tic teams and common interest games under a decentralized
information structure in which players do not share actions
with one another. While previous studies have focused on
repeated games, or otherwise used a large degree of control
sharing among decision makers to obtain convergence results,
we have provided a method for achieving team optimality
in teams and stochastic common interest without any control
sharing during play and with limited prior information about
the game.

The proof methods used in this paper center on ap-
proximating the true joint policy-valued stochastic process
using time homogenous Markov chains through a novel Do-
brushin’s coefficient based analysis. The algorithms presented
are amenable to further variations and can be modified as
needed, and the Markov chain analysis used for the conver-
gence guarantees can likewise be easily modified for more
general applications.

We chose to focus on games with full state observations
available to each agent since there are few formal results on
multi-agent learning even under this simplifying assumption.
The partially observed information structure, in which each
player has access to only local state information, is an impor-
tant and challenging direction for future research.

APPENDIX A: PROOF OF THEOREM 1
Let σ(A) ∈ [0, 1] denote the Dobrushin coefficient of an

n× n right stochastic matrix A, defined in [57] as

σ(A) := min
i,k∈{1,...,n}

n∑
j=1

min{A(i, j), A(k, j)}. (8)

Lemma 4. Consider an n× n right stochastic matrix A with
σ(A) > 0, and a sequence of n× n right stochastic matrices
{Ak}k∈N. For any ε ∈ (0, 1), if

sup
k∈N
‖Ak −A‖∞≤ τ :=

σ(A)ε

2n
(9)

then, for any probability vector µ0 of dimension n,

lim sup
k∈N

‖µ0A0 · · ·Ak − µ∗‖1≤ ε

where µ∗ is the unique probability vector satisfying µ∗ = µ∗A.

Proof. Recall that ‖µA − νA‖1≤ (1 − σ(A))‖µ − ν‖1, for
all probability vectors µ, ν; see [57]. Since σ(A) > 0, by
Banach’s fixed point theorem, there exists a unique probability
vector µ∗ satisfying µ∗ = µ∗A, and limk µ0A

k = µ∗, for any
probability vector µ0.

From (8)-(9), we have supk∈N|σ(Ak)−σ(A)|≤ nτ , which
implies supk∈N(1 − σ(Ak)) ≤ ξ := 1 − σ(A)/2. Note ξ ∈
(0, 1). We write

‖µ0A0 − µ∗‖1 = ‖µ0A0 − µ∗A‖1
≤ ‖µ0A0 − µ∗A0‖1+‖µ∗A0 − µ∗A‖1
≤ (1− σ(A0))‖µ0 − µ∗‖1+nτ

≤ ξ‖µ0 − µ∗‖1+nτ

Repeated application of these inequalities result in

‖µ0A0 . . . Ak−1 − µ∗‖1≤ξk‖µ0 − µ∗‖1+ε, ∀k,

where ε = nτ 1
1−ξ , which is consistent with (9). As

limk ξ
k‖µ0 − µ∗‖1= 0, the lemma follows.

Proof of Theorem 1
Let ε ∈ (0, 1) and κ ∈ (0, 1)N . By Lemma 2, there exists

γ̄ε(κ) such that maxi γ
i ∈ (0, γ̄ε(κ)) implies µ∗γ,κ,h(Πopt) ≥

1 − ε/2, where µ∗γ,κ,h is the unique invariant measure of
the Markov chain induced by the IUP. Assume maxi γ

i ∈
(0, γ̄ε(κ)).

For all k ∈ N, π, π′ ∈ Π, we define

µk(π) := Pr(πk = π) (10)
Ak(π,π′) := Pr(πk+1 = π′|πk = π) (11)

where πk is the joint baseline policy during the kth exploration
phase of Algorithm 2. Note that µk+1 = µ0A0 · · ·Ak. To
prove the theorem, we will show

lim sup
k∈N

‖µk − µ∗γ,κ,h‖1≤ ε/2.

Due to Lemma 4 and σ(Aγ,κ,h) > 0 4, it is sufficient to show

‖Ak −Aγ,κ,h‖∞≤ τ :=
σ(Aγ,κ,h)ε

4|Π|
(12)

4Aγ,κ,h(π,π′) ≥
∏N

i=1 min{γi, κi}/|Πi|> 0, ∀π,π′ ∈ Π, due to
uniform experimentation by each DMi with probability γi > 0 or κi > 0.
By (8), this implies σ(Aγ,κ,h) > 0.
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for all but finitely many k ∈ N. We note that σ(Aγ,κ,h) > 0
since all entries of Aγ,κ,h are strictly positive, as the IUP
updates policies using uniform randomization with strictly
positive probability owing to γi, κi > 0 for every DMi.

To ensure (12), we will introduce an event Rk such that,
for all π, π′ ∈ Π, and all but finitely many k ∈ N,

Pr(πk+1 = π′|πk = π, Rk) = Aγ,κ,h(π,π′) (13)

and we will show that

Pr(Rk|πk = π) ≥ 1− τ (14)

by choosing the parameters of Algorithm 2 appropriately. Note
that (13)-(14) imply (12) as follows:

Aγ,κ,h(π,π′)− τ
≤ Aγ,κ,h(π,π′)(1− τ)

≤ Aγ,κ,h(π,π′)Pr(Rk|πk = π)

+ Pr(πk+1 = π′|πk = π, Rck)Pr(Rck|πk = π)

= Ak(π,π′)

≤ Aγ,κ,h(π,π′) · 1 + 1 · P (Rck|πk = π)

≤ Aγ,κ,h(π,π′) + τ

where Rck denotes the complement of Rk.
Define

δ̄ := min{|Q∗iπ−i(x, u)−Q∗iπ−i(x, v)|> 0 :

i,π−i ∈ Π−i, x ∈ X, u, v ∈ Ui} (15)

Si(π) :=
∑
x∈X

Q∗iπ−i(x, πi(x)), ∀π ∈∆

d̄ :=
1

2
min{|Si(π)− Si(π̃)|> 0 : i,π, π̃ ∈ Π}.

Let π̄ik ∈ ∆i denote the policy used by DMi in the kth

exploration phase, i.e.,

π̄ik(·|x) := (1− ρi)Iπik(x) + ρiUnif(Ui), ∀x ∈ X.

Let ρ̄ > 0 be such that maxi ρ
i ∈ (0, ρ̄) implies

‖Q∗i
π−i
k

−Q∗i
π̄−i
k

‖∞ <
1

2
min{δi, δ̄ − δi}, ∀i, k ∈ N

|Si(πk)− Si(π̄k)| < 1

2
min{di, d̄− di}, ∀i, k ∈ N.

Such ρ̄ exists due to [16, Lemma 3]. Assume that, for all i,
di ∈ (0, d̄), δi ∈ (0, δ̄), ρi ∈ (0, ρ̄). Assume further that

W i ≥ W̄ε(γ,κ) := min{W ∈ N : (1− φ)W < φτ/3}, ∀i

where φ :=
∏
i min{γi/|Πi|, κi/|Πi|} ∈ (0, 1).

For any time k ≥Wmax, we define the event

Rk := Fk ∩
Wmax⋂
`=0

Gk−` ∩
W̄ε(γ,κ)⋃
`=1

Hk−`

where, for any ` ∈ N, we define

F` := {‖Qit`+1
−Q∗i

π−i
`

‖∞< min
i
{δi, δ̄ − δi}/2,∀i}

G` := {|Si` − Si(π`))|< min{di, d̄− di}/2,∀i}
H` := {π` ∈ Πopt}.

Conditioned on Rk, k ≥Wmax, we have, for all i,

BRik = BRi(π−ik )

and
Sik ≤ Λik ⇐⇒ πk ∈ Πopt.

This implies (13), for all k ≥ Wmax. Intuitively, the event
Rk guarantees that (i) all players have sufficiently reliable Q-
factors during the kth exploration phase, due to Fk; (ii) for
every DMi, the estimated cost scores are sufficiently close to
the true cost scores during every exploration phase in DMi’s
most recent memory window, by Gk; (iii) an optimal baseline
policy was visited recently enough that all players remember
its cost score, by Hk.

We will now show (14) for sufficiently large exploration
lengths {T`}`. (Since the events G` and F` are defined in terms
of Q-factors, this is a statement about the long term behavior
of the Q-factor iterates within an exploration phase.)

Note that within the kth exploration phase of Algorithm 2
(and Algorithm 3), the environment faced by each DMi, that is
determined by π−ik , is a stationary MDP (with finite state and
control spaces) and satisfies the usual conditions of stochastic
approximation theory. In such a setting, it is well-known that
the sequence of Q-factors produced by the standard Q-learning
algorithm from any initial condition is bounded and convergent
with probability one [2]. Since each exploration phase in
Algorithm 2 (and in Algorithm 3) starts with re-initialized
Q-factors (and what we may call J-factors in the case of
Algorithm 3) within the compact sets {Qi}Ni=1 (and {Ji}Ni=1),
the Q-factors (and J-factors) produced by Algorithm 2 (and
Algorithm 3) during any exploration phase remain bounded
with probability one; c.f. Lemma 1 in [16].

Furthermore, Lemma 1 in [16] shows that, uniformly in the
initial conditions within {Qi}Ni=1 (and {Ji}Ni=1), the Q-factors
(and J-factors) produced by Algorithm 2 (and Algorithm 3)
enter any arbitrarily small neighborhood of their limits with
arbitrarily high probability at the end of any sufficiently long
exploration phase.

By [16, Lemma 4], there exists Tε(γ,κ,Wmax) ∈ N+

such that if mink∈N Tk ≥ Tε(γ,κ,Wmax), we have

Pr(Fk),Pr(Gk) ≥ 1− φτ/(3Wmax).

This implies, for k ≥Wmax,

Pr(∩Wmax

`=0 Gk−`) ≥ 1− φτ/3.

In addition, we have, for k ≥Wmax,

Pr(Hk) ≥1− (1− φ)W̄ε(γ,κ) ≥ 1− φτ/3.

All together, the preceding imply, for k ≥Wmax,

Pr(Rk) ≥ 1− φτ. (16)

Since infk∈N,π∈Π Pr(πk = π) ≥ φ > 0, (16) implies (14),
because (16) implies Pr(Rk∩{πk = π}) ≥ (1−τ)Pr(πk = π)
for any k,π.

We have shown that (13) and (14) hold. In turn, this implies
(12) holds, and invoking Lemma 4 completes the proof. �

APPENDIX B: PROOF OF THEOREM 2

Lemma 5. Consider an n× n right stochastic matrix A, and
a sequence of n × n right stochastic matrices {Ak}k∈N. For
any ε ∈ (0, 1), m ∈ N, if

sup
k∈N
‖Ak −A‖∞≤ ε/(2nm) (17)
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then
sup

k∈N,µ0

‖µ0Ak · · ·Ak+m−1 − µ0A
m‖1≤ ε/2

where µ0 is any probability vector of dimension n.

Proof of Theorem 2
Let ε ∈ (0, 1). Assume

0 < κi < κ̃ε := min{κ̄ε, ε/(4|Π|m̄N)}, ∀i

where κ̄ε and m̄ are as in Lemma 3. Then, assume

0 < γi < γ̃ε(κ) := min{γ̄ε(κ), κ̃ε}, ∀i

where γ̄ε(κ) is as in Lemma 2. With these choices of γ, κ,
Lemma 3 holds, i.e.,

inf
µ0∈P(Π)

(µ0A
m̄
γ,κ)(Πeq) ≥ 1− ε/2. (18)

For any k ∈ N, defining Ak as in (11), we have

‖Ak −Aγ,κ,h‖∞≤ 1−
∏
i

(1−max{γi, κi})

×min
π∈Π

Pr(BRik = BRi(π−i),∀i|πk = π)

(19)

By [16, Lemma 4], there exists Tε ∈ N+ such that if Tk ≥ Tε,

min
π∈Π

Pr(BRik = BRi(π−i),∀i|πk = π) ≥ 1− ε

4|Π|m̄N
.

(20)
Assume that, for all i, k ∈ N,

W i ≥ W̃ε(γ,κ) := W̄ε(γ,κ)

Tk ≥ T̃ε(γ,κ,Wmax) := max{Tε, T̄ε(γ,κ,Wmax)}

where W̄ε(γ,κ), T̄ε(γ,κ,Wmax) are as in Theorem 1. By
(19)-(20) and the assumptions on γ, κ, {Tk}k∈N , we have

sup
k∈N
‖Ak −Aγ,κ‖∞≤ ε/(2|Π|m̄N).

Lemma 5 implies

sup
k∈N,µ0∈P(Π)

‖µ0Ak · · ·Ak+m̄−1 − µ0A
m̄
γ,κ‖1≤ ε/2. (21)

The desired result for weakly acyclic games follows from (18)-
(21). Note that the parameter choices satisfy the hypothesis of
Theorem 1; hence, the results of Theorem 1 also hold.

APPENDIX C: PROOF OF THEOREM 3
Let δ̄ be as in (15), and let ρΛ ∈ (0, 1) be such that

ρi ∈ (0, ρΛ), for all i, implies

‖Q∗i
π−i
k

−Q∗i
π̄−i
k

‖∞<
1

2
min{δi, δ̄ − δi}, ∀i, k ∈ N

and

|S̃i(πk)− S̃i(π̄k)|< min
π∈Π
|Λi − Si(π)|, ∀i, k ∈ N

where π̄ik(·|xk) = (1 − ρi)Iπik(xk) + ρiUnif(Ui). Such ρΛ ∈
(0, 1) exists due to [16, Lemma 3].

Let εk ∈ (0, 1), k ∈ N, be such that
∑
k∈N εk < ∞. Due

to [16, Lemma 1], there exists finite integers T̃k ∈ N+, k ∈ N
such that if Tk ≥ T̃k, for all k ∈ N,

Pr(|S̃ik − S̃i(π̄k)|< εk, ‖Qitk+1
−Q∗i

π̄−i
k

‖∞< εk,∀i) ≥ 1− εk.

Assume now Tk ≥ T̃k, for all k ∈ N. Hence, there exists
k̃ ∈ N+ such that, for all i, k ≥ k̃,

Pr(Ek) ≥ 1− εk
where

Ek :={((πk ∈ ΠΛ, S̃ik < Λi) or (πk 6∈ ΠΛ, S̃ik > Λi)),

BRik = BRi(π−ik ), ∀i}.

1) We have, for all k ≥ k̃,

Pr(πk+1 ∈ ΠΛ|πk ∈ ΠΛ) ≥ (1− εk)
∏
i

(1− γik)

Pr(πk+1 ∈ ΠΛ|πk /∈ ΠΛ) ≥ (1− εk)
∏
i

(κi/|Πi|).

This leads to, with some algebra, for all k ≥ k̃,

Pr(πk+1 6∈ ΠΛ) ≤
(

1−
∏
i

(κi/|Πi|)
)

Pr(πk 6∈ ΠΛ)

+ εk +
∑
i

γik.

Since
∣∣∣1 − ∏i(κ

i/|Πi|)
∣∣∣ < 1,

∑
k∈N εk < ∞, and∑

i,k∈N γ
i
k < ∞, we have

∑
k∈N Pr(πk 6∈ ΠΛ) < ∞.

Borel-Cantelli Lemma implies

Pr(πk 6∈ ΠΛ, for infinitely many k ∈ N) = 0.

Also,
∑
k∈N Pr((πk ∈ ΠΛ, S̃ik ≥ Λi) <∞, hence

Pr(πk ∈ ΠΛ, Sik ≥ Λi, for infinitely many k ∈ N) = 0.

This proves the first part.
2) We have, for all k ≥ k̃,

Pr(πk+1 ∈ ΠΛ ∩Πcumber|πk ∈ ΠΛ ∩Πcumber)

≥ (1− εk)
∏
i

(1− γik).

There exists p̄min ∈ (0, 1) (which depends only on
λ1, . . . , λN , |Π1|, . . . , |ΠN |, L̄) such that, for all k ≥ k̃,

Pr(πk+L̄ ∈ ΠΛ ∩Πcumber|πk ∈ ΠΛ \Πcumber)

≥ p̄min

k+L̄−1∏
n=k

(1− εn)
∏
i

(1− γin) (22)

and

Pr(πk+L̄ ∈ ΠΛ ∩Πcumber|πk 6∈ ΠΛ)

≥
∏
i

(κi/|Πi|)
k+L̄−1∏
n=k

(1− εn)
∏
i

(1− γin).

This leads to, for all k ≥ k̃,

Pr(πk+L̄ 6∈ ΠΛ ∩Πcumber)

≤
(

1−min
{
p̄min ,

∏
i

(κi/|Πi|)
})

× Pr(πk 6∈ ΠΛ ∩Πcumber)

+
k+L̄−1∑
n=k

εn +
k+L̄−1∑
n=k

∑
i

γin.
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Since
∣∣∣1 − min

{
p̄min,

∏
i
κi

|Πi|

}∣∣∣ < 1,
∑
k∈N εk < ∞,

and
∑
i,k∈N γ

i
k < ∞, we have

∑
j∈N Pr(πk+jL̄ 6∈

ΠΛ ∩ Πcumber) < ∞, for all k ∈ N. This results in∑
k∈N Pr(πk 6∈ ΠΛ ∩ Πcumber) < ∞. Borel-Cantelli

Lemma implies

Pr(πk 6∈ ΠΛ∩Πcumber, for infinitely many k ∈ N) = 0.

Also
∑
k∈N Pr(BRik 6= BRi(π−ik )) <∞, hence,

Pr(BRik 6= BRi(π−ik ), for infinitely many k ∈ N) = 0.

This proves the second part.
3) We have, for all k ≥ k̃,

Pr(πk+L̄ ∈ ΠΛ
cumber|πk ∈ ΠΛ

cumber)

≥
k+L̄−1∏
n=k

(1− εn)
∏
i

(1−max{γin, κi}).

We also have, for all k ≥ k̃,

Pr(πk+L̄ ∈ ΠΛ
cumber|πk 6∈ ΠΛ

cumber)

≥ p̄min

k+L̄−1∏
n=k

(1− εn)
∏
i

(1−max{γin, κi})

where p̄min ∈ (0, 1) is as in (22). This leads to, for all
k ≥ k̃,

Pr(πk+L̄ 6∈ ΠΛ
cumber) ≤

k+L̄−1∑
n=k

(
εn +

∑
i

max{γin, κi}
)

+ (1− p̄min)Pr(πk 6∈ ΠΛ
cumber).

Since |1 − p̄min|< 1 and limk∈N
∑k+L̄−1
n=k εn = 0, we

have, for all k ∈ N,

lim sup
j∈N

Pr(πk+jL̄ 6∈ ΠΛ
cumber)

≤ lim sup
j∈N

k+(j+1)L̄−1∑
n=k+jL̄

∑
i

max{γin, κi}/p̄min.

This proves the third part.
4) It follows exactly the same as the third part by replacing

ΠΛ
cumber with Πcumber.

REFERENCES

[1] B. Yongacoglu, G. Arslan, and S. Yüksel, “Reinforcement learning for
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results for single-step on-policy reinforcement-learning algorithms,”
Machine Learning, vol. 38, no. 3, pp. 287–308, 2000.

[53] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Basar, “Fully decentralized
multi-agent reinforcement learning with networked agents,” in Interna-
tional Conference on Machine Learning, pp. 5872–5881, PMLR, 2018.

[54] V. S. Borkar, “Stochastic approximation with two time scales,” Systems
& Control Letters, vol. 29, no. 5, pp. 291–294, 1997.

[55] H. P. Young, Individual Strategy and Social Structure: An Evolutionary
Theory of Institutions. New Jersey: Princeton University Press, 1998.

[56] A. Fabrikant, A. D. Jaggard, and M. Schapira, “On the structure of
weakly acyclic games,” in Algorithmic Game Theory, pp. 126–137,
Springer, 2010.

[57] R. L. Dobrushin, “Central limit theorem for nonstationary Markov
chains. 1,” Theory Probab. Appl., vol. 1, no. 1, pp. 65–80, 1956.

Bora Yongacoglu received his B.A. degree from
McGill University in 2016, with majors in Math-
ematics and Economics. He received his M.Sc. in
Applied Mathematics in 2018 from Queen’s Uni-
versity, where he is currently a Ph.D. student in
Applied Mathematics. His research interests include
stochastic control, decentralized control, and learn-
ing in multi-agent systems.
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