Errata

October 1, 2014

The following is a list of corrections for *Stochastic Networked Control Systems: Stabilization and Optimization under Information Constraints.* For more typos, please contact yuksel@mast.queensu.ca or basar1@illinois.edu.

Page 93 In the first paragraph, some of the calculated costs are negative since the expression $kE[x^2]$ have not been included in the cost. Further numerical results, including the ones reported, are available in [40].

Page 181-182 In Theorems 6.2.3 and 6.2.4, it should be added that V is bounded on C.

Page 202-203 In (7.15), the equation at the bottom of 202 and top of 203, the expressions should multiply α (note that $\alpha < 1$ is the scaling term) and not divide so that the condition for stability is $2^{R'} > |a|/\alpha$.

Page 217 In the equation above the Figure, $I_0^c = \emptyset$ should be replaced with $I_{-1}^c = \emptyset$.

Page 228 $P_{g|g}^e$ in the second bullet should be $P_{\mathcal{Z}|g}^e$.

Pages 247-249 In the proof of Proposition 8.7.2: (i) R_T in the last paragraph should be replaced with TR_T . (ii) $P(\mathcal{Y} = 1)$ should be replaced with $P(\mathcal{Y} = 1|\mathcal{S}_T)$. (iii) On page 249, the following intermediate step could be added before the last step to complete the proof: Since

$$P(|x(T)| \le b(T)) \le (1 - P(\mathcal{S}_T)) + P(\mathcal{S}_T)P_{\mathcal{S}_T}(|x(t)| \le b(T)),$$

it follows that

$$\limsup_{T \to \infty} P(|x(T)| \le b(T)) \le \limsup_{T \to \infty} (1 - P(\mathcal{S}_T)) + \limsup_{T \to \infty} P(\mathcal{S}_T) P_{\mathcal{S}_T}(|x(t)| \le b(T))$$

Now, make $P(S_T)$ arbitrarily close to 1, by making K sufficiently large and by making the noise summation at the top of page 247 (that is make L in $|\sum_{k=0}^{T-1} A^{-k-1}Gw_k - \zeta_k| \leq L$ also sufficiently large). This leads to the last displayed equation on page 249.

Page 249 $\frac{1}{T}$ is missing on the left hand side of (8.32).

Page 276 A right bracket is missing in the first equation. In the second equation, a limit expression $\lim_{\Delta_0\to\infty}$ is missing.

Page 323 Let the information at the receiver at time t be $I_r^r = \{q_{[0,t-1]}^1, q_{[0,t-1]}^2\}$ should be $I_r^r = \{q_{[0,t]}^1, q_{[0,t]}^2\}$

Page 346 At the end of the first paragraph, the paragraph should end with: encoder at time t = 0 uses x_0 (the expression after the comma may be confusing).

Page 473 In reference [218], the second author, Jason S. Speyer is missing.