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ERGODICITY CONDITIONS FOR CONTROLLED STOCHASTIC
NONLINEAR SYSTEMS UNDER INFORMATION CONSTRAINTS:

A VOLUME GROWTH APPROACH\ast 
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Abstract. Consider a stochastic nonlinear system controlled over a possibly noisy communi-
cation channel. An important problem is to characterize the largest class of channels which admit
coding and control policies so that the closed-loop system is stochastically stable. In this paper
we consider the stability notion of (asymptotic) ergodicity. We prove lower bounds on the channel
capacity necessary to achieve the stability criterion. Under mild technical assumptions, we obtain
that the necessary channel capacity is lower-bounded by the log-determinant of the linearization,
double-averaged over the state and noise space. We prove this bound by introducing a modified
version of invariance entropy and utilizing the almost sure convergence of sample paths guaranteed
by the pointwise ergodic theorem. Our results generalize those for linear systems and are in some
cases more refined than those obtained for nonlinear systems via information-theoretic methods.
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1. Introduction. In this paper, we consider a stochastic nonlinear system con-
trolled over a possibly noisy communication channel. We consider the problem of
determining necessary conditions on channel capacity required for the existence of
coding and control policies so that the closed-loop system is stochastically stable.
The stability criterion considered is asymptotic ergodicity, by which we mean the
existence of an asymptotically mean stationary measure which is also ergodic. Our
analysis considers systems of the form

xt+1 = f(xt, wt) + ut,

where xt and ut take values in RN and wt takes values in an abstract probability
space. The variables xt, wt, and ut represent the state, noise, and control action at
time t, respectively. The noise is modeled in an i.i.d. fashion, and the initial state x0

is considered random and independent of the noise variables.
In the case of a deterministic system, the notion of invariance entropy has been

used to study a related problem, namely stabilization in the sense of set-invariance
[4]. The invariance entropy of a compact subset Q of the state space is defined as

hinv(Q) := lim
\tau \rightarrow \infty 

1

\tau 
log rinv(\tau ,Q),
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where rinv(\tau ,Q) is the minimum number of control inputs required to makeQ invariant
on the time interval [0, \tau ] for arbitrary initial states in Q. The invariance entropy
measures the smallest average rate of information that must be transmitted to a
controller to render Q invariant.

The motivation for the above definition arises by observing that with n bits of
information available at the controller side, at most 2n different states can be distin-
guished, and therefore at most 2n different control inputs can be generated.

In the case of stochastic systems, this reasoning does not apply directly: (i) Asking
for a compact subset of the state space to be invariant is too restrictive to be a useful
notion of stability. For example, if the system is subject to unbounded noise, the
state process may leave a given compact set regardless of the control policy. There-
fore, here we consider instead notions of stochastic stability such as ergodicity and
asymptotic mean stationarity (AMS). (ii) If the channel is noisy, the informational
content of received codewords cannot be measured by the number of distinct possible
receiver outputs. As an extreme case, consider a channel where the channel inputs
and outputs are independent, and hence the (information-theoretic) channel capacity
is zero. In this case, no reliable information can be transmitted across the channel,
and thus, the methodology presented above for noise-free models by means of a di-
rect application of invariance entropy is no longer applicable. On the other hand,
the information-theoretic approach for this problem does not allow one to develop
a geometric analytical refinement afforded by a stochastic volume growth approach;
and one of our main contributions in this paper is to develop a framework, alternative
to methods building on directed mutual information [34], to approach the study of
nonlinear systems controlled over noisy channels.

In [17], the notion of invariance entropy was generalized for use in the stability
analysis of discrete-time stochastic systems controlled over finite-capacity channels.
The introduced quantity, called stabilization entropy, is inspired by both invariance
entropy and measure-theoretic entropy of dynamical systems, in particular by a char-
acterization of the latter due to Katok [15] and a generalization thereof developed in
Ren et al. [28].

In the paper at hand, we provide an operationally and mathematically significant
refinement, where our stability criterion is stochastic in nature, but deterministic in
its sample path limits, as we will make precise further below. Our stronger notion of
stability guarantees the almost sure convergence of sample paths which asymptotically
visit each subset of the state space at a frequency given by the AMS measure of the
subset. We further generalize the notion of stabilization entropy by considering a
finite collection of subsets rather than one single subset of the state space, and prove
stronger results, using the pointwise ergodic theorem.

The paper is organized as follows. Section 2 provides a brief literature review
and presents our contributions. Some fundamental definitions and technical tools are
introduced in section 3. The main results are presented and discussed in section 4,
while their proofs are given in section 5. Some definitions and auxiliary results are
outlined in the appendix.

2. Literature review and contributions. The problem of determining nec-
essary and sufficient conditions for stochastic stability of Markov chains, in the form
of the existence of a stationary measure and positive Harris recurrence, has been
studied using Lyapunov methods, and we refer the reader to [24] for a comprehen-
sive treatment. To implement stabilizing control policies, however, full feedback is
often required (or, in case of partially observed models, restrictive invertibility con-
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536 N. GARCIA, C. KAWAN, AND S. Y\"UKSEL

ditions related to observability are needed), a condition which is too restrictive in
many modern application areas. For example, the controller may have access only
to an estimate of the state encoded in n bits at each time step, in which case the
typically uncountable state space must be quantized using a finite (2n) number of
symbols. As such, the assumption that the controller has full state access, at arbi-
trary levels of precision, is no longer valid. In particular, this is the case in networked
systems, where communication resources have to be distributed among many agents,
and in underwater applications, where communication is naturally constrained due
to the physical properties of the environment. The emergence of such problems has
motivated the study of control problems subject to information constraints, and the
development of the general theory of information-based control.

In the case of linear systems, explicit formulas have been obtained for the smallest
channel capacity above which stabilization is possible. Under certain stability notions,
the capacity of the channel must not be smaller than the logarithm of the unstable
open-loop determinant. The earliest contributions can be found in [32, 2]. These
formulas, known as data-rate theorems, were further generalized in [14, 25, 29]. For
a more complete discussion of related results, see [1, 10, 22, 27].

For nonlinear systems, most of the results in the literature have been obtained
for deterministic systems controlled over noiseless channels. To this end, the notion
of topological feedback entropy was introduced in [26] for the study of discrete-time
systems. A related result, by the same authors, is a characterization of the smallest
data rate required for stabilization to an equilibrium point as the log-sum of the
unstable eigenvalues of the linearization. For the case of continuous-time systems, the
notion of invariance entropy was introduced in [4]. Both topological feedback entropy
and invariance entropy capture the smallest average rate of information required to
keep the state inside a compact set. When adapted to the discrete-time setting, the
two notions are equivalent, as was shown in [5]. An extensive review of these concepts
is provided in [16]. A recent related development was the introduction of metric
invariance entropy in [3], a notion based on conditionally invariant measures.

Other studies on control of nonlinear systems over communication channels have
focused on constructive schemes (and not on converse theorems), primarily for noise-
free systems and channels; cf. [20, 7, 19]. Recently, necessary conditions in the form of
lower bounds on the channel capacity for a certain class of stochastic nonlinear systems
over both noiseless and noisy channels were established in [17] and [34], where the
stability notion considered in the first paper is AMS, and the notions considered in the
second paper are AMS, ergodicity, and positive Harris recurrence. In [17], the notion
of stabilization entropy is used, while [34] relies on information-theoretic techniques,
where the different approaches arrive at complementary results.

For a class of nonlinear systems controlled over noiseless channels [34], and for lin-
ear systems over Gaussian, discrete noiseless, erasure and discrete noisy channels [37]
as well as [35, 36, 38] establish the ergodicity property under information constraints.
In particular, [36, Thm. 4.2] shows that for a linear system with a diagonalizable ma-
trix A, controlled over a discrete memoryless channel (DMC), the AMS and ergodicity
properties can be achieved whenever the channel capacity exceeds the log-sum of the
unstable eigenvalues. Hence, in this case the lower bounds following from the results
in this paper match with the upper bound. For nonlinear systems of the form

xt+1 = f(xt, ut) + wt

with f(\cdot , u) : RN \rightarrow RN invertible and C1 for every u and \{ wt\} an i.i.d. sequence
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of zero-mean Gaussian variables, it is shown in [34, Thm. 5.1] that ergodicity (and
thus AMS) can be achieved over a discrete noiseless channel under the following
assumption: There exist a function \kappa : RN \rightarrow RM with \kappa (0) = 0 and a constant
a > 0 such that | f(x, \kappa (z))| \infty \leq a| x - z| \infty for all x, z \in RN . In this case, the minimal
required channel capacity C0 satisfies C0 \leq N log(a) + 1. Therefore, the goal of
ergodicity is attainable even for systems with additive unbounded noise. Though not
directly related, further relevant papers on the general subject of nonlinear control
under information constraints include [23, 33, 21, 8, 30, 39].

It is important to note that for linear systems, any local dynamical or control-
theoretic property is also a global property. As such, the problems of local stabilization
(stabilization to a point), semiglobal stabilization (set-invariance), and global stabi-
lization (stochastic stability) can all be handled with similar methods, leading to the
aforementioned data-rate theorem in each case. For nonlinear systems, however, the
three stability problems are fundamentally different and require distinct approaches.
For example, linearization techniques work well for local problems, for semiglobal
problems only under specific assumptions, and almost never for global problems.
In addition, the presence of (possibly unbounded and additive) noise requires an
approach fundamentally different from the machinery utilized for local stabilization
problems.

Contributions. In this paper, we study the problem of stochastic stabilization
of a nonlinear stochastic system controlled over a finite-capacity communication chan-
nel, with the stability criterion being the (asymptotic) ergodicity of the process. As
a primary contribution, we develop a stochastic volume growth technique tailored
to ergodicity properties, which is in contrast with the information-theoretic methods
studied earlier, and establish refined and more general results on information trans-
mission requirements for making the controlled stochastic nonlinear system ergodic.
In particular, compared with [34], we allow arbitrary coding and control policies and
do not impose an entropy growth condition a priori. Our results generalize the linear
setups considered extensively in the literature.

3. Preliminaries.

3.1. Notation. Throughout the paper, N denotes the strictly positive integers,
Z+ denotes N \cup \{ 0\} , and R>0 denotes the strictly positive real numbers. We write
[a; b] for a discrete interval, i.e., [a; b] = \{ a, a + 1, . . . , b\} for any a \leq b in Z. The
notation \scrB (X) is used for the Borel \sigma -algebra of a Polish space X. Furthermore, \Sigma 
denotes the space of sequences in a Polish space X, i.e., \Sigma = XZ+ , and \scrB (\Sigma ) the
Borel \sigma -algebra of \Sigma , which is generated by cylinder sets. If x \in XZ+ , we write
x[0,t] = (x0, x1, . . . , xt) for any t \in Z+. By m we denote the Lebesgue measure on
RN for any N \in N. All logarithms are taken to the base 2.

3.2. Stochastic stability and ergodic properties. In this section, we provide
some basic definitions and characterize the stability criterion considered in this paper:
asymptotic mean stationarity with the associated AMSmeasure resulting in an ergodic
state process. We refer the reader to [13, 12, 11] for a detailed study of the concepts
presented in this section.

First, recall some basic facts from ergodic theory: A measurable map T : \Omega \rightarrow \Omega 
on a probability space (\Omega ,\scrF , P ) is called measure-preserving if P (T - 1(A)) = P (A) for
all A \in \scrF . An event A \in \scrF is T -invariant if A = T - 1(A) (up to a set of measure zero).
We denote by \scrF inv(T ) the set of all T -invariant measurable sets, which is a \sigma -algebra.
A measure-preserving map T is called ergodic if P (A) \in \{ 0, 1\} for all A \in \scrF inv(T ).
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Note that ergodicity is a property of a system (\Omega ,\scrF , P, T ), but sometimes we also say
that ``T is ergodic"" or occasionally ``P is ergodic"" when the other components of the
system are clear from the context.

A fundamental result in ergodic theory is the following pointwise ergodic theorem.

Theorem 3.1. Let (\Omega ,\scrF , P ) be a probability space and T : \Omega \rightarrow \Omega a measure-
preserving map. Then for any f \in L1(\Omega ,\scrF , P ) we have

1

N

N - 1\sum 
k=0

f \circ T k a.s. -  -  -  - \rightarrow 
N\rightarrow \infty 

\varphi 

for some \varphi \in L1(\Omega ,\scrF inv(T ), P | \scrF inv(T )
) satisfying

\int 
\varphi dP =

\int 
f dP . If, in addition, T

is ergodic, then \varphi is almost everywhere constant, and thus

1

N

N - 1\sum 
k=0

f \circ T k a.s. -  -  -  - \rightarrow 
N\rightarrow \infty 

\int 
f dP.

In the following, we fix a Polish space X and the associated sequence space \Sigma =
XZ+ . The shift map on \Sigma is defined by

\theta : \Sigma \rightarrow \Sigma , (\theta x)t :\equiv xt+1 for all x = (xt)t\in Z+ \in \Sigma .

A measure \mu on (\Sigma ,\scrB (\Sigma )) is called stationary if \mu (\theta  - 1(B)) = \mu (B) for all B \in \scrB (\Sigma ),
i.e., if (\Sigma ,\scrB (\Sigma ), \mu , \theta ) is a measure-preserving system.

A stochastic process x = (xt)t\in Z+
taking values inX (with underlying probability

space (\Omega ,\scrF , P )) is called
\bullet stationary if its process measure is stationary, i.e., P (\{ \omega \in \Omega : x(\omega ) \in B\} ) =
P (\{ \omega \in \Omega : (\theta x)(\omega ) \in B\} ) for all B \in \scrB (\Sigma );

\bullet asymptotically mean stationary (AMS) if there exists a probability measure
\~Q on (\Sigma ,\scrB (\Sigma )) such that

lim
T\rightarrow \infty 

1

T

T - 1\sum 
t=0

P (\theta  - t(B)) = \~Q(B) for all B \in \scrB (\Sigma ).

It can easily be shown that the measure \~Q is stationary. We can also obtain
a measure Q on (X,\scrB (X)) by projecting \~Q down to any of its coordinates.
It follows that for any B \in \scrB (X)

lim
T\rightarrow \infty 

1

T

T - 1\sum 
t=0

P (xt \in B) = Q(B).

Let \mu denote the process measure on (\Sigma ,\scrB (\Sigma )), and suppose that the system
(\Sigma ,\scrB (\Sigma ), \mu , \theta ) is ergodic. Observe that for a set B \in \scrB (X), by the pointwise ergodic
theorem, we have

\mu 
\Bigl( \Bigl\{ 

x \in \Sigma : lim
T\rightarrow \infty 

1

T

T - 1\sum 
t=0

1B(xt) =

\int 
1B(x0) d\mu (x)

\Bigr\} \Bigr) 
= 1,

which we can (using the notation \mu also for the projection of \mu to X) rewrite as

\mu 
\Bigl( \Bigl\{ 

x \in \Sigma : lim
T\rightarrow \infty 

1

T

T - 1\sum 
t=0

1B(xt) = \mu (B)
\Bigr\} \Bigr) 

= 1.(3.1)
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Thus, if the stochastic process is ergodic, then the set of sample paths which visit a
Borel set B with frequency \mu (B) is of full measure. This is a strong notion of stability
and is a key ingredient in the proofs of the theorems in this paper.

However, we can relax ergodicity of the process measure somewhat, and it turns
out that (3.1) holds for a larger class of processes.

Definition 3.2. Consider a stochastic process which is AMS with asymptotic
mean Q. If Q is ergodic, we call the process AMS ergodic.

Proposition 3.3. An AMS ergodic process satisfies an equation similar to (3.1).
Namely, for any B \in \scrB (X) it holds that

(3.2) \mu 
\Bigl( \Bigl\{ 

x \in \Sigma : lim
T\rightarrow \infty 

1

T

T - 1\sum 
t=0

1B(xt) = Q(B)
\Bigr\} \Bigr) 

= 1.

Proof. Let us fix a B \in \scrB (X). By stationarity, we can project Q to the space X.
By a slight abuse of notation, we also denote the projected measure by Q. We define

F :=
\Bigl\{ 
x \in \Sigma : lim

T\rightarrow \infty 

1

T

T - 1\sum 
t=0

1B(xt) = Q(B)
\Bigr\} 
.

From the ergodicity assumption on Q, it follows that Q(F ) = 1. Also, F is invariant
under \theta , from which we obtain that \mu (F ) = 1 (see [12, Lem. 7.5 and eq. (7.22)]). See
also [12, Thm. 7.6].

4. Information transmission rate conditions for ergodicity. We now state
the main contributions of this paper. Proofs can be found in the next section. Consider
the system

xt+1 = f(xt, wt) + ut,(4.1)

where xt and ut are RN -valued for some N \in N and wt takes values in a standard
probability space W. For a fixed w \in W, let us denote the map x \mapsto \rightarrow f(x,w) by fw.
Suppose also that the following hold:

(A1) The map f : RN \times W\rightarrow RN is Borel measurable.
(A2) The noise process (wt)t\in Z+

is i.i.d. By abuse of notation, \nu denotes both the
law of any individual wt, as well as the process measure.

(A3) The map fw : RN \rightarrow RN is C1 and injective for any w \in W.
(A4) The initial state x0 is random and independent of the noise process. We write

\pi 0 for the associated probability measure.
(A5) The measure \pi 0 is absolutely continuous with respect to the N -dimensional

Lebesgue measure m, and its density (which exists by the Radon--Nikodym
theorem) is bounded.

(A6) There is a constant c > 0 with | detDfw(x)| > c for all x \in RN and w \in W.
We write (\Omega ,\scrF , P ) for the probability space on which both x0 and wt are modeled.
We assume that the system is controlled over a possibly noisy communication

channel as depicted in Figure 1. The channel has a finite input alphabet \scrM and a
finite output alphabet \scrM \prime . The channel input qt at time t is generated by a function
\gamma e
t so that qt = \gamma e

t (x[0,t], q
\prime 
[0,t - 1]). The channel maps qt to q\prime t in a stochastic fashion so

that P (q\prime t \in \cdot | qt, q[0,t - 1], q
\prime 
[0,t - 1]) = P (q\prime t \in \cdot | qt) is a conditional probability measure

on \scrM \prime for all t \in Z+, for every realization qt, q[0,t - 1], q
\prime 
[0,t - 1]. The controller, upon

receiving the information from the channel, generates its decision at time t, also
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Channel

Plant

Coder Controller

Fig. 1. Control of a system over a noisy channel with feedback.

causally: ut = \gamma c
t (q

\prime 
[0,t]). Any coding and control policy of this kind is called causal.

If the channel is noiseless, we have \scrM = \scrM \prime , and the channel capacity reduces to
C = log | \scrM | . If the channel is noisy and memoryless, feedback does not increase its
capacity; see section 6.2.

Theorem 4.1. Consider system (4.1) satisfying assumptions (A1)--(A6). Sup-
pose the system is controlled over a discrete noiseless channel of capacity C, and a
coding and control policy achieves that the state process is AMS ergodic with asymp-
totic mean Q. Then the capacity must satisfy\int \int 

log | detDfw(x)| dQ(x) d\nu (w) \leq C.

Our second main theorem relaxes the condition of the channel being noiseless.
On the other hand, the class of nonlinear systems considered is more restrictive.

Theorem 4.2. Consider the scalar system

xt+1 = f(xt, wt) + ut

satisfying assumptions (A1)--(A5). Additionally, suppose that the following hold:
(i) | f \prime 

w(x)| \geq 1 for every x \in R.
(ii) The support of \pi 0 is a compact interval K \subseteq R.
(iii) The essential infimum and supremum of the density of \pi 0, denoted by \rho min and

\rho max, respectively, satisfy 0 < \rho min \leq \rho max < \infty .
Suppose that the system is controlled over a DMC with feedback of capacity C, and
a causal coding and control policy results in the state process being AMS ergodic with
asymptotic mean Q. Then the channel capacity must satisfy

(4.2)

\int \int 
log | f \prime 

w(x)| dQ(x) d\nu (w) \leq C.

The first theorem above is a counterpart to [17, Thm. 5.1], where it was shown
for systems of the form xt+1 = f(xt)+wt +ut, without the ergodicity assumption on
the AMS measure, that for any Borel set B of finite Lebesgue measure

Q(B) inf
x\in B

log | detDf(x)| \leq C

must be satisfied. The second theorem above is a counterpart to [17, Thm. 7.1]
without the ergodicity assumption on the AMS measure.

To prove Theorem 4.1 and Theorem 4.2, the stabilization entropy introduced in
[17] must be generalized and a technical lemma proven. This is carried out in the
next section. Before doing this, we provide a discussion of the theorems.

D
ow

nl
oa

de
d 

02
/2

2/
21

 to
 1

30
.1

5.
35

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ERGODICITY UNDER INFORMATION CONSTRAINTS 541

Observe that our lower bound on channel capacity is \leq 0 (and thus vacuous)
if | detDfw(x)| \leq 1 for all (x,w). Recall that the determinant of a square matrix
represents the volume of the unit cube after it is acted on by the matrix. As such,
Theorem 4.1 is only interesting if the system is volume-expansive on some regions of
the state space. This is intuitive, since if f is nowhere volume-expansive, it may be
possible for the uncontrolled system to have desirable stability properties.

The results obtained here are consistent with those obtained using information-
theoretic techniques in [34], but are in fact a strict refinement. A similar converse
result on channel capacity was obtained in [34] under the stronger stability criterion
of positive Harris recurrence of the closed-loop stochastic process. It reads as follows.

Theorem 4.3 (see [34, Thm. 4.2]). Consider the system

xt+1 = f(xt, wt) + ut,

and suppose that the following assumptions hold:
(i) For any fixed w, the function fw : RN \rightarrow RN is a C1-diffeomorphism.
(ii) There exist L,M \in R such that L \leq log | detDfw(x)| \leq M for all x,w \in RN .

Suppose that a stationary coding and control policy (see [34] for a precise definition)
is adopted so that under this policy
(i) the Markovian system state and encoder state is positive Harris recurrent (which

implies the existence of a unique invariant measure);
(ii) lim supt\rightarrow \infty h(xt)/t \leq 0, where h(\cdot ) denotes the differential entropy.

Then the channel capacity must satisfy\int \int 
log | detDfw(x)| dQ(x) d\nu (w) \leq C.

Let us now compare Theorem 4.1 and Theorem 4.2 with Theorem 4.3. Theo-
rem 4.1 is more general in the sense that it applies to arbitrary causal coding and
control policies---not just Markov ones. Moreover, it does not require the assump-
tion of sublinear growth of the differential entropy of the state process. Theorem 4.3
assumes that the state process is positive Harris recurrent, which implies unique er-
godicity, while Theorem 4.1 only assumes ergodicity of the AMS measure. On the
other hand, compared with Theorem 4.2, Theorem 4.3 considers a more general class
of channels (involving memory) as well as systems taking values in higher dimensions.

5. Proofs. In this section, we prove our two main theorems. We begin by gen-
eralizing the notion of stabilization entropy and proving a technical lemma.

5.1. Generalizing stabilization entropy. Consider system (4.1) with a fixed
(open-loop) control sequence u := (ut)t\in Z+

, a noise realization w := (wt)t\in Z+
, and

an initial state x0 \in RN . For such a setup, the trajectory x := (xt)t\in Z+
\in (RN )Z+

of the state is uniquely determined. Let us denote this trajectory by \varphi (\cdot , x0, u, w) so
that for any t \in Z+, xt = \varphi (t, x0, u, w).

We want to find a subset of control sequences that allow us to render certain
subsets of the state space invariant in a probabilistic sense. This leads to the next
definitions of spanning sets and stabilization entropy for finite collections of subsets
of RN andW, respectively, which generalize similar notions in [17], where a single set
was considered.

Definition 5.1. Let B \in \scrB (RN ) and D \in \scrB (W) be finite disjoint unions of
Borel sets B1, . . . , Bn and D1, . . . , Dm, respectively. Let also R denote a collection of
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numbers rk,l \in [0, 1] for k \in \{ 1, . . . , n\} and l \in \{ 1, . . . ,m\} satisfying

1 - r :=

n\sum 
k=1

m\sum 
l=1

(1 - rk,l) \in [0, 1].

Fix T \in N and \rho \in (0, 1). A set of control sequences S \subseteq (RN )T is called
(T,B,D, \rho ,R)-spanning if there exists \~\Omega \in \scrF such that the following conditions hold:

\bullet P (\~\Omega ) \geq 1 - \rho .
\bullet For each \omega \in \~\Omega , there exists a control sequence u \in S such that

1

T
| \{ t \in [0;T  - 1] : (\varphi (t, x0(\omega ), u, w(\omega )), wt(\omega )) \in Bk \times Dl\} | \geq 1 - rk,l

holds for all k and l.

Note that we abuse notation by calling a set (T,B,D, \rho ,R)-spanning instead of
(T, (Bk)

n
k=1, (Dl)

m
l=1, \rho , R)-spanning. When doing so, there is the underlying assump-

tion that the partitions of B and D are fixed. No confusion should arise, since we
explicitly define the partitions whenever we use the definition.

In the above definition, the fact that all random variables are modeled on a
common probability space ensures that given \omega , the initial state and the noise sequence
of length T are deterministic. Intuitively speaking, a subset of control sequences of
length T is (T,B,D, \rho ,R)-spanning if the probability that, for all k, l, we can maintain
the state variable in Bk and the noise variable in Dl for at least 1  - rk,l percent of
the time, is at least 1  - \rho . We want to use the size of spanning sets to quantify the
difficulty of a control task, which leads to the next definition.

Definition 5.2. For the system (4.1), we define the (B,D, \rho ,R)-stabilization en-
tropy by

h(B,D, \rho ,R) := lim sup
T\rightarrow \infty 

1

T
log s(T,B,D, \rho ,R),

where s(T,B,D, \rho ,R) denotes the smallest cardinality of a (T,B,D, \rho ,R)-spanning
set. We define this quantity to be \infty if no or no finite spanning set exists.

It is obvious that finite (T,B,D, \rho ,R)-spanning sets need not exist. As we will
see, however, they do exist in desired scenarios.

The following lemma is instrumental to prove Theorem 4.1.

Lemma 5.3. Consider system (4.1) with the assumptions of Theorem 4.1 (i.e.,
a coding and control policy exists over a noiseless channel of capacity C = log | \scrM | 
which makes the state process AMS ergodic with AMS mean Q). We recall that Q
is stationary and can be projected unambiguously to obtain a measure on \scrB (RN ).
Abusing notation, we also denote the projection by Q. Let now

\bullet B :=
\bigsqcup n

k=1 Bk \in \scrB (RN ) and D :=
\bigsqcup m

l=1 Dl \in \scrB (W) be finite disjoint unions
of Borel sets, and

\bullet \rho \in (0, 1) be arbitrary.
Next, define the sequence of numbers R\epsilon := (rk,l)1\leq k\leq n,1\leq l\leq m, where

rk,l :=

\left\{     
(1 + \epsilon )(1 - Q(Bk)\nu (Dl)) if Q(Bk)\nu (Dl) \in (0, 1),

1 if Q(Bk)\nu (Dl) = 0,

\epsilon if Q(Bk)\nu (Dl) = 1,

and observe that for \epsilon > 0 small enough, the following conditions are satisfied:
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(i) 1 - r :=
\sum n

k=1

\sum m
l=1(1 - rk,l) \in [0, 1].

(ii) 1 - (1 + \epsilon )(1 - Q(Bk)\nu (Dl)) \in (0, 1) for all k, l with Q(Bk)\nu (Dl) \in (0, 1).
Thus, for such a small \epsilon , the generalized stabilization entropy h(B,D, \rho ,R\epsilon ) is well
defined. (Of course, r and the rk,l's are \epsilon -dependent, but we drop this from the nota-
tion.) Then for all \epsilon > 0 further small enough the capacity must satisfy

(5.1) h(B,D, \rho ,R\epsilon ) \leq C.

Proof. We distinguish two cases.
Case 1. We can remove the trivial sets with zero measure from the collections

\{ Bk\} and \{ Dl\} and thus assume that Q(Bk)\nu (Dl) > 0 for all (k, l). Indeed, if a
spanning set can be found for the new collections, it is still spanning for the original
ones. If Q(Bk)\nu (Dl) = 1 for some (k, l), all the other Cartesian products have measure
zero, and we can remove them from the collection. Hence, this case reduces to the
analysis of a single set as worked out in [17], where we considered AMS instead of
AMS ergodicity as the control objective. Since AMS ergodicity implies AMS, and
h(B,D, \rho ,R) reduces to the stabilization entropy notion used in [17] in case of a
single set, the desired inequality follows.

Case 2. We continue by considering the case where Q(Bk)\nu (Dl) \in (0, 1) for all
k, l. Let \epsilon > 0 be small enough such that conditions (i) and (ii) are satisfied and
\epsilon < \rho . We will show that for any such \epsilon the claim holds.

Let us denote the process measure by \mu , which is AMS by assumption. Let Q
denote the asymptotic mean, which is by assumption ergodic. As Q is stationary, we
can project it unambiguously to a measure on (RN ,\scrB (RN )). By a slight abuse of
notation, we denote by Q both the AMS measure and its projection. Let us consider
some Borel set C \subset RN , and let f : (RN )Z+ \rightarrow R be defined by f((xt)t\in Z+

) :=
1C(x0). It is obvious that this function is in L1((RN )Z+) (with either Q or \mu as the
measure). Recalling our ergodicity assumption, the pointwise ergodic theorem tells
us that

1

N

N - 1\sum 
j=0

f \circ \theta j Q - a.s. -  -  -  - \rightarrow 
N\rightarrow \infty 

\int 
f dQ =

\int 
1C(x) dQ(x) = Q(C).

Crucially, however, the above convergence also happens \mu -almost surely (see (3.2) or
[12, Lem. 7.5]). Now, for any V \in \scrB (W), it is clear by the i.i.d. property that

P
\Bigl( \Bigl\{ 

\omega \in \Omega : lim
T\rightarrow \infty 

1

T

T - 1\sum 
t=0

1V (wt(\omega )) = \nu (V )
\Bigr\} \Bigr) 

= 1.

As such, noting that xt and wt are independent at each time step t, it follows that

P
\Bigl( \Bigl\{ 

\omega \in \Omega : lim
T\rightarrow \infty 

1

T

T - 1\sum 
t=0

1Bk
(xt(\omega ))1Dl

(wt(\omega )) = Q(Bk)\nu (Dl) \forall k, l
\Bigr\} \Bigr) 

= 1.

Let us denote the full measure set, where this convergence happens, by \^\Omega .
We continue by defining the events

Ej
i :=

\Bigl\{ 
\omega \in \Omega :

\bigm| \bigm| \bigm| 1
T

T - 1\sum 
t=0

1Bk
(xt(\omega ))1Dl

(wt(\omega )) - Q(Bk)\nu (Dl)
\bigm| \bigm| \bigm| < 1

i
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\forall k, l whenever T \geq j
\Bigr\} 
,

E :=

\infty \bigcap 
i=1

\infty \bigcup 
j=1

Ej
i .

It is not hard to see that \^\Omega \subseteq E; hence P (E) = 1. Furthermore, observe that E is an
infinite intersection of ``decreasing"" sets (in the containment sense). Hence,

P

\biggl( \infty \bigcup 
j=1

Ej
i

\biggr) 
= 1 for all i \in N.

Let now I0 be large enough such that

1

I0
\leq \epsilon (1 - Q(Bk)\nu (Dl)) for all k \in \{ 1, . . . , n\} , l \in \{ 1, . . . ,m\} ,

and observe that E1
I0

\subseteq E2
I0

\subseteq E3
I0

\subseteq \cdot \cdot \cdot . By continuity of probability, we have

lim
j\rightarrow \infty 

P (Ej
I0
) = P

\biggl( \infty \bigcup 
j=1

Ej
I0

\biggr) 
= 1,

and thus there exists J0 such that P (Ej
I0
) \geq 1  - \epsilon for all j \geq J0. For an arbitrary

T \geq J0, we define the set of control sequences

ST := \{ u[0;T - 1](\omega ) : \omega \in ET
I0\} .

We claim that this set is (T,B,D, \rho ,R\epsilon )-spanning. We use the set \~\Omega T := ET
I0

\in \scrF to

show this, where we note that it satisfies P (\~\Omega T ) \geq 1 - \epsilon > 1 - \rho , as required. For every
\omega \in \~\Omega T and all k, l, the control sequence u[0;T - 1](\omega ) results in the joint state-noise
process satisfying

\bigm| \bigm| \bigm| 1
T

T - 1\sum 
t=0

1Bk
(xt(\omega ))1Dl

(wt(\omega )) - Q(Bk)\nu (Dl)
\bigm| \bigm| \bigm| < 1

I0
\leq \epsilon (1 - Q(Bk)\nu (Dl)).(5.2)

To prove the claim, it now suffices to show that for all \omega \in \~\Omega T and k, l we have

1

T
| \{ t \in [0;T  - 1] : (\varphi (t, x0(\omega ), u[0;T - 1](\omega ), w(\omega )), wt(\omega )) \in Bk \times Dl\} | 

\geq 1 - (1 + \epsilon )(1 - Q(Bk)\nu (Dl)) = (1 + \epsilon )Q(Bk)\nu (Dl) - \epsilon .

This follows directly from (5.2). Also, since the coding and control policy can generate
at most | \scrM | T distinct control sequences by time T , it follows that | ST | \leq | \scrM | T ;
therefore, s(T,B,D, \rho ,R\epsilon ) \leq | \scrM | T . Recalling that T \geq J0 was arbitrary, we find
that

log s(T,B,D, \rho ,R\epsilon ) \leq T log | \scrM | = TC for all T \geq J0,

and therefore dividing by T and letting T \rightarrow \infty yields the desired capacity bound
(5.1), which completes the proof.

D
ow

nl
oa

de
d 

02
/2

2/
21

 to
 1

30
.1

5.
35

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ERGODICITY UNDER INFORMATION CONSTRAINTS 545

5.2. Proof of Theorem 4.1.

Proof. Let c \in (0, 1) be such that c < | detDfw(x)| for all x \in RN and w \in W.
Let also \delta > 0 and \rho \in (0, 1) be arbitrary. Next, fix a partition of a Borel set B \subset RN

and let D =W, respectively; let (Bk)
n
k=1 be a partition of B and (Dl)

m
l=1 a partition

of D. Suppose that B has finite Lebesgue measure and

Q(B) > 1 - \delta 

2| log c| 
,

where Q denotes the asymptotic mean of the state process. Let \epsilon > 0 be small enough
such that Lemma 5.3 holds, resulting in

h(B,D, \rho ,R\epsilon ) \leq C,

where R\epsilon is the associated collection of rk,l's as defined in Lemma 5.3. Let also
1 - r :=

\sum 
(1 - rk,l). It is easy to see that r = 1 - (1 + \epsilon )Q(B) + nm\epsilon (or r = \epsilon if one

of the Bk \times Dl has full Q\times \nu -measure); thus we see that for every sufficiently small \epsilon ,

(5.3) 2r <
\delta 

| log c| 
.

Now fix a sufficiently large T \in N, and let S be a finite (T,B,D, \rho ,R\epsilon )-spanning set
(whose existence is guaranteed by the proof of Lemma 5.3) with \~\Omega \in \scrF , P (\~\Omega ) \geq 1 - \rho ,
the associated subset of \Omega . Also let

A := \{ (w(\omega ), x0(\omega )) : \omega \in \~\Omega \} ,

A(u) :=

\biggl\{ 
(w, x) \in WZ+ \times RN :

1

T

T - 1\sum 
t=0

1Bk\times Dl
(\varphi (t, x, u, w), wt) \geq 1 - rk,l \forall k, l

\biggr\} 
,

A(u,w) := \{ x \in RN : (w, x) \in A(u)\} ,

and observe that

(5.4) A \subseteq 
\bigcup 
u\in S

A(u).

By the Fubini--Tonelli theorem, we have

(5.5) (\nu \times m)(A(u)) =

\int 
m(A(u,w)) d\nu (w).

Let us now define a set consisting of disjoint collections of subsets of \{ 0, . . . , T  - 1\} :

A :=

\biggl\{ 
\Lambda = \{ \Lambda l

k\} k,l :
n\bigsqcup 

k=1

m\bigsqcup 
l=1

\Lambda l
k \subseteq \{ 0, . . . , T  - 1\} ,

| \Lambda l
k| \geq (1 - rk,l)T \forall k = 1, . . . , n, l = 1, . . . ,m

\biggr\} 
,

and note that as a consequence of the definition, | 
\bigsqcup n

k=1

\bigsqcup m
l=1 \Lambda 

l
k| \geq (1  - r)T for all

\Lambda \in A. For such a \Lambda , define the set

A(u,w,\Lambda ) := \{ x \in RN : (\varphi (t, x, u, w), wt) \in Bk \times Dl \leftrightarrow t \in \Lambda l
k for all k, l\} 
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and also (writing \varphi t,u,w(\cdot ) := \varphi (t, \cdot , u, w))

At(u,w,\Lambda ) := \varphi t,u,w(A(u,w,\Lambda )), t = 0, 1, . . . , T  - 1.

It is not hard to see that A(u,w) =
\bigsqcup 

\Lambda \in AA(u,w,\Lambda ) is a disjoint union, implying

(5.6) m(A(u,w)) =
\sum 
\Lambda \in A

m(A(u,w,\Lambda )).

If M > 0 is an upper bound for the density of \pi 0, it follows that

(5.7) 1 - \rho \leq (\nu \times \pi 0)(A) \leq M \cdot (\nu \times m)(A).

We also have

At(u,w,\Lambda ) \subseteq Bk whenever t \in \Lambda k,l \forall k \in \{ 1, . . . , n\} , l \in \{ 1, . . . ,m\} .

Next, we define the following numbers:

ck,l := inf
(x,w)\in Bk\times Dl

| detDfw(x)| .

Recalling the fact that fw is injective and C1, for all (k, l) we have

m(At+1(u,w,\Lambda )) \geq ck,l \cdot m(At(u,w,\Lambda )) whenever t \in \Lambda k,l,

m(At+1(u,w,\Lambda )) \geq c \cdot m(At(u,w,\Lambda )) whenever t /\in 
\bigsqcup 

\Lambda k,l.

Letting t\ast (\Lambda k,l) := max\Lambda k,l and t\ast (\Lambda ) := maxk,l t
\ast (\Lambda k,l) and applying the above

inequalities repeatedly, it is not hard to see that

m(A(u,w,\Lambda ))
\Bigl( n\prod 
k=1

m\prod 
l=1

c
| \Lambda k,l|  - 1
k,l

\Bigr) 
crT+nm \leq m(At\ast (\Lambda )(u,w,\Lambda )).

Recall that c \leq ck,l. Now, in principle, all the exponents of the ck,l's should be | \Lambda k,l| ,
except for possibly one, which should be | \Lambda k,l|  - 1. We do not know which one though,
so we write the weaker inequality as above. Combining this with (5.4), (5.5), (5.6),
and (5.7), we obtain

1

M
(1 - \rho ) \leq (\nu \times m)(A)

\leq | S| max
u\in S

(\nu \times m)(A(u))

= | S| max
u\in S

\int 
m(A(u,w)) d\nu (w)

= | S| max
u\in S

\int \sum 
\Lambda \in A

m(A(u,w,\Lambda )) d\nu (w)

= | S| max
u\in S

\sum 
\Lambda \in A

\int 
m(A(u,w,\Lambda )) d\nu (w)

\leq | S| max
u\in S

\sum 
\Lambda \in A

\int 
m(At\ast (\Lambda )(u,w,\Lambda ))c

 - (rT+nm)
n\prod 

k=1

m\prod 
l=1

c
 - (| \Lambda k,l|  - 1)
k,l d\nu (w)
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= | S| \cdot c - (rT+nm) max
u\in S

T\sum 
t1,1=(1 - r1,1)T

\cdot \cdot \cdot 
T\sum 

tn,m=(1 - rn,m)T\int \sum 
\Lambda \in A: t\ast (\Lambda k,l)=tk,l\forall k,l

m(At\ast (\Lambda )(u,w,\Lambda ))

n\prod 
k=1

m\prod 
l=1

c
 - (| \Lambda k,l|  - 1)
k,l d\nu (w)

\leq | S| \cdot c - (2rT+nm) max
u\in S

T\sum 
t1,1=(1 - r1,1)T

\cdot \cdot \cdot 
T\sum 

tn,m=(1 - rn,m)T\int \sum 
\Lambda \in A: t\ast (\Lambda k,l)=tk,l\forall k,l

m(At\ast (\Lambda )(u,w,\Lambda ))

n\prod 
k=1

m\prod 
l=1

c
 - ((1 - rk,l)T - 1)
k,l d\nu (w).

In the last inequality we use that

crT+nm
\prod 
k,l

c
| \Lambda k,l|  - 1
k,l = crT+

\sum 
k,l | \Lambda k,l| 

\prod 
k,l

\Bigl( ck,l
c

\Bigr) | \Lambda k,l|  - 1

\geq crT+
\sum 

k,l | \Lambda k,l| 
\prod 
k,l

\Bigl( ck,l
c

\Bigr) (1 - rk,l)T - 1

= crT+
\sum 

k,l | \Lambda k,l|  - (1 - r)T+nm
\prod 
k,l

c
(1 - rk,l)T - 1
k,l

\geq c2rT+nm
\prod 
k,l

c
(1 - rk,l)T - 1
k,l .

Observe that the sets At\ast (\Lambda )(u,w,\Lambda ) with \Lambda \in A, t\ast (\Lambda ) fixed, are pairwise disjoint,
since they are the images of the corresponding sets A(u,w,\Lambda ) under the injective map
\varphi t\ast (\Lambda ),u,w. Moreover, all of these sets are contained in B. Hence,\sum 

\Lambda \in A:t\ast (\Lambda k,l)=tk,l\forall k,l

m(At\ast (\Lambda )(u,w,\Lambda )) \leq m(B),

which, together with the above chain of inequalities, implies

1

M
(1 - \rho ) \leq | S| \cdot m(B) \cdot c - (2rT+nm) \cdot 

n\prod 
k=1

m\prod 
l=1

c
 - ((1 - rk,l)T - 1)
k,l

n\prod 
k=1

m\prod 
l=1

(rk,lT + 1).

Since this inequality holds for every T sufficiently large, we can take logarithms on
both sides, divide by T , and let T \rightarrow \infty . This results in

0 \leq h(B,D, \rho ,R\epsilon ) - 2r log c - 
n\sum 

k=1

n\sum 
l=1

(1 - rk,l) log ck,l.

Recalling the definition of rk,l, the fact that \epsilon can be chosen arbitrarily small, and
(5.3), this leads to the estimate

C + \delta \geq 
n\sum 

k=1

n\sum 
l=1

Q(Bk)\nu (Dl) inf
(x,w)\in Bk\times Dl

log | detDfw(x)| .

Considering the supremum of the right-hand side over all finite measurable partitions
of B and W leads to

C + \delta \geq 
\int \int 

1B(x) log | detDfw(x)| dQ(x) d\nu (w),
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where we use that the integrand is uniformly bounded below by log c (and hence, we
can assume that it is nonnegative). Considering now an increasing sequence of sets
Bk \subset RN whose union is RN , we can invoke the theorem of monotone convergence
to obtain the desired estimate, observing that \delta can be made arbitrarily small as Bk

becomes arbitrarily large.

5.3. Proof of Theorem 4.2.

Proof. Suppose for a contradiction that a causal coding and control policy is such
that the state process is AMS ergodic but that the converse of inequality (4.2) holds.
Let r > 0 be small enough so that

C < (1 - 3r)

\int \int 
log | f \prime 

w(x)| dQ(x) d\nu (w).

Since we can approximate the integral by the integral over associated step functions,
for any b \in N large enough, there exists a disjoint collection of intervals B1, . . . , B2b+1

and a partition D1, . . . , Dm of W such that B := [ - b, b] =
\bigsqcup 2b+1

k=1 Bk, and

C < (1 - 3r)

m\sum 
l=1

2b+1\sum 
k=1

\nu (Dl)Q(Bk) log ck,l,

where ck,l := inf(x,w)\in Bk\times Dl
| f \prime 

w(x)| . Put n := 2b+1+1, and fix a b (and the associated

collection (Bk)
n - 1
k=1 of intervals) further large enough such that

(5.8) Q([ - b, b])(1 - r) > 1 - 2.5

2
r,

which is possible by continuity of probability. Finally, let Bn := R \setminus 
\bigsqcup n

k=1 Bk. For
brevity, in the rest of the proof we write

mk,l := Q(Bk)\nu (Dl), k = 1, . . . , n, l = 1, . . . ,m.

Next, we define the following sets in a manner slightly different from that in the
previous proof:

AT (u,w) :=

\biggl\{ 
x \in R : \forall k, l and \forall N \in \{ \lceil T (1 - 3r)\rceil , . . . , T\} ,

1

N
| \{ t \in [0;N  - 1] : (\varphi (t, x, u, w), wt) \in Bk \times Dl\} | \geq mk,l(1 - r)

\biggr\} 
.

It is easy to see that this set is always bounded. Later on, for appropriate parameters,
we will also see that the set is nonempty. For these cases, let

AT (u,w) := [inf AT (u,w), supAT (u,w)],

and let x0(T, u, w) denote the midpoint of this interval. We claim that there exists
T larger than some threshold M1 = M1(r) so that for all u,w and x1, x2 \in AT (u,w)
there exists a t\ast with \lceil (1 - 2.5r)T \rceil \leq t\ast \leq T  - 1 satisfying

\varphi (t\ast , xi, u, w) \in B for i \in \{ 1, 2\} .
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ERGODICITY UNDER INFORMATION CONSTRAINTS 549

To see this, suppose otherwise. Then for at least one i \in \{ 1, 2\} we have

| \{ t \in [0;T  - 1] : \varphi (t, xi, u, w) \in B\} | \leq \lceil (1 - 2.5r)T \rceil + 1

2
(T  - \lceil (1 - 2.5r)T \rceil )

\leq 1

2
((1 - 2.5r)T + 1) +

1

2
T =

1

2
+ (1 + (1 - 2.5r))

1

2
T

=
1

2
+

\biggl( 
1 - 2.5

2
r

\biggr) 
T < (1 - r)Q(B)T,

where the last inequality holds for T large enough from the assumption (5.8) on Q(B).
This is a contradiction to xi \in AT (u,w), which follows by recalling the definition

of AT (u,w). Let now \epsilon > 0 and \delta > 0 be given. By the pointwise ergodic theorem
(see the construction in the proof of Lemma 5.3), there exists an M2 := M2(\epsilon , \delta ) \in N
such that for all T \geq M2

P

\biggl( \biggl\{ 
\omega \in \Omega : \forall k, l,\forall N \geq (1 - 3r)T,

1

N

N - 1\sum 
t=0

1Bk
(xt(\omega ))1Dl

(wt(\omega )) \geq mk,l(1 - \delta )

\biggr\} \biggr) 
> 1 - \epsilon .

We denote by \~\Omega (\epsilon , \delta ,M2) the set of \omega 's for which the event within the braces of
the above expression occurs. Recalling that ck,l := inf(x,w)\in Bk\times Dl

| detDfw(x)| and
letting u,w and x1, x2 \in AT (u,w) be arbitrary, we have

| x1  - x2| \leq 
2b\prod 

k,l c
mk,l(1 - \delta )t\ast 

k,l

\leq 2b\prod 
k,l c

mk,l(1 - \delta )T (1 - 2.5r)
k,l

,(5.9)

which follows by noting that\prod 
k,l

c
(1 - \delta )mk,l(1 - 2.5r)T
k,l | x1  - x2| \leq 

\prod 
k,l

c
(1 - \delta )mk,l(1 - 2.5r)T
k,l (| x1| + | x2| )

\leq 
\prod 
k,l

c
(1 - \delta )mk,lt

\ast 

k,l | x1| +
\prod 
k,l

c
(1 - \delta )mk,lt

\ast 

k,l | x2| \leq | \varphi (t\ast , x1, u, w)| + | \varphi (t\ast , x2, u, w)| \leq 2b.

Given a realization \omega \in \Omega , we denote by x0(\omega ) and w(\omega ) the resulting realizations of
the initial state and noise sequence, respectively. Given these realizations, the control
sequence is thus fully determined, and it is denoted by u(\omega ). It follows quite easily
that \omega \in \~\Omega (\epsilon , \delta ,M2) implies x0(\omega ) \in AT (u(\omega ), w(\omega )) for all T \geq M2 and all \delta < r.
Combining this with (5.9), we conclude that

| x0(\omega ) - x0(T, u(\omega ), w(\omega ))| \leq 
b\prod 

k,l c
(1 - \delta )mk,l(1 - 2.5r)T
k,l

for every T \geq M2(\epsilon , \delta ) and every \omega \in \~\Omega (\epsilon , \delta ,M2). Letting \delta be small enough so that
both (1 - 3r) \leq (1 - 2.5r)(1 - \delta ) and \delta < r hold, we conclude that

lim inf
T\rightarrow \infty 

P
\Bigl( \Bigl\{ 

\omega \in \Omega : | x0(\omega ) - x0(T, u(\omega ), w(\omega ))| \leq 
b\prod 

k,l c
mk,l(1 - 3r)T
k,l

\Bigr\} \Bigr) 
\geq 1 - \epsilon ,

and, since \epsilon > 0 was also arbitrary, it follows that

(5.10) lim sup
T\rightarrow \infty 

P
\Bigl( \Bigl\{ 

\omega \in \Omega : | x0(\omega ) - x0(T, u(\omega ), w(\omega ))| >
b\prod 

k,l c
mk,l(1 - 3r)T
k,l

\Bigr\} \Bigr) 
= 0.
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We will see that our initial hypothesis leads to a contradiction with the above
equation. To this effect, let us choose \alpha \in (0, 1/2) small enough so that for all
sufficiently large L,

(5.11) 1 - \rho min \cdot (1 - \alpha )

2 \cdot \rho max
+

\rho 2max

2L\rho 2min

+
2 \cdot \rho max

\rho min

\alpha 

1 - \alpha 
< 1.

Let also \~\Omega \in \scrF be such that P (\~\Omega ) > 1 - \alpha , and such that for all T large enough (say,
larger than C(\alpha )),

| x0(\omega ) - x0(T, u(\omega ), w(\omega ))| \leq 
b\prod 

k,l c
mk,l(1 - 3r)T
k,l

for all \omega \in \~\Omega . The idea from here on is to treat \~\Omega as ``the universe"" since conditioning
on this set gives the above deterministic bound. We proceed by defining

UT := \{ (\gamma 0(q\prime 0), . . . , \gamma T - 1(q
\prime 
[0;T - 1])) \in UT : q\prime [0;T - 1] \in (\scrM \prime )T \} ,

\~UT := \{ (\gamma 0(q\prime 0(\omega )), . . . , \gamma T - 1(q
\prime 
[0;T - 1](\omega ))) \in UT : \omega \in \~\Omega \} ,

\~R := lim sup
T\rightarrow \infty 

1

T
log | \~UT | .

We now treat two distinct cases: In Case 1, we show that the condition \~R <
(1  - 3r)

\sum 
k,l mk,l log ck,l cannot hold if we want to achieve the desired result. This

leaves us with Case 2: the condition that \~R \geq (1  - 3r)
\sum 

k,l mk,l log ck,l; however,

this condition would imply \~R > C. We show that this cannot hold either, through a
tedious argument involving a strong converse to channel coding (with feedback) and
optimal transport theory. In the following, we study these two cases separately.

Case 1. Let us suppose that

(5.12) \~R < (1 - 3r)
\sum 
k,l

mk,l log ck,l.

Let \epsilon > 0 be small enough so that \~R + 2\epsilon < (1  - 3r)
\sum 

k,l mk,l log ck,l, and observe
that for all T large enough,

(5.13) | \~UT | \leq 2(
\~R+\epsilon )T .

Recall also that \~\Omega is such that for all T large enough,

(5.14) | x0(\omega ) - x0(T, u(\omega ), w(\omega ))| \leq 
b\prod 

k,l c
mk,l(1 - 3r)T
k,l

for all \omega \in \~\Omega .

We now fix a noise realization w. For all T large enough so that (5.13) holds,

m

\biggl( \bigcup 
u\in \~UT

AT (u,w)

\biggr) 
\leq 2b \cdot 2( \~R+\epsilon )T\prod 

k,l c
mk,l(1 - 3r)T
k,l

\leq 2b \cdot 2((1 - 3r)
\sum 

k,l mk,l log ck,l - \epsilon )T\prod 
k,l c

mk,l(1 - 3r)T
k,l

\leq 
2b \cdot 2 - \epsilon T \cdot 

\prod 
k,l 2

T (1 - 3r)mk,l log ck,l\prod 
k,l c

mk,l(1 - 3r)T
k,l

=
2b

2\epsilon T
,
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where the inequalities follow by applying the union bound, and from (5.13) and (5.12).
The above yields

lim
T\rightarrow \infty 

m

\biggl( \bigcup 
u\in \~UT

AT (u,w)

\biggr) 
= 0,

and thus by the absolute continuity and boundedness assumptions on \pi 0, we have

lim
T\rightarrow \infty 

\pi 0

\biggl( \bigcup 
u\in \~UT

AT (u,w)

\biggr) 
= 0.

On the other hand, let us define J := \{ w \in WZ+ : P (\{ \omega \in \~\Omega | w(\omega ) = w\} ) > 0\} .
We note that J is the projection of \~\Omega onto RZ+ from which the set \{ w : P (\omega \in 
\~\Omega | w(\omega ) = w) = 0\} is taken out; these ensure that J is a universally measurable set
since the image of a Borel set under a measurable map is universally measurable [9].

We can therefore write

lim sup
T\rightarrow \infty 

P
\Bigl( \Bigl\{ 

\omega \in \Omega : | x0(\omega ) - x0(T, u(\omega ), w(\omega ))| \leq 
b\prod 

k,l c
mk,l(1 - 3r)T
k,l

\bigm| \bigm| \omega \in \~\Omega 
\Bigr\} \Bigr) 

= lim sup
T\rightarrow \infty 

\Bigl( 
P
\Bigl( \Bigl\{ 

\omega \in \Omega : | x0(\omega ) - x0(T, u(\omega ), w(\omega ))| \leq 

b\prod 
k,l c

mk,l(1 - 3r)T
k,l

\bigm| \bigm| \omega \in \~\Omega , w(\omega ) \in J
\Bigr\} \Bigr) 

\cdot P (J)

+ P
\Bigl( \Bigl\{ 

\omega \in \Omega : | x0(\omega ) - x0(T, u(\omega ), w(\omega ))| \leq 

b\prod 
k,l c

mk,l(1 - 3r)T
k,l

\bigm| \bigm| \omega \in \~\Omega , w(\omega ) \in Jc
\Bigr\} \Bigr) 

\cdot P (Jc)
\Bigr) 
.

Now, noting that P (\~\Omega ) > 1 - \alpha implies \nu (Jc) \leq \alpha , we can further write

\leq lim sup
T\rightarrow \infty 

P
\Bigl( \Bigl\{ 

\omega \in \Omega : | x0(\omega ) - x0(T, u(\omega ), w(\omega ))| \leq 

b\prod 
k,l c

mk,l(1 - 3r)T
k,l

\bigm| \bigm| \omega \in \~\Omega , w(\omega ) \in J
\Bigr\} \Bigr) 

\cdot P (J) + \alpha .

Observe that for a noise realization w \in J , we have

lim sup
T\rightarrow \infty 

P
\Bigl( \Bigl\{ 

\omega \in \Omega : | x0(\omega ) - x0(T, u(\omega ), w(\omega ))| 

\leq b\prod 
k,l c

mk,l(1 - 3r)T
k,l

\bigm| \bigm| \omega \in \~\Omega , w(\omega ) = w
\Bigr\} \Bigr) 

\leq lim sup
T\rightarrow \infty 

P
\Bigl( \Bigl\{ 

\omega \in \Omega : x0(\omega ) \in 
\bigcup 

u\in \~UT

AT (u,w)
\bigm| \bigm| \omega \in \~\Omega , w(\omega ) = w

\Bigr\} \Bigr) 
\leq 1

P (\omega \in \~\Omega | w(\omega ) = w)
lim sup
T\rightarrow \infty 

P
\Bigl( \Bigl\{ 

\omega \in \Omega : x0(\omega ) \in 
\bigcup 

u\in \~UT

AT (u,w)| w(\omega ) = w
\Bigr\} \Bigr) 

=
1

P (\omega \in \~\Omega | w(\omega ) = w)
lim sup
T\rightarrow \infty 

\pi 0

\Bigl( \bigcup 
u\in \~UT

AT (u,w)
\Bigr) 
= 0,
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where the first inequality can be justified by noting that

| x0(\omega ) - x0(T, u(\omega ), w(\omega ))| \leq 
b\prod 

k,l c
mk,l(1 - 3r)T
k,l

\Rightarrow x0(\omega ) \in AT (u(\omega ), w)

for all T sufficiently large (see (5.14)), and the last inequality follows by independence
of noise and initial state. We thus have a uniform upper bound on the limsup when
conditioned on w \in J ; hence

lim sup
T\rightarrow \infty 

P
\Bigl( \Bigl\{ 

\omega \in \Omega : | x0(\omega ) - x0(T, u(\omega ), w(\omega ))| 

\leq b\prod 
k,l c

mk,l(1 - 3r)T
k,l

\bigm| \bigm| \omega \in \~\Omega , w(\omega ) \in J
\Bigr\} \Bigr) 

= 0.

Therefore,

lim sup
T\rightarrow \infty 

P
\Bigl( \Bigl\{ 

\omega \in \Omega : | x0(\omega ) - x0(T, u(\omega ), w(\omega ))| \leq 
b\prod 

k.l c
mk,l(1 - 3r)T
k,l

\bigm| \bigm| \omega \in \~\Omega 
\Bigr\} \Bigr) 

\leq \alpha ,

which contradicts (5.10), since \alpha < 1/2. Hence, the proof for Case 1 is complete.
Case 2. Now we suppose that

\~R \geq (1 - 3r)
\sum 
k,l

mk,l log ck,l;

thus by assumption we also have \~R > C. Recall that the proof is by contradiction.
In this case, we will obtain a contradiction to a generalized version of the strong
converse theorem for DMCs with feedback (see [18] and Theorem 6.8). Recall that
by definition of \~\Omega , we have that for any T sufficiently large, the inequality

| x0(\omega ) - x0(T, u(\omega ), w(\omega ))| \leq 
b\prod 

k,l c
mk,l(1 - 3r)T
k,l

holds for any \omega \in \~\Omega . Also recall that P (\~\Omega ) > 1  - \alpha for \alpha satisfying the important
assumption (5.11). As such, there must exist some noise realization w such that
P (\{ \omega \in \~\Omega | w(\omega ) = w\} ) > 1  - \alpha . This can be seen by contradiction; suppose no such
realization exists. Letting \nu denote the measure on the space of noise realizations, we
can write

P (\omega \in \~\Omega ) =

\int 
P (\omega \in \~\Omega | w(\omega ) = \~w) d\nu ( \~w) \leq 

\int 
(1 - \alpha ) d\nu ( \~w) = 1 - \alpha ,(5.15)

which is a contradiction since P (\~\Omega ) > 1  - \alpha . The existence of such a realization w
yields

lim inf
T\rightarrow \infty 

P
\Bigl( \Bigl\{ 

\omega \in \Omega : | x0(\omega ) - x0(T, u(\omega ), w)| 

\leq b\prod 
k,l c

mk,l(1 - 3r)T
k,l

\bigm| \bigm| w(\omega ) = w
\Bigr\} \Bigr) 

> 1 - \alpha .
(5.16)

In the remainder of the proof, we condition on the occurrence of the noise realization
w. We follow an almost identical approach as in the proof from [17]; we will construct

D
ow

nl
oa

de
d 

02
/2

2/
21

 to
 1

30
.1

5.
35

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ERGODICITY UNDER INFORMATION CONSTRAINTS 553

a sequence of codes to transmit a uniform random variable which contradicts a version
of the strong converse result for DMCs. This is accomplished in four steps.

Step 1 (construction of bins). For every T \geq 1, define ST := \{ x0(T, u, w) :
u \in \~UT \} and enumerate the elements of this set so that

(5.17) ST := \{ x1(T ), . . . , xn1(T )(T )\} .

We continue by defining the not necessarily disjoint collection of bins

BT
i :=

\Bigl\{ 
x \in R : | x - xi(T )| \leq 

b\prod 
k,l c

mk,l(1 - 3r)T
k,l

\Bigr\} 
, i = 1, . . . , n1(T ).

Note that for a fixed T , each bin has the same Lebesgue measure, which we denote

by \rho T := (2b)/
\prod 

k,l c
mk,l(1 - 3r)T
k,l . Recalling that P (\{ \omega \in \~\Omega | w(\omega ) = w\} ) > 1  - \alpha , it

follows that

1 - \alpha < lim inf
T\rightarrow \infty 

P
\Bigl( \Bigl\{ 

\omega \in \Omega : x0(\omega ) \in 
n1(T )\bigcup 
i=1

BT
i

\bigm| \bigm| w(\omega ) = w
\Bigr\} \Bigr) 

,

from which by independence of noise and initial state, we obtain

(5.18) 1 - \alpha < lim inf
T\rightarrow \infty 

\pi 0

\Bigl( n1(T )\bigcup 
i=0

BT
i

\Bigr) 
.

We will disregard the bins that are only partially contained in K. Since \rho T \rightarrow 0 as
T \rightarrow \infty and the union of the measure of bins that are partially inside of K can have
at most a Lebesgue measure of 2\rho T , they will contribute negligible measure as T gets
large. Also, let us suppose without loss of generality that the ordering of the bins in
(5.17) is such that the last n(T ) are the ones not contained in K. Observing that

lim inf
T\rightarrow \infty 

\pi 0

\Bigl( n1(T )\bigcup 
i=0

BT
i

\Bigr) 
= lim inf

T\rightarrow \infty 
\pi 0

\Bigl( 
K \cap 

n1(T )\bigcup 
i=0

BT
i

\Bigr) 
= lim inf

T\rightarrow \infty 
\pi 0

\Bigl( n1(T ) - n(T )\bigcup 
i=0

BT
i

\Bigr) 

\leq lim inf
T\rightarrow \infty 

\rho max \cdot m
\Bigl( n1(T ) - n(T )\bigcup 

i=0

BT
i

\Bigr) 
\leq lim inf

T\rightarrow \infty 

\Bigl( \rho max \cdot 2b \cdot (n1(T ) - n(T ))\prod 
k,l c

mk,l(1 - 3r)T
k,l

\Bigr) 
,

we obtain

1 - \alpha 

2b \cdot \rho max
\leq lim inf

T\rightarrow \infty 

\Biggl( 
(n1(T ) - n(T ))\prod 
k,l c

mk,l(1 - 3r)T
k,l

\Biggr) 
,

from which we conclude that the number of bins n1(T )  - n(T ) which are entirely
contained in K must grow at an exponential rate of at least

\sum 
k,l mk,l(1 - 3r) log ck,l

with T , just as n1(T ) does. Thus, since we are concerned only with the number of
bins entirely contained in K, we may as well assume that all are entirely in K (or
alternatively, relabel n1(T ) - n(T ) to be n1(T )).

We continue by extracting a subcollection of disjoint bins (CT
i )

n2(T )
i=1 as described

in [17, App. A]. This new subcollection has the property that

1

2
m

\biggl( n1(T )\bigcup 
i=1

BT
i

\biggr) 
\leq m

\biggl( n2(T )\bigcup 
i=1

CT
i

\biggr) 
.
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Also, it is clear that for any given T , 1
2n1(T ) \leq n2(T ). Hence, we also have the

exponential growth condition of

lim sup
T\rightarrow \infty 

1

T
log n2(T ) \geq (1 - 3r)

\sum 
k,l

mk,l log ck,l.

Analogously to [17], define the collection1 (DT
i )

n2(T )
i=1 , and observe that m(DT

i \setminus CT
i ) \leq 

\rho T for all i. Finally, for a fixed L \in N we join L successive DT
i blocks (see [17, p. 27]

for an exact formulation) to get a collection (ET
i )

n3(T )
i=1 , where n3(T ) = \lfloor n2(T )

L \rfloor + 1,
possibly adding some empty sets in the last block. Again, the following holds:

lim sup
T\rightarrow \infty 

1

T
log n3(T ) \geq (1 - 3r)

n\sum 
k=1

m\sum 
l=1

mk,l log ck,l, m(ET
i ) \geq L\rho T .

We also define

MT :=

n1(T )\bigcup 
i=1

BT
i , MT :=

n3(T )\bigcup 
i=1

ET
i \setminus (DT

iL\setminus CT
iL)

and observe that m(MT ) \leq 2n2(T )\rho T \leq 2n3(T )L\rho T .
Step 2 (auxiliary coding scheme). We now construct a sequence of codes

to transmit information over the channel. We will transmit a quantized version of
the initial state random variable x0. The quantization will be done using the bins
constructed earlier. For a fixed L and for each T , we will construct a code. Note
that we are considering a channel with feedback, which can be used by the encoding
function. For a given T , the encoding and decoding processes are specified as follows.

Encoder. We give to the encoder the noise realization w that we have conditioned
on throughout, the function f corresponding to the system dynamics, and the fixed
causal coding and control policy. In the classical notion of a code, the encoding
function is a deterministic map, and, given the (system) noise sequence realization,
this is the case here. The transmitted codeword is determined as follows. For an initial
state realization x0, the first symbol of the codeword is q0 = \gamma e

0(x0). Now, because the
channel has feedback, the encoder can determine u0 by applying the decoding function
of the fixed causal coding and control policy to the output of the channel resulting
from the first codeword symbol q0. Thus, using the fixed and known noise realization
w, x1 can be computed. Then, the second codeword symbol q1 = \gamma e

1(x0, x1, u0) is
computed again using the causal coding and control policy, and so on until qT - 1

is determined (note that the encoder makes use of the channel feedback from the
channel, and thus we use the generalized version of the strong converse theorem for
channel capacity to obtain a contradiction). We are essentially viewing the coding
and control policy as a scheme from which the initial state can be estimated at the
controller end of the channel.

Decoder. At time T , the decoder has received T symbols from the channel, which
are used to compute the control decisions u0, . . . , uT - 1 according to the fixed causal
coding and control policy. The decoder also has knowledge of the noise sequence w
and uses it to compute the point x0(T, u, w). Our goal is to use the received channel
output and control sequence to reconstruct the index Y of the bin ET

Y containing
x0. We do this by looking at the point x0(T, u, w) for the observed control sequence

1These sets should not be confused with the set D1, . . . , Dm \subset W.
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u. Note that w can be thought of as deterministic since we are conditioning on its
occurrence. Recall also that x0(T, u, w) is the ``midpoint"" of the set AT (u,w) and can
be computed without knowledge of the initial state x0. We simply decide on our guess
\~Y of the index as follows.

\bullet If x0(T, u, w) \in MT , take the index i of the set ET
i containing x0(T, u, w).

\bullet If x0(T, u, w) /\in MT , then decide randomly between i and i+1, where i is the
index of the set ET

i that x0(T, u, w) belongs to.
Analysis of probability of the error for the code. To study the probability

of error, let Y be a random variable on the indices \{ 1, . . . , n3(T )\} , where P (Y = i) =
\pi 0(E

T
i ). We analyze P ( \~Y \not = Y ).
First, by construction of the bins and the estimation scheme, we have

P
\Bigl( 
\~Y \not = Y

\bigm| \bigm| x0 \in MT , | x0  - x0(T, u, w)| \leq 
b\prod 

k,l c
mk,l(1 - 3r)T
k,l

\Bigr) 
= 0

and

P
\Bigl( 
\~Y \not = Y

\bigm| \bigm| x0 \in MT \setminus MT , | x0  - x0(T, u, w)| \leq 
b\prod 

k,l c
mk,l(1 - 3r)T
k,l

\Bigr) 
\leq 1

2
.

As such, from (5.16), it is not hard to see that for every T sufficiently large,

P (Y \not = \~Y ) \leq 1

2
\pi 0(MT \setminus MT ) + \alpha .

By an analysis exactly as in [17], we have

\pi 0(\scrM T \setminus MT ) \leq 
1

L

\rho max

\rho min
\pi 0(MT ).

Combining the above two inequalities, we obtain

n3(T )\sum 
i=1

P (Y = i)P ( \~Y \not = Y | Y = i) \leq 1

2L

\rho max

\rho min
\pi 0(MT ) + \alpha .

Step 3 (introduction of an auxiliary uniform random variable). In order
to obtain a contradiction to the strong converse theorem for DMCs, we need to trans-
mit a random variable uniformly distributed on the indices 1, . . . , n3(T ). Let us call
this random variable W = WT . Of course, at any time step, W must be conditionally
independent from the channel output, given the channel input. To obtain the desired
contradiction, we must show that limT\rightarrow \infty P (W \not = \~Y ) < 1. Before considering this
quantity, note that by following exactly the same steps as in [17], we obtain

\pi 0(MT ) \leq \rho max \cdot m(MT ) \leq 2n3(T )\rho max \cdot L\rho T

and also

n3(T )\sum 
i=1

1

n3(T )
P ( \~Y \not = Y | Y = i) \leq 

\alpha + \rho max\pi 0(MT )
4L\rho min

\rho min\pi 0(MT )
2\rho max

.
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Again as in [17] we have
(5.19)

P (W \not = \~Y ) =

n3(T )\sum 
i=1

P (W = i)P ( \~Y \not = W | W = i) \leq P (Y \not = W ) +
\alpha + \rho max\pi 0(MT )

4L\rho min

\rho min\pi 0(MT )
2\rho max

.

Step 4 (application of optimal transport). Recall the independence condi-
tion mentioned above that W must satisfy. To achieve this, one could adjoin W to
the common probability space using the product measure, thus keeping W indepen-
dent from all other random variables. Observe, however, that the random variable x0

satisfies the independence condition that we require W to satisfy. As such, we are free
to choose any possible coupling between WT and x0 while still ensuring that W will
remain independent from the channel output given the channel input (in particular,
x0 and W need not be independent). We will take advantage of this observation.

Consider (5.19), and note that if the limit as T \rightarrow \infty of the right-hand side
is strictly less than 1, then we will have the desired contradiction with the strong
converse. As such, we proceed by finding a coupling between W and x0 which makes
P (Y \not = W ) small enough so that the limit is less than 1.

We continue by letting \mu denote the law of Y . That is, for every index i \in 
1, . . . , n3(T ), \mu (i) = \pi 0(E

T
i ). Let also \nu represent the law of W , i.e., a uniform

measure on the set \{ 1, . . . , n3(T )\} . We now invoke Lemma 6.3, which guarantees the
existence of a coupling (Y,W ) : (\Omega ,\scrF , P ) \rightarrow \{ 1, . . . , n3(T )\} 2 such that

P (Y \not = W ) =
1

2

n3(T )\sum 
i=1

| \mu (i) - \nu (i)| .

Let now A = \{ i \in \{ 1, . . . , n3(T )\} : \mu (i) \geq \nu (i)\} , and observe that

1 - 
n3(T )\sum 
i=1

min(\mu (i), \nu (i)) =
1

2

n3(T )\sum 
i=1

\mu (i) +
1

2

n3(T )\sum 
i=1

\nu (i) - 
\sum 
i\in A

\nu (i) - 
\sum 
i\in Ac

\mu (i)

=
1

2

\sum 
i\in A

\mu (i) - 1

2

\sum 
i\in Ac

\mu (i) - 1

2

\sum 
i\in A

\nu (i) +
1

2

\sum 
i\in Ac

\nu (i)

=
1

2

\Bigl( \sum 
i\in A

\mu (i) - \nu (i)
\Bigr) 
+

1

2

\Bigl( \sum 
i\in Ac

\nu (i) - \mu (i)
\Bigr) 
=

1

2

n3(T )\sum 
i=1

| \mu (i) - \nu (i)| .

Thus, we can write

P (Y \not = W ) =
1

2

n3(T )\sum 
i=1

| \mu (i) - \nu (i)| = 1 - 
n3(T )\sum 
i=1

min(\mu (i), \nu (i)).

To get an upper bound for the right-hand side, note that

\mu (i) = \pi 0(E
T
i ) \geq \rho min \cdot m(ET

i ) =
n3(T )

n3(T )
\cdot m(ET

i ) \cdot \rho min

\geq n2(T ) \cdot \rho T \cdot \rho min

n3(T )
\geq m(MT ) \cdot \rho min

2 \cdot n3(T )
\geq \pi 0(MT ) \cdot \rho min

2 \cdot \rho max \cdot n3(T )
\geq \rho min \cdot (1 - \alpha )

2 \cdot \rho max \cdot n3(T )
.

Recalling that \nu (i) = 1/n3(T ) for each i, we have min(\mu (i), \nu (i)) \geq (\rho min \cdot (1 - \alpha ))/(2 \cdot 
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\rho max \cdot n3(T )) for all i, and therefore

P (Y \not = W ) \leq 1 - \rho min \cdot (1 - \alpha )

2 \cdot \rho max
.

Combining with (5.19), we obtain

P (W \not = \~Y ) \leq 1 - \rho min \cdot (1 - \alpha )

2 \cdot \rho max
+

\alpha + \rho max\pi 0(MT )
4L\rho min

\rho min\pi 0(MT )
2\rho max

,

which holds for all T sufficiently large. We now evaluate the right-hand side to
determine its behavior as T tends to infinity. We have

lim sup
T\rightarrow \infty 

\Bigl( 
1 - \rho min \cdot (1 - \alpha )

2 \cdot \rho max
+

\alpha + \rho max\pi 0(MT )
4L\rho min

\rho min\pi 0(MT )
2\rho max

\Bigr) 
\leq 1 - \rho min \cdot (1 - \alpha )

2 \cdot \rho max
+

\rho 2max

2L\rho 2min

+
2 \cdot \alpha \cdot \rho max

\rho min
lim sup
T\rightarrow \infty 

1

\pi 0(MT )

\leq 1 - \rho min \cdot (1 - \alpha )

2 \cdot \rho max
+

\rho 2max

2L\rho 2min

+
2 \cdot \rho max

\rho min

\alpha 

1 - \alpha 
,

where the last inequality follows from (5.18). Recall now that throughout, L \in N

was fixed but arbitrary. Taking L large enough so that (5.11) holds, and writing
T -subscripts to emphasize T -dependence, we obtain lim supT\rightarrow \infty P (WT \not = \~YT ) < 1,
which is a contradiction, since it negates the strong converse theorem for DMCs with
feedback. Hence, the proof is complete.

6. Appendix. In this section, we state a few results required in the paper.

6.1. A result from optimal transport. In the proof of Theorem 4.2, a basic
result from optimal transport is used, which we state here.

Definition 6.1. Let \mu and \nu be Borel probability measures on a metric space
(S, d). A coupling of \mu and \nu is a pair of random variables X,Y defined on some
probability space (\Omega ,\scrF , P ) such that the law of the random variable (X,Y ) on S2

admits \mu and \nu as its marginals.

The notion of coupling can easily be generalized for the case where the measures
\mu and \nu are on distinct spaces; however, we do not require that level of generality.
The total variation distance between probability measures on the same measurable
space serves as a measure for how distinct they are. The definition reads as follows.

Definition 6.2. Let \mu and \nu be probability measures on a measurable space
(\Omega ,\scrF ). We define the total variation distance as

\| \mu  - \nu \| TV := 2 sup
A\in \scrF 

| \mu (A) - \nu (A)| .

Lemma 6.3. Let (X,Y ) : (\Omega ,\scrF , P ) \rightarrow S2 be a coupling of the probability measures
\mu and \nu on the metric space (S, d). Then

\| \mu  - \nu \| TV \leq 2 \cdot P (\{ \omega \in \Omega : X(\omega ) \not = Y (\omega )\} ).

If in addition, S is a finite set, then a coupling (X,Y ) exists which achieves the
above bound.
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Proof. See equation (6.11) in [31].

Note also that if S is finite in the above setup, then a simple calculation results
in

\| \mu  - \nu \| TV =
\sum 
x\in S

| \nu (x) - \mu (x)| .

Indeed, for finite S let A := \{ x \in S : \mu (x) \geq \nu (x)\} . The result follows by noting that
\| \mu  - \nu \| TV = | \mu (A) - \nu (A)| + | \mu (Ac) - \nu (Ac)| . As such, a coupling (X,Y ) of the laws
exists which satisfies

P (X \not = Y ) =
1

2

\sum 
x\in S

| \nu (x) - \mu (x)| .

We make use of this identity in case 2 of the proof for the noisy channel case.

6.2. Channel coding theorem. When considering a system controlled over
a noisy channel, we make use of the strong converse of the noisy channel coding
theorem. We state the necessary definitions and theorems here without proof. A
detailed overview of these concepts can be found in [6].

Definition 6.4. Consider a memoryless finite alphabet channel with input alpha-
bet \scrX , output alphabet \scrY , and a given transition probability measure. The capacity of
the channel is defined by C := supp(x) I(\scrX ,\scrY ), where the sup is taken over all possi-
ble probability measures on the input alphabet \scrX . We call such a channel a discrete
memoryless channel (DMC). A DMC with feedback is as above, but with the additional
property that the encoder has knowledge of the channel output. It is well known that
feedback does not increase channel capacity.

Next, we provide the definition of a code. We provide the definitions for channels
without feedback; however, the feedback case is very similar, the only difference being
that, at a given time, the encoder can use the channel output for previous inputs in
generating the next codeword symbol.

Definition 6.5. For M,n \in N, an (M,n)-code consists of an encoding function
xn : \{ 1, . . . ,M\} \rightarrow \scrX n and a decoding function g : \scrY n \rightarrow \{ 1, . . . ,M\} . We define the
rate of an (M,n)-code by R := (logM)/n.

For a code such as that above, we call xn(1), xn(2), . . . , xn(M) the codewords.
Because the channel distorts the codewords, we must consider the probability that we
can decode correctly. This leads to the following definition.

Definition 6.6. The maximal error of an (M,n)-code is given by

\lambda (n) := max
i=1,...,M

P (g(Y n) \not = i| Xn = xn(i)).

Definition 6.7. A rate R is called achievable if there exists a sequence of
(\lceil 2nR\rceil , n)-codes with the property that \lambda (n) \rightarrow 0 as n \rightarrow \infty .

The following is the strong converse of the noisy channel coding theorem in in-
formation theory.

Theorem 6.8. Consider a DMC (\scrX , p(\cdot | \cdot ),\scrY ) of capacity C. Let R > C, and
consider an arbitrary sequence of (\lceil 2nR\rceil , n)-codes, used to transmit the uniform ran-
dom variables Wn, uniformly distributed on the set \{ 1, . . . , 2nR\} , respectively. Then
P (Wn \not = gn(Y

n)) \rightarrow 1 as n \rightarrow \infty .
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The above theorem also holds for DMCs with feedback (see [18] for a proof).
In the proof of Theorem 4.2, the encoding functions require that the channel has
feedback---hence the need for this assumption in the theorem statement.
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