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Abstract. In this paper, we identify sufficient conditions under which static teams and a class
of sequential dynamic teams admit team-optimal solutions. We first investigate the existence of
optimal solutions in static teams where the observations of the decision makers are conditionally
independent given the state and satisfy certain regularity conditions. Building on these findings and
the static reduction method of Witsenhausen, we then extend the analysis to sequential dynamic
teams. In particular, we show that a large class of dynamic linear-quadratic-Gaussian (LQG) teams,
including the vector version of the well-known Witsenhausen’s counterexample and the Gaussian
relay channel problem viewed as a dynamic team, admit team-optimal solutions. Results in this
paper substantially broaden the class of stochastic control problems with nonclassical information
known to have optimal solutions.
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1. Introduction. A team is a group of agents acting collectively, but not nec-
essarily sharing all the information, in order to optimize a common cost function.
In stochastic teams, there may be probabilistic uncertainty about initial state, ob-
servations, or cost functions, and/or the evolution of the state is disturbed by some
external noise process. The statistics of the noise processes, state evolution equations,
and observation equations are common knowledge among the agents of a team. At
every time step, each agent acquires some information about the state via observation,
may acquire other agents’ past and current observations and past actions, and may
recall past observations and actions. If each agent’s information is determined only
by primitive/exogenous random variables, the team is said to be a static team. If at
least one agent’s information is affected by an action of another agent, the team is
said to be dynamic. The information structure in a team determines such functional
and probabilistic relations in that team.

A system in which there is a prespecified order of actions is said to be a sequential
team. In nonsequential teams, the ordering of “who acts when” is not known a priori,
and ordering of actions may be determined by the outcome of some random process
[30]. In this paper, we focus our attention on the existence of optimal strategies in
sequential dynamic teams. A sequential team in which the information available to
the decision makers in forward time is noncontracting is said to be a classical team
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(such settings include the well-studied single-agent Markov decision problems with
full memory). A sequential team, which is not classical but has the property that
whenever an agent’s, say Ak’s, information is affected by the action of some other
agent, say Aj, Ak has access to Aj’s information, is said to have a quasi-classical
(or partially nested) information structure. An information structure which is not
quasi-classical is said to be nonclassical. For an extensive discussion on classifications
of information structures, the reader is referred to [34] and [37].

We next provide a brief overview of the early developments in the area of teams
with asymmetric information, as is relevant to this paper. In 1962, Radner pub-
lished a seminal paper on team decision problems [28], where he showed that a class
of static stochastic teams with continuously differentiable and strictly convex cost
functions admit globally optimal (minimizing) solutions which are also the unique
person-by-person-optimal solutions; this result was later extended in [22] to settings
with exponential cost functions. A by-product of Radner’s result is that in static
linear-quadratic-Gaussian (LQG) team problems, linear strategies of the agents that
are person-by-person-optimal are also team-optimal. Furthermore, partially nested
LQG teams also admit linear optimal solutions, as was observed in [21, 12]. When
the information structure is nonclassical, however, Witsenhausen showed that even
seemingly simple LQG settings can be very difficult to solve [33]: He devised a scalar
LQG team problem which admits an optimal solution, which, however, is not linear.

Obtaining solutions of classical dynamic team problems is quite well understood,
with dynamic programming providing the most convenient approach. For dynamic
teams not of the classical type, however, there is no universally applicable systematic
approach; see [26, 37, 25] for detailed coverage and analysis of the various solution
approaches, which also depend on the underlying information structure.

In this paper, we prove that a class of sequential teams with a certain information
structure (not necessarily classical or quasi-classical) admits team-optimal solutions.
This constitutes a first step toward understanding the most general conditions under
which stochastic dynamic team problems admit optimal solutions. The results ob-
tained and the general framework adopted are applicable to various models of team
problems that are studied in economics, information theory, network information the-
ory, and stochastic control.

1.1. Previous work. Some of the earliest and most fundamental works on un-
derstanding the role of information in general dynamic stochastic teams were carried
out by Witsenhausen in [34, 33, 35, 32]. Among these fundamental contributions,
in [32] Witsenhausen showed that all sequential team problems satisfying an abso-
lute continuity condition of certain conditional measures can be transformed into an
equivalent static team problem with a different cost function and with the agents
observing mutually independent random variables. This transformation of a dynamic
team into a static team problem with independent observations is called “static re-
duction” of the dynamic team problem (see section 3.7 and, particularly, page 114 of
[37] for both a discussion on this reduction and an overview of Witsenhausen’s contri-
butions). In this paper, we make use of this equivalence between dynamic and static
team problems to show the existence of optimal strategies in the original dynamic
team problem. Recently, [11] studied continuous-time stochastic team decision prob-
lems that are partly driven by Brownian motion, and showed that the static reduction
of the dynamic team problem can be carried out using the Girsanov transformation.

The existence of optimal strategies for Witsenhausen’s counterexample was proved
in [33], where his proof relied on the structure of the cost function of the team. In
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that problem, the unique optimal strategy of the second agent involves the conditional
mean of the control action of the first agent using an observation that is an additive
noise corrupted version of the control action of the first agent, where the noise is
a zero-mean unit variance Gaussian random variable. When substituted back, this
makes the expected cost functional of the team a nonconvex functional on the space of
strategies of the first agent. Witsenhausen used several techniques from real analysis
to show that an optimal strategy of the first agent exists when the initial state of the
system is an arbitrary second-order random variable. A shorter proof of existence for
this problem was later presented in [36] using tools from optimal transport theory.
One variant of this problem is the Gaussian test channel; there are other variants
as well, all with nonclassical information [4]. For the Gaussian test channel, proof
of existence of optimal strategies (and their derivations) is indirect. First, the cost
function is lower bounded using the data processing inequality [13], and then explicit
linear strategies are constructed which make the cost achieve the lower bound.1 Proofs
of existence of optimal strategies in some other teams with nonclassical information
using this method can be found in [5].

The main difference between the formulations of Witsenhausen’s counterexample
and the Gaussian test channel is in the cost functions (even though they are both
quadratic) [5, 4]. In the case of Witsenhausen’s counterexample, the explicit forms of
optimal strategies are not known, whereas in the case of the Gaussian test channel,
linear strategies are optimal; in both problems (where all random variables are jointly
Gaussian), optimal solutions exist. If, however, the distributions of the primitive
random variables are discrete with finite support, there is no optimal solution even
in the class of behavioral strategies of the agents, as illustrated in [37, p. 90]. Thus,
the question of sufficient conditions for a team problem to admit an optimal solution
is important and is addressed in this paper.

Several authors have proven the existence of optimal solutions to stochastic op-
timization problems through “lifting.” Specifically, the problem of optimizing an
expected cost functional on the space of Borel measurable functions is lifted to an
equivalent optimization problem in which the cost functional is defined on the space
of probability measures. This technique is heavily used in proving the existence of
optimal strategies in Markov decision processes; see for example, [27, 20, 6], among
several others. This is also the central concept for studying optimal transport prob-
lems [2, 31], where the cost function is a measurable function of two random variables
with given distributions, and the optimization is performed on the space of joint mea-
sures of the random variables given the marginal distributions. In this paper, we use
a similar lifting technique to establish the existence of optimal strategies in certain
classes of static and dynamic teams.

A variant of the problem of existence of optimal strategies in stochastic dynamic
teams is that of the existence of optimal observation channels in such systems. The
relevant question there is how to design observation channels (for example, quantizers)
in a team problem so that the overall expected cost is minimized. This problem was
studied in [38], where some sufficient conditions were obtained on teams and sets
of observation channels to ensure the existence of optimal quantizers. There again,
the problem of designing quantizers was lifted to one of designing joint probability
measures over the state and the observation of an agent satisfying certain constraints.

1Recently, [23] showed that using mutual information to lower bound the expected cost in the
Gaussian test channel is akin to convexifying the nonconvex constraint in an optimization problem
over joint measures.
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1684 A. GUPTA, S. YÜKSEL, T. BAŞAR, AND C. LANGBORT

In [38], a topology of information channels was introduced based on a fixed input
distribution. Related approaches can be found in [10, 9]. In this paper, we further
generalize these approaches.

1.2. Outline of the paper. We prove, under some sufficient conditions, the
existence of optimal strategies in a class of sequential teams. A general stochastic
dynamic team problem is formulated in section 2. Thereafter, we study two related
static teams in sections 3 and 4. In section 3, we show that if the cost function of
the team is continuous and bounded, and action spaces are compact, then under mild
conditions on the observation kernels, a team-optimal solution exists. In section 4,
we extend the result to the case when the action spaces may not be compact and the
cost function of the team is a nonnegative continuous, possibly unbounded, function.
In section 5, we show, using the static reduction technique of Witsenhausen [32], that
a large class of dynamic teams admit team-optimal solutions. We use this result to
show, in section 6, that most LQG teams with no sharing of observation admit team-
optimal solutions. In section 7, we prove the existence of optimal strategies in several
LQG teams of broad interest. Finally, we present concluding remarks in section 8.

1.3. Notation. We introduce here some of the notation used throughout the
paper. For a natural number N , we let [N ] denote the set {1, . . . , N}. The set of all
nonnegative real numbers is denoted by R

+. If X is a set and A is a subset of X ,
then A� denotes the complement of the set A.

We use boldface letters a,b, . . . to denote generic elements in sets A, B, and so on.
If the space X is the real space, then we simply use x to denote a generic element of
X , with no boldface. Uppercase boldface letters, for example, X, are used to denote
random variables. A superscript denotes the index of an agent, while a subscript
denotes the time step or an index of a sequence. For example, Ui

t denotes the control
action taken by agent i at time step t. If a ∈ R

n, then we use ‖a‖2R to denote aTRa
for a positive-definite matrix R.

Let X be a nonempty set. For a set of elements {x1, . . . , xn} in X , we let x1:n

denote this set. The set {x1, . . . , xn} \ {xi} is denoted by x−i. If X1, . . . , Xn are
nonempty sets, then X1:n and X−i are shorthand notation for the product sets
X1 × · · · × Xn and X1 × · · · × Xi−1 × Xi+1 × · · · × Xn, respectively. If we write
x1:n ∈ X1:n, then it is construed as x1 ∈ X1, x2 ∈ X2, and so on. Similarly, x1:n de-
notes the set {x1, . . . , xn}, and x1:n

1:t denotes {x1
1, . . . , x

n
1 , . . . , x

1
t , . . . , x

n
t }, where each

element is in the appropriate space.

Let X be a topological space. The vector space of all bounded continuous func-
tions on X endowed with the supremum norm ‖ · ‖∞ is denoted by Cb(X ), that is,
Cb(X ) := {f : X → R : f is continuous and ‖f‖∞ < ∞}. The vector space C(X )
is the space of all continuous functions on the topological space X , which are pos-
sibly unbounded. Thus, Cb(X ) ⊂ C(X ). If X is a metric space, then the vector
space Ub(X ) ⊂ Cb(X ) denotes the set of all bounded uniformly continuous func-
tions on X . The Borel σ-algebra on X is denoted by B(X ). The spaces ca(X ) and
℘(X ) denote, respectively, the vector space of countably additive signed measures on
X and the set of all probability measures on X endowed with weak* topology. If
μi ∈ ℘(Ai), i ∈ [N ], are probability measures, then dμ1:N denotes the product mea-
sure μ1(da1) · · ·μN (daN ). We let 1{·} denote the Dirac probability measure over the

point {·}. Let A and B be Polish spaces and let μ ∈ ℘(A × B). Then, PrA#μ denotes

the marginal of μ on space A, that is, for any Borel set A ⊂ A, PrA#μ(A) := μ(A×B).D
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2. Problem formulation. Within a state-space model, we consider an N -agent
dynamic team with no observation sharing information structure. Let the state at
time instant t ∈ [T ] be denoted by Xt, and let the space of all possible states at time
t be denoted by Xt. The action of agent i at time t lies in a space U i

t , and its action is
denoted by Ui

t. The agents observe the plant states and past control actions through
noisy sensors (or channels), and the observation of agent i at time t is denoted by Yi

t,
which lies in a space Yi

t . Throughout the paper, the spaces Xt,U i
t ,Yi

t are assumed
to be complete separable metric spaces (also called Polish spaces, such as R

n or the
space of measures over Rn) at all time t ∈ [T ] and for all agents i ∈ [N ].

The state of the system evolves according to

Xt+1 = f̃t(X1:t,U
1:N
1:t ,W0

t ), t ∈ [T ],(2.1)

where W0
t is the actuation noise on the system. We denote the space of all possible

actuation noises by W0
t . Agent i at time t ∈ [T ] makes an observation, which depends

on past states and control actions, according to

Yi
t = h̃i

t(X1:t,U
1:N
1:t−1,W

i
t),(2.2)

where Wi
t, which takes values in the space W i

t , is the observation noise of agent i
at time t. We again assume that Wi

t , i ∈ {0} ∪ [N ], t ∈ [T ], are Polish spaces. We
make the following assumption on the state transition functions and the observation
functions of the agents.

Assumption 2.1. The state transition functions f̃t and observation functions
h̃i
t, i ∈ [N ], are continuous functions of their arguments for all time steps t ∈ [T ].

The random variables {X1,W
0:N
1:T } are primitive random variables and are as-

sumed to be mutually independent. We let ξX1 denote the probability measure on X1

and ξWi
t
denote the probability measure on W i

t for i ∈ {0} ∪ [N ] and t ∈ [T ].

2.1. Information structures and strategies of the agents. At each instant
of time, we assume that the only information each agent acquires is its own obser-
vation. Each agent uses its information to determine its control action. Toward this
end, we allow the agents to act in a predetermined fashion, and when they act they
choose either a deterministic strategy or a randomized (more precisely behavioral)
strategy. We define these two notions of strategies below.

Definition 2.1 (deterministic strategy). A deterministic strategy for an agent
i at time t is a Borel measurable map γi

t : Yi
t → U i

t . Let Di
t be the space of all such

maps, which we call the deterministic strategy space of agent i ∈ [N ] at time t ∈ [T ].

Definition 2.2 (behavioral strategy). A behavioral strategy of agent i at time t
is a conditional measure πi

t satisfying the following two properties:

1. For every yi
t ∈ Yi

t , π
i
t(·|yi

t) ∈ ℘(U i
t ).

2. For every U ∈ B(U i
t ), y

i
t �→ πi

t(U|yi
t) is a B(Yi

t )-measurable function.

Let Ri
t denote the behavioral strategy space of agent i ∈ [N ] at time t ∈ [T ].

Remark 2.1. For an agent at any time step, any deterministic strategy is by
definition also a behavioral strategy. For example, if γi

t is a deterministic strategy of
agent i at time t, then the corresponding (induced) behavioral strategy is πi

t(du
i
t|yi

t) =
1{γi

t(y
i
t)}(du

i
t).

As a consequence of the remark above, throughout this paper we will work with
behavioral strategies of an agent with the understanding that this also covers deter-
ministic strategies of that agent as well.
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2.2. Expected cost functional of the team. The team is equipped with a
cost function c̃, which is assumed to be a nonnegative continuous function of all
states X1:T+1, observations Y

1:N
1:T , and actions U1:N

1:T of the agents. However, we can
substitute (2.1) recursively so that the cost function becomes purely a function of the
primitive random variables {X1,W

0
1:T }, observationsY1:N

1:T , and the control actions of
all agents, U1:N

1:T . Therefore, for a fixed realization of the primitive random variables,
observations and control actions of the agents, the cost incurred by the team can be
written as c(x1,w

0
1:T ,y

1:N
1:T ,u1:N

1:T ) for some c, which is clearly related to c̃. We have
the following result on the cost function c.

Lemma 2.3. If Assumption 2.1 holds, then the cost function c is continuous.
Proof. Note that by construction, c is generated by c̃ as

c(x1,w
0
1:T ,y

1:N
1:T ,u1:N

1:T ) = c̃(x1, f̃1(x1,u
1:N
1 ,w0

1), . . . , f̃T (x1:T ,u
1:N
1:T ,w0

T ),y
1:N
1:T ,u1:N

1:T ),

where xt is substituted as a function of x1,w
0
1:t−1 and u1:N

1:t−1 using (2.1) for all t ∈ [T ].
Since c̃ and {ft}t∈[T ] are continuous functions of their arguments, we conclude that c
is a continuous function on X1 ×W0

1:T × Y1:N
1:T × U1:N

1:T .
In standard optimal control problems, the cost function of the team is taken to be

a sum of stagewise cost functions, in which the cost function at every time step depends
on the current state and actions of the agents. However, we do not assume such a
structure on the cost function of the team considered in this paper. This general cost
function encompasses ones that appear in certain classes of communication systems,
economic systems, and feedback control over noisy channels.

Let (Ω,F ,P) be the underlying probability space, possibly depending on the
choice of randomized strategies of the agents. Throughout this paper, we use J :
R1:N

1:T → R+ to denote the expected cost functional of the team, which is defined as

J(π1:N
1:T ) = E

[
c(x1,w

0
1:T ,y

1:N
1:T ,u1:N

1:T )
]
,

where the expectation is taken with respect to the measure induced on the random
variables by the choice of behavioral strategies π1:N

1:T . We make the following natural
assumption on the team described above.

Assumption 2.2. There exists a set of behavioral strategies π̃1:N
1:T ∈ R1:N

1:T of the
agents, which results in finite expected cost to the team.

2.3. Solution approach and the proof program. Our proof of existence of
optimal strategies in the team problem formulated above follows three steps. We first
show the existence of optimal strategies in a static team in section 3, in which (i)
the cost function of the team is a continuous and bounded function of its arguments,
(ii) the action spaces of the agents are compact, and (iii) the observation channels
of the agents satisfy a technical assumption. We refer to this static team as team
ST1. We establish a tightness result on the joint measures over state, observation,
and action spaces of each agent. For any sequence of joint measures induced by
behavioral strategies of the agents that achieves expected costs converging to the
infimum of the expected cost of the team, we show that there exists a convergent
subsequence of joint measures, which are induced by a set of behavioral strategies,
whose limit achieves the infimum of the expected cost functional of the team. Next,
we show the existence of optimal strategies in a static team in which (i) the action
spaces of the agents are noncompact and (ii) cost function of the team is continuous
and has a coercive structure. We refer to this static team as team ST2. This result
is established in section 4 using the results of section 3.
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Subsequently, we use Witsenhausen’s static reduction technique to reduce a se-
quential dynamic team into a (reduced) static team with independent observations of
the agents. We assume a certain structure on the cost function of the dynamic team.
A challenge with this approach is that the cost function of the reduced static team
problem may not satisfy a coercivity condition (introduced later) even though the
cost function of the dynamic team satisfies that coercivity condition. To alleviate this
problem, we provide a novel approach by restricting the search for optimal behavioral
strategies to a compact set. The dynamic team problem is then solved under some
mild assumptions that are delineated in section 5.

In the next section, we establish the existence of team-optimal solutions to the
first static team problem mentioned above.

3. Existence of optimal solution in ST1. Here, we study the N -agent static
team in which each agent i observes a random variableYi, correlated with the random
variable X, and takes an action Ui. We let X denote the state space of the team, and
Yi and U i denote, respectively, the observation and the action spaces of agent i.

The team incurs a cost c, which is a nonnegative continuous and bounded function
of the state, observations, and control actions of all agents, that is, c : X × Y1:N ×
U1:N → R

+. The expected cost functional of the team, denoted by J : R1:N → R
+,

as a function of behavioral strategies of the agents, is

J(π1:N ) =

∫
X×Y1:N

∫
U1:N

c(x,y1:N ,u1:N )

N∏
i=1

πi(dui|yi)P
{
dx, dy1, . . . , dyN

}
.

We show that, under certain conditions, there exists a π1:N� ∈ R1:N such that
J(π1:N�) = infπ1:N∈R1:N J(π1:N ).

We first provide an outline of our approach to showing the existence of optimal
strategies in the static team problem. Consider a sequence {π1:N

n }n∈N ⊂ R1:N of
control strategies of the agents such that limn→∞ J(π1:N

n ) = infπ1:N∈R1:N J(π1:N ).
There are three issues that need to be resolved. The first is that the sequence of
joint measures {∏N

i=1 π
i
n(du

i|yi)P
{
dx, dy1, . . . , dyN

}}n∈N may not be a weak* con-
vergent sequence. This can be remedied by considering a convergent subsequence of
{∏N

i=1 π
i
n(du

i|yi)P
{
dx, dy1, . . . , dyN

}}n∈N. The second problem is to ensure that the
limit of the convergent subsequence satisfies the informational constraint. This means
that the conditional measure on the action space of agent i given the observation of
that agent and the state of the limiting measure must be independent of the state for
every i ∈ [N ]. The third problem is that if for all i ∈ [N ], {πi

n(du
i|yi)P

{
dx, dyi

}}n∈N

converges in the weak* sense to a measure πi
0(du

i|yi)P
{
dx, dyi

}
for some πi

0 ∈ Ri,
then the expected cost functional J may not satisfy limn→∞ J(π1:N

n ) = J(π1:N
0 ). We

overcome all three challenges by employing the following steps:

1. We show that for any g ∈ Ub(X×Y1:N×U1:N ),
{∫

g πi
n(du

i|yi)P
{
dyi|x}}

n∈N

is a uniformly equicontinuous and bounded sequence of functions under some
assumptions on the conditional measure P

{
dyi|x}.

2. In order to satisfy the informational constraint of the limiting measure of
any convergent subsequence of the sequence {πi

n(du
i|yi)P

{
dx, dyi

}}n∈N, we

assume a specific structure on the conditional probability measure P
{
dx|yi

}
.
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3. We extract {∏N
i=1 π

i
nk
(dui|yi)P

{
dx, dy1, . . . , dyN

}}k∈N, a weak* convergent
subsequence {

N∏
i=1

πi
nk
(dui|yi)P

{
dx, dy1, . . . , dyN

}}
k∈N

of measures such that limk→∞ J(π1:N
nk

) = J(π1:N
0 ).

4. Once we show that there exists a set of behavioral strategies of the agents that
achieves the minimum expected cost, we use Blackwell’s irrelevant informa-
tion theorem [37, p. 457] to conclude that there exists a set of deterministic
strategies of the agents that achieves the minimum expected cost.

In order to prove the existence result, we require several auxiliary results that are
proved in the next subsection.

3.1. Auxiliary results. In this subsection, we state a few lemmas that are
needed to prove the existence of optimal strategies in the static team problem for-
mulated above. Unless otherwise stated, A, Bi, C, and Yi, i ∈ [N ], denote Polish
spaces, with generic elements in these spaces denoted, respectively, by a, bi, c, and
yi. We now introduce a condition on the conditional probability measures, which will
be important in proving the auxiliary results.

Definition 3.1 (condition C1). Let A and Y be random variables such that
P {dy|a} = η(a,y)ν(dy) for some nonnegative measure ν ∈ ca(Y). We say that the
pair (η, ν) satisfies condition C1 if and only if

1. η is a continuous function of its arguments, that is, η ∈ C(A× Y); and
2. there exists a measurable function h(η,ν) : A× Y → R

+ satisfying

sup
a∈A

∫
h(η,ν)(a,y)ν(dy) < ∞

such that for every ε > 0, there exists a δ > 0 such that for any a0 ∈ A and
for all a ∈ A satisfying dA(a, a0) < δ, we have

|η(a,y) − η(a0,y)| < ε h(η,ν)(a0,y).

We call h(η,ν) the variation control (VC) function of the pair (η, ν).
If the observation is an additive noise corrupted version of the state, with the noise

being Gaussian, then the above condition holds, as noted in the following example.
Example 1. Let A = Y = R

n. A sufficient condition for a pair (η, ν) to satisfy
condition C1 is Y = A + W for some Gaussian random vector W with density
function N(·) and a positive definite covariance. In this case, ν is the usual Lebesgue
measure on R

n, η(a,y) = N(y − a), and the VC function for the pair (η, ν) is

h(η,ν)(a0,y) := max
a∈B(a0,1)

∥∥∥∥dηda
∥∥∥∥
∞
,

where B(a0, 1) is a unit ball around a0 under ∞ norm. Since dη
da decays exponentially

as ‖y‖2 → ∞, h(η,ν) has the property that
∫
h(η,ν)dν < ∞ and it is a constant

function over A.
Now, we make use of the uniform continuity of a function and condition C1 on

the conditional measure to prove the following result.
Lemma 3.2. Let ν ∈ ca(Y) be a nonnegative measure and let μ ∈ ℘(Y × B). Let

A, B, C, and Y be random variables such that P {dy|a} = η(a,y)ν(dy), where the
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pair (η, ν) satisfies condition C1 with VC function h(η,ν). Let g : A × B × C → R be
a uniformly continuous and bounded function. Define the map f : A× C → R by

fμ(a, c) =

∫
B
g(a,b, c)μ(db|y)η(a,y)ν(dy).

Then, {fμ(·, ·)}μ∈℘(Y×B) is uniformly equicontinuous and bounded on its domain.
Proof. See Appendix A.
We now have a corollary to this result.
Corollary 3.3. Under the same assumptions and notation as in Lemma 3.2,

for every μ ∈ ℘(Y × B), fμ is a uniformly continuous function on its domain.
We now state another lemma, whose proof is similar to that of Lemma 3.2.
Lemma 3.4. Let νi ∈ ca(Yi) be a nonnegative measure and μi ∈ ℘(Yi × Bi),

i ∈ [N ]. Let A, Bi, C, and Yi be random variables for i ∈ [N ] such that P
{
dyi|a} =

ηi(a,yi)νi(dyi), where each pair (ηi, νi) satisfies condition C1 with VC function hi.
Further, assume that random variables Y1, . . . ,YN are independent given a. Let
g ∈ Ub(A× B1:N × C). Define the map f : A× C → R by

fμ1:N (a, c) =

∫
B1:N

g(a,b1:N , c)

N∏
i=1

μi(dbi|yi)ηi(a,yi)νi(dyi).

Then, {fμ1:N (·, ·)}μi∈℘(Yi×Bi) is uniformly equicontinuous and bounded on its do-
main.

Proof. See Appendix B.
The result of Lemma 3.4 allows us to apply the Arzela–Ascoli theorem [1] on

compact subsets of the domain to obtain a convergent subsequence that converges to
some bounded continuous function pointwise (not in sup norm). We then need the
following.

Lemma 3.5. Under the same assumptions and notation as in Lemmas 3.2 and
3.4, let {μi

n}n∈N ⊂ ℘(Yi × Bi) be an arbitrary sequence of measures for i ∈ [N ]. For
every n ∈ N, define fn := fμ1:N

n
. Further, assume that A, C,Yi,Bi, i ∈ [N ], are all

σ-compact Polish spaces. If {ζn}n∈N ⊂ ℘(A × C) is a weak* convergent sequence of
measures converging to ζ0, then there exists a subsequence {nk}k∈N such that

lim
k→∞

∣∣∣∣
∫
A×C

fnk
dζnk

−
∫
A×C

fnk
dζ0

∣∣∣∣ = 0.

Proof. See Appendix C.
We have thus stated (and proved) all the major auxiliary results that are needed

to establish the existence of optimal strategies. We next prove an additional result,
which states that under some sufficient condition, if we take a weak* convergent
sequence of measures satisfying a conditional independence property, then the limit
also satisfies the conditional independence property. This result is useful to show
that the weak* convergent sequence of joint measures over the state, observation, and
action of agent i does not converge to a limit in which the control action depends on
both the state and the observation.

Lemma 3.6. Let {μn}n∈N ⊂ ℘(A× B × C) be a convergent sequence of measures
such that μn(da, db, dc) = μn(dc|b)ζ(da, db), where ζ ∈ ℘(A × B) with the property
that ζ(da|b) = ρ(a,b)ν(da) for some ρ ∈ C(A×B) and nonnegative measure ν on A.

Assume that (ρ, ν) satisfies condition C1. If μn
w∗
⇀ μ0 for some μ0 ∈ ℘(A × B × C),

then μ0(da, db, dc) = μ0(dc|b)ζ(da, db).
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Proof. See Appendix D.
In the next subsection, we turn our attention to proving the existence of optimal

strategies for the static team problem considered in this section.

3.2. Existence of optimal strategies. Here, we prove one of the main results
of the paper under the following assumption on the probability measure on X ×Y1:N .

Assumption 3.1. The spaces X ,Yi, and U i are σ-compact Polish spaces for
all i ∈ [N ]. Further, there exist continuous functions ηi and ρi, i ∈ [N ], such that
P
{
dy1:N |x} =

∏
i∈[N ] P

{
dyi|x} ,P{dyi|x} = ηi(x,yi)νYi(dyi), and P

{
dx|yi

}
=

ρi(yi,x)νX (dx), where νX and νYi are nonnegative measures on X and Yi, respec-
tively. The tuples (ρi, νX ) and (ηi, νYi), i ∈ [N ], satisfy condition C1.

Theorem 3.7. Consider team ST1, satisfying Assumption 3.1, where U i, i ∈ [N ],
need not be compact sets. If for every i ∈ [N ], {λi

n}n∈N ⊂ ℘(U i × Yi × X ) is a
convergent sequence of measures such that λi

n(du
i, dyi, dx) = λi

n(du
i|yi)P

{
dx, dyi

}
,

converging to some λi
0 ∈ ℘(U i × Yi ×X ), then(

N∏
i=1

λi
n(du

i|yi)

)
P
{
dx, dy1:N

} w∗
⇀

(
N∏
i=1

λi
0(du

i|yi)

)
P
{
dx, dy1:N

}
as n → ∞.

Proof. See Appendix E.
We now list the conditions that we need in order to establish the main result.
Assumption 3.2.

1. The cost function c ∈ Cb(X × Y1:N × U1:N ) is nonnegative.
2. The action sets U i, i ∈ [N ], of all the agents are compact subsets of Polish

spaces. Therefore, U i is a σ-compact Polish space for all i ∈ [N ].
3. Assumption 3.1 holds.

Remark 3.1. It should also be noted that part 3 of Assumption 3.2 is satisfied
if (i) X and Yi, i ∈ [N ], are finite dimensional Euclidean spaces, and (ii) the state
and observations are jointly Gaussian random variables such that agent i observes a
Gaussian noise corrupted version of the state X.

The following theorem states that any team problem that satisfies the assumptions
made above admits a team-optimal solution.

Theorem 3.8. Every static team problem satisfying Assumption 3.2 admits a
team-optimal solution in deterministic strategies.

Proof. Let {π1:N
n }n∈N ⊂ R1:N be a sequence of strategy profiles of the agents such

that J(π1:N
n ) < infπ1:N∈R1:N J(π1:N )+ 1

n . We next show that there exists a convergent
subsequence of this sequence {π1:N

n }n∈N such that the limiting behavioral strategies
of the agents achieve the infimum of the expected cost functional. We organize the
proof into four steps.

Step 1 (tightness). Since X and Yi are Polish spaces, P
{
dx, dyi

}
is a tight

measure.2 Since U i is compact, the set of measures {πi(dui|yi)P
{
dx, dyi

}}πi∈Ri is

tight for all i ∈ [N ]. Define a measure λi
n as λi

n(du
i, dyi, dx) := πi

n(du
i|yi)P

{
dx, dyi

}
for n ∈ N, i ∈ [N ].

Step 2 (extracting convergent subsequence). Recall that every sequence of tight
measures has a convergent subsequence by Prohorov’s theorem3 [14]. Thus, {λ1

n}n∈N

2Let A be a Polish space. A set M ⊂ ℘(A) is said to be tight if for every ε > 0, there exists a
compact set Kε ⊂ A such that μ(A \ Kε) < ε for all μ ∈ M. Every measure on a Polish space is
tight [14].

3Prohorov’s theorem states that a set of measures over a Polish space is weak* precompact if
and only if it is tight.

D
ow

nl
oa

de
d 

07
/1

6/
15

 to
 1

30
.1

5.
10

0.
23

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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must have a convergent subsequence, say {λ1
nk
}k∈N. Similarly, {λ2

nk
}k∈N must have a

convergent subsequence. Since there is only a finite number (N) of agents, we continue
this process of extracting convergent subsequences of every sequence of measures to get

a convergent subsequence of a set of measures {λ1
nl
, . . . , λN

nl
}l∈N such that λi

nl

w∗
⇀ λi

0

as l → ∞ for all i ∈ [N ] for some set of measures {λ1
0, . . . , λ

N
0 }. Recall the result

of Lemma 3.6, which implies that λi
0(du

i, dyi, dx) = λi
0(du

i|yi)P
{
dx, dyi

}
. Define

πi
0(du

i|yi) := λi
0(du

i|yi) for all i ∈ [N ] and π1:N
0 := {π1

0 , . . . , π
N
0 }.

Step 3 (limit achieves infimum). The result of Theorem 3.7 implies that

lim
l→∞

J(π1:N
nl

) = J(π1:N
0 ) = inf

π1:N∈R1:N
J(π1:N ).

Step 4 (applying a result on irrelevant information due to Blackwell) [8, 7]. Now,
using Blackwell’s irrelevant information theorem (see, e.g., [37, p. 457]), we conclude
that for fixed optimal behavioral strategies π−i

0 of all agents other than i, there exists a
deterministic strategy of agent i, say γi

0, such that J(π1:N
0 ) ≥ J(γi

0, π
−i
0 ). We continue

this process sequentially to conclude that there exists γ1:N
0 such that

J(π1:N
0 ) ≥ J(γN

0 , π1:N−1
0 ) ≥ · · · ≥ J(γ1:N

0 ).

Since infD1:N J(γ1:N ) ≥ J(π1:N
0 ) (because the set of randomized strategies of an agent

subsumes its set of deterministic strategies), we conclude that the above inequalities
hold with equality. Thus, all agents’ strategies can be restricted, without any loss of
generality, to deterministic ones. This implies that the static team admits an optimal
solution in the class of deterministic strategies of the agents, which completes the
proof of the theorem.

Remark 3.2. It must be noted that for the existence result proven above, we do
not require the state space X and observation spaces Yi, i ∈ [N ], to be compact.

We have an immediate corollary.
Corollary 3.9. Assume that every agent i ∈ [N ] observes Yi, which is inde-

pendent of the observations of all other agents. If the cost function is continuous in
its arguments (observations and actions of the agents) and bounded, and action spaces
of the agents are compact, then the static team with independent observations admits
an optimal solution in deterministic strategies.

3.3. Static team ST1 with degraded information. In Assumption 3.1, we
had conditional independence of observations given the state, which we relax in this
subsection. For simplicity, we consider a two-agent static team problem, where the
observation of agent 2 is a noise corrupted version of the observation of agent 1. We
further invoke the assumption below. Lemma 3.10 and Theorem 3.11 below and the
main idea of the proof can readily be extended to multiagent scenarios.

Assumption 3.3. Consider team ST1 in which agent 2 observes a degraded
version of agent 1’s observation. The spaces X , Yi, and U i are σ-compact Polish
spaces for i ∈ {1, 2}. There exist continuous functions ηi and ρi, i ∈ {1, 2}, such that

P
{
dy2, dy1|x} = P

{
dy2|y1

}
P
{
dy1|x} , P

{
dy2|y1

}
= η2(y1,y2)νY2(dy2),

P
{
dy1|x,y2

}
= η1(x,y2,y1)νY1(dy1), P

{
dx|y1

}
= ρ1(y1,x)νX (dx),

P
{
dy1, dx|y2

}
= ρ2(y2,y1,x)νY1(dy1)νX (dx),

where νX and νYi are nonnegative measures on X and Yi, respectively. The tuples
(ρ1, νX ), (ρ2, νX × νY1), and (ηi, νYi), i ∈ {1, 2}, satisfy condition C1.
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We now use the auxiliary results in the previous subsection to prove the following.
Lemma 3.10. Consider team ST1 satisfying Assumption 3.3, where U i, i ∈

{1, 2}, need not be compact sets. Let X , Yi, U i, i ∈ {1, 2}, be σ-compact Pol-
ish spaces. For every i ∈ {1, 2}, let {λ1

n}n∈N ⊂ ℘(U i × Y1 × X ) and {λ2
n}n∈N ⊂

℘(U i×Y1×Y2×X ) be convergent sequences of measures such that λ1
n(du

1, dy1, dx) =
λ1
n(du

1|y1)P
{
dx, dy1

}
and λ2

n(du
2, dy1:2, dx) = λ2

n(du
2|y2)P

{
dx, dy1:2

}
, converging

to some λ1
0 ∈ ℘(U1 × Y1 ×X ) and λ2

0 ∈ ℘(U2 × Y1 × Y2 ×X ), respectively. Then,(
2∏

i=1

λi
n(du

i|yi)

)
P
{
dx, dy1:2

} w∗
⇀

(
2∏

i=1

λi
0(du

i|yi)

)
P
{
dx, dy1:2

}
as n → ∞.

Proof. See Appendix F.
We can now show the existence of optimal strategies for a static team ST1 sat-

isfying Assumption 3.2 (1,2) and Assumption 3.3.
Theorem 3.11. Any two-agent static team ST1 with degraded information satis-

fying Assumption 3.2 (1,2) and Assumption 3.3 admits a team-optimal solution, which
is in the class of deterministic strategies of the agents.

Proof. The proof follows by mimicking the steps of the proof of Theorem 3.8 and
using Lemma 3.10.

In the above theorem, we showed that the assumption of conditional independence
of observations given the state is not needed for the existence of optimal strategies in
team problems; we considered a case where the observation of one agent is a degraded
version of the observation of another agent and showed that optimal strategies exist
under certain assumptions.

We note that our setting does not cover teams with observation sharing infor-
mation structures, because the technique we employed for proving Theorem 3.8 does
not readily carry over to such teams. In particular, if the agents share their observa-
tions in a certain manner, then we cannot show the equicontinuity result of Lemma
3.4, which is used to prove Theorem 3.7. Recall that Theorem 3.7 is crucial for the
proof of Theorem 3.8. Consequently, the proof technique we adopted above cannot
be carried forward to prove the existence of team-optimal solutions in static teams
with observation sharing information pattern. In fact, we provide an example in [17,
section 9.3, p. 141], in which a counterpart of Theorem 3.7 does not hold. However,
for a class of teams with observation sharing information pattern, it is possible to use
other techniques, such as dynamic programming or viewing the decision makers with
common information as a single decision maker. This technique has been used in [17,
Chapter 9, p. 130] for a two-agent team in which only one agent shares observation
with the other agent. A systematic analysis of this technique for general teams is left
for future work.

4. Existence of optimal solution in ST2. Here, we consider the static team
problem in which the cost function is nonnegative and continuous, but it may be
unbounded, and the action sets may be noncompact. We build on the results proved
in the previous section to show the existence of optimal strategies.

In the next subsection, we use the result from Theorem 3.7 to investigate the
properties of the expected cost functional, as a function of the behavioral strategies of
the agents, of the team problem with unbounded cost and noncompact action spaces.

4.1. Properties of the expected cost functional. Our first result uses The-
orem 3.7 to prove a property of expected cost functional of team ST2.D
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Theorem 4.1. Recall that c : X ×Y1:N×U1:N → R
+ is a nonnegative continuous

function. Under the same assumptions and notation as in Theorem 3.7, we get

lim inf
n→∞

∫
X×Y1:N×U1:N

c(x,y1:N ,u1:N )

N∏
i=1

λi
n(du

i|yi)P
{
dx, dy1:N

}

≥
∫
X×Y1:N×U1:N

c(x,y1:N ,u1:N )

N∏
i=1

λi
0(du

i|yi)P
{
dx, dy1:N

}
.

Proof. The statement follows from Theorem 3.7 and [31, Lemma 4.3, p. 43].
The theorem above says that the expected cost functional of the agents in the

team is lower-semicontinuous on the space of joint measures over state, observation,
and action spaces. Since the action sets are noncompact, the set of joint measures
over observation and action spaces of each agent is noncompact, and we cannot
readily use Weierstrass theorem like results to prove the existence of an optimal
solution.

We address this issue in the next subsection. In particular, if the cost function
has some stronger (coercivity like) property, then using Assumption 2.2 and Markov’s
inequality, we can restrict the search of optimal strategies of the agents to compact
sets of joint measures over observation and action spaces of the agents.

4.2. Compactness of a set of probability measures. In this subsection, we
identify a sufficient condition for a set of measures to be precompact in the weak*
topology. We use this result later to show that the search for optimal behavioral
strategies in the team problem can be restricted to a weak* precompact space.

Hereafter, we will use A, B, and C to denote arbitrary Polish spaces. We now
define a class of functions and study an important result involving functions in this
class.

Definition 4.2 (class IC(A,B)). A nonnegative measurable function φ : A ×
B× C → R is in class IC(A,B) if φ satisfies any one of the following two conditions:

1. For every M > 0 and for every compact set K ⊂ A, there exists a compact
set L ⊂ B such that infK×L�×C φ(a,b, c) ≥ M .

2. For every M > 0 and every point a ∈ A, there exists an open neighbor-
hood O ⊂ A of the point a ∈ A and a compact set L ⊂ B such that
infO×L�×C φ(a,b, c) ≥ M .

We can have C = ∅.
A large class of team problems has cost functions that belong to the class of

functions defined above, where A is the space of primitive random variables and B
is an action space of some agent. This class of functions is therefore an important
one, and we will exploit this property of cost function to show the existence of an
optimal solution in a team. We first identify a few examples of functions in class
IC(A,B).

Example 2. Let A = B = C = R
n, and define φ1(a,b, c) := ‖b − a‖ + ‖c‖ and

φ2(a,b, c) := ‖b − a‖2. Then, φ1 and φ2 are in class IC(A,B). Any nonnegative
continuous and increasing function on R composed with φ1 or φ2 is also in class
IC(A,B). For example, exp(φ1(a,b, c)) and exp(φ2(a,b, c)) are in class IC(A,B).

Our next result gives a sufficient condition for a set of measures to be tight, which
uses the class of functions introduced in Definition 4.2.

Lemma 4.3 (tightness of a set of measures). Let φ : A × B × C → R be a
nonnegative measurable function in the class IC(A,B). Fix k to be a nonnegative
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real number and let N ⊂ ℘(A) be a weak* compact set of measures. Define M ⊂
℘(A× B × C) as follows:

M =

{
μ ∈ ℘(A× B × C) : PrA#μ ∈ N and

∫
φ dμ ≤ k

}
.

Then, PrA×B
# M is a tight set of measures. Furthermore, if φ is lower-semicontinuous,

then PrA×B
# M is weak* compact.

Proof. See Appendix G.
Now that we have a sufficient condition on when a set of measures is tight, we

can look at the original static team problem in the next subsection.

4.3. Existence of optimal strategies. We need the following assumption.
Assumption 4.1. The cost function c : X ×Y1:N ×U1:N → R

+ is a nonnegative
continuous function in class IC(X × Y1:N ,U i) for every i ∈ [N ].

It should be noted that the condition in Assumption 4.1 is not dependent on the
control strategies that the agents choose. The following lemma identifies a set of tight
measures using Lemma 4.3, with the property that any expected cost below a certain
threshold is either achieved by measures in that set or cannot be achieved.

Lemma 4.4. Assume that team ST2 satisfies Assumptions 2.2 and 3.1. Let
π̃1:N ∈ R1:N be the set of behavioral strategies of the agents which results in finite
expected cost to the team. Consider sets P i ⊂ Ri, i ∈ [N ] such that there exists a set
of behavioral strategies π1:N ∈ P1:N satisfying J(π1:N ) ≤ J(π̃1:N ). For i ∈ [N ], define

Mi :=
⋃

πi∈Pi

{
λi ∈ ℘(X × Yi × U i) : λi(dui, dyi, dx) = πi(dui|yi)P

{
dyi, dx

}}
.

If the cost function of the team satisfies Assumption 4.1, then Mi ⊂ ℘(X × Yi × U i)
is a tight set of measures for all i ∈ [N ].

Proof. The statement of the lemma readily follows from Lemma 4.3. Define
M := {μ ∈ ℘(X × Y1:N × U1:N ) :

∫
c dμ ≤ J(π̃1:N )}. For every i ∈ [N ], notice

that any λi ∈ Mi satisfies λi = PrX×Yi×Ui

# μ for some μ ∈ M. Since c is in class

IC(X × Y1:N ,U i), by Lemma 4.3, Mi is tight.
Thus, we have identified precompact sets of joint measures Mi, i ∈ [N ], which

include the optimal joint measures, if they exist. This brings us to the following main
result of the section.

Theorem 4.5. Assume that the cost function of team ST2 satisfies Assumption
4.1. If Assumptions 2.2 and 3.1 hold, then team ST2 admits an optimal solution in
deterministic strategies.

Proof. Let π̃1:N ∈ R1:N be the set of behavioral strategies which results in finite
expected cost to the team. From Lemma 4.4, we know that there exist tight sets of
measures Mi ⊂ ℘(X × Yi × U i), i ∈ [N ], that contain the optimal joint measures,
if they exist. Consider a sequence of behavioral strategies {π1:N

n }n∈N ⊂ R1:N that
satisfies J(π1:N

n ) ≤ J(π̃1:N ) and limn→∞ J(π1:N
n ) = infπ1:N∈R1:N J(π1:N ).

Define λi
n(du

i, dyi, dx) := πi
n(du

i|yi)P
{
dyi, dx

}
for i ∈ [N ] and n ∈ N, and

notice that {λi
n}n∈N ⊂ Mi. Since {λi

n}n∈N is a tight sequence of measures, we know
that there exists a weak* convergent subsequence of measures. For every i ∈ [N ], let
{λi

nk
}k∈N be the weak* convergent subsequence of measures converging to λi

0. From

Lemma 3.6, we know that λi
0(du

i, dyi, dx) = λi
0(du

i|yi)P
{
dyi, dx

}
for all i ∈ [N ],

which means that the conditional independence property is retained in the limit. Let
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πi
0 ∈ Ri be such that πi

0(du
i|yi) = λi

0(du
i|yi). From the result of Theorem 4.1,

we conclude that lim infk→∞J(π1:N
nk

) ≥ J(π1:N
0 ). Thus, πi

0 is the optimal behavioral
strategy of agent i. Moreover, applying Blackwell’s irrelevant information theorem
[37, p. 457], there exists a set of deterministic strategies which achieves the same cost
as the one achieved using optimal behavioral strategies of the agents.

Corollary 4.6. Consider a two-agent static team ST2 with degraded infor-
mation. Assume that the cost function of team ST2 satisfies Assumption 4.1. If
Assumptions 2.2 and 3.3 hold, then team ST2 admits an optimal solution in deter-
ministic strategies.

Proof. The proof follows from arguments similar to those used in the proof of
Theorems 3.11 and 4.5.

Corollary 4.7. Assume that the cost function of team ST2 is continuous in its
arguments and the action spaces of the agents are compact subsets of Polish spaces.
Furthermore, assume that team ST2 satisfies Assumption 2.2. If either Assumptions
3.1 or 3.3 holds for team ST2, then the team admits an optimal solution in determin-
istic strategies.

Proof. If the action spaces of the agents are compact, then Assumption 4.1 on
the cost function holds automatically. Then, we apply the result of Theorem 4.5 to
establish the statement.

In the next section, we use Witsenhausen’s static reduction technique to convert
a class of dynamic team problems to static teams with independent observations,
and then apply the result proved in this section to conclude the existence of optimal
strategies in that class of dynamic team problems.

5. Dynamic teams. We now turn our attention to the dynamic team formu-
lated in section 2. It was shown in [32] that a large class of N -agent T -time step
dynamic stochastic control problems with certain information structures can be equiv-
alently written as NT -agent static optimization problems. In order to define the
equivalent static problem, we introduce the following notation:

Ω0 = X1 ×W0
1:T , Ωi

t = W i
t , i ∈ [N ], t ∈ [T ].

We let ω0 and ωi
t denote generic elements of Ω0 and Ωi

t, respectively. Note that Ω0 and
Ωi

t are Polish spaces, endowed with the probability measures ξΩ0 and ξΩi
t
, respectively,

which are defined as

ξΩ0 := ξX1ξW0
1
. . . ξW0

T
, ξΩi

t
:= ξWi

t
, i ∈ [N ], t ∈ [T ].

With this notation, the cost function of the team is written as c : Ω0×Y1:N
1:T ×U1:N

1:T →
R

+, and we recall that it is continuous. Also recall that agent i at time t observes Yi
t

only, that is, its information set is a singleton.

Now, using the static reduction argument, we can transform the original problem
into a static team problem with a different cost function. Toward this end, let us
rewrite the observations of the agents as

yi
t = hi

t(ω0, ω
i
t,u

1:N
1:t−1),(5.1)

where hi
t is nonanticipative, that is, hi

t does not depend on w0
t:T . Note that due

to Assumption 2.1, the functions hi
t, i ∈ [N ], t ∈ [T ], are continuous maps of their

arguments. We now make the following assumption.
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Assumption 5.1. For every (i, t) ∈ [N ]× [T ], there exists a probability measure
νit ∈ ℘(Yi

t ) and a continuous function ϕi
t : Yi

t × Ω0 × U1:N
1:t−1 → R

+ such that

P
{
yi
t ∈ Y|ω0,u

1:N
1:t−1

}
=

∫
Y

ϕi
t(y

i
t;ω0,u

1:N
1:t−1)ν

i
t(dy

i
t) for all Y ∈ B(Yi

t ).

Define ϕ : Ω0×Y1:N
1:T ×U1:N

1:T → R
+ as ϕ(ω0,y

1:N
1:T ,u1:N

1:T ) =
∏N

i=1

∏T
t=1 ϕ

i
t(y

i
t;ω0,u

1:N
1:t−1).

By definition, ϕ is a continuous function of its arguments.
In the next lemma, we state a sufficient condition on the mapping hi

t and the
noise statistics ξΩi

t
such that the above assumption is satisfied.

Lemma 5.1. Assume that all state, action, observation, and noise spaces are
Euclidean spaces of appropriate dimensions. For all i ∈ [N ], t ∈ [T ], let ξΩi

t
admit a

zero-mean Gaussian density function ηit with positive-definite covariance and

hi
t(ω0, ω

i
t,u

1:N
1:t−1) := ȟi

t(ω0,u
1:N
1:t−1) + ωi

t,

where ȟi
t is continuous. Then, Assumption 5.1 holds for the dynamic team.

Proof. For every i ∈ [N ] and t ∈ [T ], define ϕi
t and νit as

ϕi
t(y

i
t;ω0,u

1:N
1:t−1) :=

ηit(y
i
t − ȟi

t(ω0,u
1:N
1:t−1))

ηit(y
i
t)

, νit(dy
i
t) = ηit(y

i
t)dy

i
t.

Thus, ϕi
t is a nonnegative continuous map, which establishes the statement.

We now define the reduced static team corresponding to the dynamic team de-
scribed above.

Definition 5.2 (reduced static team problem). Consider the NT -agent static
team problem with the agents indexed as (i, t). Agent (i, t) observes a random vari-
able Yi

t with probability measure νit , which is independent of observations of all other
agents. Agent (i, t), based on the realization yi

t of its observation, chooses a control ac-
tion ui

t. The cost function for the team is given by c(ω0,y
1:N
1:T ,u1:N

1:T )ϕ(ω0,y
1:N
1:T ,u1:N

1:T ).
We call the static team thus defined the reduced static team (RST).

We now recall the following result from [32], which shows that any dynamic team
and its corresponding RST are equivalent optimization problems over the same space
of strategies of the agents.

Theorem 5.3 (see [32]). Let J : R1:N
1:T → R+ be the expected cost functional of

the dynamic team, and let JRST : R1:N
1:T → R+ be the expected cost functional of the

corresponding RST, defined as

JRST (π
1:N
1:T ) =

∫
c ϕ

N∏
i=1

T∏
t=1

(
πi
t(du

i
t|yi

t)ν
i
t(dy

i
t)
)
P {dω0} , π1:N

1:T ∈ R1:N
1:T .

Then, for any π1:N
1:T ∈ R1:N

1:T , we have J(π1:N
1:T ) = JRST (π

1:N
1:T ).

It should be noted that for any dynamic team that admits a static reduction, the
corresponding RST may not satisfy the hypotheses of Theorem 4.5. Thus, the results
we proved for static teams cannot be applied to conclude the existence of a solution
to a dynamic team problem. We illustrate the difficulty in using such an approach in
the following example.

Witsenhausen’s counterexample. Witsenhausen’s counterexample is a two-
agent dynamic LQG team problem, first studied in [33]. The first agent observes a
mean-zero unit variance Gaussian random variable y1 and decides on a real number

D
ow

nl
oa

de
d 

07
/1

6/
15

 to
 1

30
.1

5.
10

0.
23

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EXISTENCE OF OPTIMAL POLICIES IN STOCHASTIC TEAMS 1697

U1. The second agent observes Y2 := U1 + W2, where W2 is a mean-zero Gaussian
noise with unit variance, and decides on another real number U2. The setup is also
depicted in Figure 1 section 7. The behavioral strategy space of agent i is Ri, i = 1, 2.
The cost function of the team is cD(y1, u1, u2) = (u1 − y1)

2 + (u2 − u1)
2.

It is well known that the dynamic team admits an optimal solution [33]. It can
be reduced to a static team using our Lemma 5.1 [32] as follows:

J(π1:2) =

∫
cD(y1, u1:2)P

π1,π2{du2, dy2, du1, dy1}

=

∫
cD(y1, u1:2)π2(du2|y2)P{dy2|u1, y1}π1(du1|y1)Ny1(y1)dy1

=

∫
cD(y1, u1:2)π2(du2|y2)Nw2(y2 − u1)dy2π1(du1|y1)Ny1(y1)dy1

=

∫ (
cD(y1, u1:2)

Nw2(y2 − u1)

Nw2(y2)

)
π2(du2|y2)Nw2(y2)dy2π1(du1|y1)Ny1(y1)dy1,

where Ny1 and Nw2 are the Gaussian density functions (mean-zero, unit variance)
of the distributions of Y1 and W2, respectively, and P

π1,π2 is used to denote the
dependence of the probability measure over all random variables due to the choice
of randomized strategies (π1, π2). In the corresponding RST problem, each agent
observes a mean-zero unit variance Gaussian random variable that is independent of
the observation of the other agent. The cost function for the RST is

cS(y1, u1, u2) = cD(y1, u1, u2)
Nw2(y2 − u1)

Nw2(y2)

=
(
(u1 − y1)

2 + (u2 − u1)
2
)
exp

(−u2
1 + 2y2u1

2

)
.(5.2)

The cost function for the dynamic team cD is in classes IC(Y1,U1) and IC(Y1 ×Y2×
U1,U2). The cost function cS for the corresponding RST is in class IC(Y1×Y2×U1,U2)
(which follows from Lemma 5.5, to be introduced and proved later). However, cS is
not in class IC(Y1,U1) because as |u1| → ∞, the cost goes to zero for any fixed value
of y1. Therefore, the result of Theorem 4.5 is not applicable to the RST problem.

The above example illustrates that the results we obtained for the static team
problems in sections 3 and 4 are not readily applicable to all dynamic team problems
that admit static reductions. A certain structure on the cost function of a dynamic
team and further assumptions on the corresponding RST problem are needed to prove
the existence of a team-optimal solution. In the next subsection, we state the assump-
tions that we make on the dynamic team problem in order to establish existence.

5.1. Assumptions on dynamic team. In order to show the existence of opti-
mal strategies in dynamic teams, we assume the following structure.

Assumption 5.2.

1. The dynamic team problem satisfies Assumptions 2.1, 2.2, and 5.1.
2. The agents in the team do not share their observations with anyone. Any

agent who acts more than once does not recall his/her past observation(s).
3. The cost function c of the dynamic team problem is in the structural form

c(ω0,y
1:N
1:T ,u1:N

1:T ) =

T∑
t=1

N∑
i=1

cit(u
i
t, ω0,u

1:N
1:t−1,y

1:N
1:t−1,y

i
t) + κ(ω0,y

1:N
1:T ,u1:N

1:T ),
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where cit is a nonnegative and continuous function in the class IC(Ω0×U1:N
1:t−1×

Y1:N
1:t−1×Yi

t ,U i
t ) for all i ∈ [N ] and t ∈ [T ], and κ is a nonnegative continuous

function of its arguments.
4. For all i ∈ [N ] and t ∈ [T ], the continuous function ϕi

t : Yi
t × Ω0 × U1:N

1:t−1 →
R

+, as defined in Assumption 5.1, is strictly positive at all points in its do-
main.

Remark 5.1. The functional form of cost function (5.3) in Assumption 5.2 is
common in many LQG teams with no observation sharing information structures.
The reader is referred to section 7 for a few examples.

In the rest of this section, we consider dynamic teams satisfying Assumption 5.2.
First, recall the following features of the corresponding RST:

1. If the behavioral strategy of agent i at time t is πi
t, then the joint measure on

U i
t × Yi

t in the corresponding RST problem is πi
t(du

i
t|yi

t)ν
i
t(dy

i
t).

2. Recall from Assumption 2.2 that there exists a set of behavioral strategies
π̃1:N
1:T that achieves a finite cost J(π̃1:N

1:T ) in the dynamic team. Since RST and
dynamic team problems are equivalent problems (see Theorem 5.3), RST also
achieves the same cost with the behavioral strategies π̃1:N

1:T .
Let {P i

t ⊂ Ri
t}i∈[N ],t∈[T ] be the set of behavioral strategies of the agents such that

there exists π1:N
1:T satisfying πi

t ∈ P i
t and J(π1:N

1:T ) ≤ J(π̃1:N
1:T ). Define λi

t(du
i
t, dy

i
t) :=

πi
t(du

i
t|yi

t)ν
i
t(dy

i
t) for π

i
t ∈ P i

t , and let Mi
t denote the set of all such λi

t.
If the team-optimal behavioral strategies exist, then the optimal behavioral strat-

egy of agent (i, t) in the RST problem must lie in the set Mi
t. In order to establish

the existence of optimal strategies in the dynamic team, we show that Mi
t is a tight

set of measures by using an approach similar to that in Lemma 4.4 and by using some
auxiliary results proved in the next subsection.

5.2. Auxiliary results. Our first auxiliary result is as follows.
Lemma 5.4.

1. For any i ∈ [N ] and t ∈ [T ] and any ω0 ∈ Ω0 and u1:N
1:t−1 ∈ U1:N

1:t−1, we have∫
Yi

t×Ui
t

ϕi
t(y

i
t;ω0,u

1:N
1:t−1)λ

i
t(du

i
t, dy

i
t) = 1.

2. For any i ∈ [N ] and t ∈ [T ] and λi
t ∈ ℘(Yi

t × U i
t ),∫

Ω0×Y1:N
1:T ×U1:N

1:T

cit(u
i
t, ω0,u

1:N
1:t−1,y

1:N
1:t−1,y

i
t)ϕ(ω0,y

1:N
1:T ,u1:N

1:T ) dλ1:N
1:T P {dω0}

=

∫
Ω0×Y1:N

1:t−1×U1:N
1:t−1×Yi

t×Ui
t

c̄it(u
i
t, ω0,u

1:N
1:t−1,y

1:N
1:t−1,y

i
t) dλ

1:N
1:t−1 dλi

t P {dω0} ,

where c̄it(u
i
t, ω0,u

1:N
1:t−1,y

1:N
1:t−1,y

i
t) = cit(u

i
t, ω0,u

1:N
1:t−1,y

1:N
1:t−1,y

i
t)

×ϕi
t(y

i
t;ω0,u

1:N
1:t−1)×

t−1∏
s=1

N∏
j=1

ϕj
s(y

j
s;ω0,u

1:N
1:s−1).(5.3)

Proof. The first statement holds for all i ∈ [N ] and t ∈ [T ] by the definition of ϕi
t in

Assumption 5.1. The second statement is a consequence of the first statement.
Recall that we introduced a class of functions IC(·, ·) in Definition 4.2. In the next

lemma, we show that if we multiply a function in this class with a lower-semicontinuous
function that does not vanish in its domain, then the resulting function also belongs
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to the same class. We use this result to show that the cost in (5.3) belongs to the
class IC(Ω0 × U1:N

1:t−1 × Y1:N
1:t−1 × Yi

t ,U i
t ).

Lemma 5.5. Let φ1 : A×B → R be a measurable function and let φ2 : A → R
+ be

a lower-semicontinuous function that is strictly positive everywhere in its domain. If
φ1 is in class IC(A,B), then the product function φ := φ1φ2 is also in class IC(A,B).

Proof. Fix m > 0 and a compact set K ⊂ A. Define M := m
mina∈K φ2(a)

. Then, by

the property of class IC(A,B) functions, there exists a compact set L ⊂ B, depending
on K and M , such that infK×L� φ1(a,b) ≥ M . Now, due to the property of infimum,
we get infK×L� φ(a,b) ≥ infK×L� φ1(a,b)minK φ2(a) = m, which completes the
proof of the statement.

As a result of the lemma above, we have the following fact.

Lemma 5.6. The function c̄it, as defined in (5.3), is a nonnegative and continuous
function in the class IC(Ω0 × U1:N

1:t−1 × Y1:N
1:t−1 × Yi

t ,U i
t ).

Proof. By Assumption 5.2, cit(u
i
t, ω0,u

1:N
1:t−1,y

1:N
1:t−1,y

i
t) is in the class IC(Ω0 ×

U1:N
1:t−1 × Y1:N

1:t−1 × Yi
t ,U i

t ). Define the functions φ1 and φ2 as

φ1(u
i
t, ω0,u

1:N
1:t−1,y

1:N
1:t−1,y

i
t) := cit(u

i
t, ω0,u

1:N
1:t−1,y

1:N
1:t−1,y

i
t)

φ2(ω0,u
1:N
1:t−1,y

1:N
1:t−1,y

i
t) := ϕi

t(y
i
t;ω0,u

1:N
1:t−1)×

t−1∏
s=1

N∏
j=1

ϕj
s(y

j
s;ω0,u

1:N
1:s−1),

and note that φ2 is a continuous and strictly positive function in its domain (see
part 4 of Assumption 5.2). Lemma 5.5 implies that the function c̄it is nonnegative and
continuous in the class IC(Ω0 × U1:N

1:t−1 × Y1:N
1:t−1 × Yi

t ,U i
t ).

We now have all the auxiliary results needed for showing existence. In the next
subsection, we prove that any dynamic team as described above admits a team-optimal
solution in deterministic strategies of the agents.

5.3. Existence of optimal strategies. Our first result here is as follows.

Lemma 5.7. The set of measures Mi
t is tight for all i ∈ [N ] and t ∈ [T ].

Proof. See Appendix H.

The lemma above implies that the search for a team-optimal solution in the RST
problem can be restricted to the weak* precompact set M1:N

1:T . We now turn our
attention to showing the existence of optimal strategies in the dynamic team.

Theorem 5.8. If a dynamic team problem satisfies Assumption 5.2, then it
admits a team-optimal solution in deterministic strategies.

Proof. Consider a sequence of behavioral strategies of the agents {(π1:N
1:T )n}n∈N ⊂

M1:N
1:T that satisfies limn→∞ J((π1:N

1:T )n) = inf J(π1:N
1:T ), where J is the expected cost

functional of the dynamic team problem. Let {(λi
t)n}n∈N ⊂ Mi

t be defined as

(λi
t)n(du

i
t, dy

i
t) = (πi

t)n(du
i
t|yi

t)ν
i
t(dy

i
t), n ∈ N.

Since {(λi
t)n}n∈N is a tight sequence of measures, we know that there exists a weak*

convergent subsequence of measures. For every i ∈ [N ] and t ∈ [T ], let {(λi
t)nk

}k∈N

be the weak* convergent subsequence of measures converging to (λi
t)0. Define the

behavioral strategy (πi
t)0(du

i
t|yi

t) = (λi
t)0(du

i
t|yi

t) for all i ∈ [N ] and t ∈ [T ]. Since cϕ
is a continuous function, from the result of Theorem 4.1, we conclude that

lim inf
k→∞

∫
c ϕ d(λ1:N

1:T )nk
P {dω0} ≥

∫
c ϕ d(λ1:N

1:T )0P {dω0} ,
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1700 A. GUPTA, S. YÜKSEL, T. BAŞAR, AND C. LANGBORT

or, equivalently, lim infk→∞ J((π1:N
1:T )nk

) ≥ J((π1:N
1:T )0). Thus, optimal behavioral

strategies exist in the RST, and the optimal behavioral strategy of agent (i, t) is the
conditional measures (πi

t)0(du
i|yi). Since RST is equivalent to the dynamic team,

this is also the optimal behavioral strategy of agent i at time t in the dynamic team.
Moreover, by Blackwell’s irrelevant information theorem [37, p. 457], there exists

a set of deterministic strategies which achieves the same cost as that achieved using
optimal behavioral strategies of the agents, which establishes the result.

We have the following corollary to the theorem above for dynamic teams in which
the agents have compact action spaces. We do not require parts 3 and 4 of Assumption
5.2 to show the existence of optimal strategies for this problem.

Corollary 5.9. Let us consider a dynamic team problem in which U i
t is compact

for all i ∈ [N ] and t ∈ [T ]. If parts 1 and 2 in Assumption 5.2 hold, then the dynamic
team problem admits an optimal solution in deterministic strategies of the agents.

Proof. As a result of Assumption 5.1, the dynamic team problem is equivalent
to the RST defined in Definition 5.2. Note that due to the assumption, the cost
function of the RST is continuous. Applying the result of Corollary 4.7 to the RST,
we conclude that it admits a team-optimal solution in deterministic strategies. The
optimal strategy of agent (i, t) in the RST is also the optimal strategy of agent i at
time t in the dynamic team due to the equivalence of the two team problems.

We now revisit Witsenhausen’s counterexample.

Revisiting Witsenhausen’s counterexample. Recall that we were unable to
prove the existence of a solution to the corresponding RST problem of Witsenhausen’s
counterexample using the results we obtained for static team problems in sections 3
and 4. We now outline the essential steps of the proof above adapted to the RST of
Witsenhausen’s counterexample.

Let ν1 ∈ ℘(Y1) and ν2 ∈ ℘(Y2) be probability measures that admit mean-zero
unit variance Gaussian density functions. First, note that if both agents apply zero
control, then the expected cost is E

[
Y 2
1

]
= 1, which is finite. Let R1 and R2 be

the behavioral strategy spaces of the first and the second controller, respectively. Let
P1 ⊂ R1 and P2 ⊂ R2 be the sets of behavioral strategies of the controllers such that
there exist π1 ∈ P1 and π2 ∈ P2 which yield J(π1, π2) ≤ 1. Now, the following four
steps lead to the existence of a team-optimal solution to this problem with nonclassical
information.

1. Recall the expression of the cost function of the corresponding RST from
(5.2). For any π2 ∈ R2, we have∫

Y2×U2

cS π2(du2|y2)ν2(dy2)

≥
∫
Y2×U2

(u1 − y1)
2 exp

(−u2
1 + 2y2u1

2

)
1√
2π

exp

(
−y22

2

)
π2(du2|y2)dy2,

= (u1 − y1)
2

∫
Y2×U2

1√
2π

exp

(−(y2 − u1)
2

2

)
π2(du2|y2)dy2

= (u1 − y1)
2,

where the first inequality follows from dropping the quadratic term (u2 −
u1)

2 from the expression of cS , the second equality is immediate, and the

third equality follows from the fact that π2(du2|y2) 1√
2π

exp(−(y2−u1)
2

2 )dy2 is

a probability measure over U2×Y2. This is also a consequence of Lemma 5.4.
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2. The function (u1 − y1)
2 is in class IC(Y1,U1) and (u2 − u1)

2 exp(
−u2

1+2y2u1

2 )
is in class IC(U1 × Y1 × Y2,U2) by Lemma 5.6.

3. Recall that there exist π1 ∈ P1 and π2 ∈ P2 such that J(π1, π2) ≤ 1. Thus,
the set of measures Mi, defined by

Mi :=
{
λi ∈ ℘(Yi × Ui) : λi(dui, dyi) = πi(dui|yi)νi(dyi), πi ∈ Pi

}
,

is tight for i ∈ {1, 2} by Lemma 5.7. The proof essentially uses points 1 and
2 above, coupled with Lemma 4.3 in a sequential fashion. Using point 1, we
conclude that ∫

U1×Y1

(u1 − y1)
2λ1(du1, dy1) ≤ E

[
Y 2
1

]
= 1

for all λ1 ∈ M1 (or equivalently, π1 ∈ P1). Then, using point 2 and Lemma
4.3, we conclude that the set of measures M1 is tight. Now, notice that

∫
Y1:2×U1:2

(u2 − u1)
2 exp

(−u2
1 + 2y2u1

2

)
dλ1 dλ2 ≤ E

[
Y 2
1

]
= 1.

SinceM1 is tight and (u2−u1)
2 exp(

−u2
1+2y2u1

2 ) is in class IC(U1×Y1×Y2,U2)
(see point 2 above), we conclude that M2 is tight by Lemma 4.3.

4. Finally, using the same arguments as those in the proof of Theorem 4.5, one
can conclude that there exist optimal strategies of the agents.

Notice that the above proof of existence of a solution to Witsenhausen’s counterex-
ample is completely different from the proofs given in [33] and [36].

This concludes the discussion in this section. In the next section, we show the
existence of optimal solution in LQG team problems with “no observation sharing”
information structures using the results of this section.

6. LQG teams. We now consider a class of dynamic teams in which the state,
action, and observation spaces are Euclidean spaces, the state transition and observa-
tion functions are linear, and the primitive random variables are mutually independent
Gaussian random variables. In particular, we assume that the observation equation
for agent (i, t) is given by

yi
t = hi

t(ω0,u
1:N
1:t−1) + ωi

t,(6.1)

where hi
t is a linear function of its arguments and ωi

t is a zero-mean Gaussian random
vector with positive-definite covariance.

We assume that the cost function of the dynamic team problem is quadratic in
the actions of the agents and is of the following form:

(6.2)

c(ω0,y
1:N
1:T ,u1:N

1:T ) =

T∑
t=1

N∑
i=1

‖ui
t − pit(ω0,u

1:N
1:t−1,y

1:N
1:t−1,y

i
t)‖2Ri

t
+ κ(ω0,y

1:N
1:T ,u1:N

1:T ),

where {Ri
t}i∈[N ],t∈[T ] is a sequence of positive-definite matrices of appropriate dimen-

sions, {pit : Ω0 × U1:N
1:t−1 × Y1:N

1:t−1 × Yi
t → U i

t}i∈[N ],t∈[T ] is a sequence of continuous
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functions,4 and κ is a nonnegative continuous function. We henceforth refer to teams
satisfying the above assumptions and having a cost function of the form (6.3) as LQG
teams with no observation sharing, and we address existence of team-optimal solutions
below.

Theorem 6.1. Consider a dynamic LQG team as formulated above, where the
agents do not share their observations and the observation of each agent as given by
(6.1) is corrupted by additive Gaussian noise. If the cost is given by (6.3), then the
dynamic LQG team admits a team-optimal solution in deterministic strategies.

Proof. In order to establish the result, we need to verify that all parts of Assump-
tion 5.2 are satisfied by the LQG team problem.

The linearity of state transition and observation equations implies that Assump-
tion 2.1 is satisfied and that {hi

t}i∈[N ],t∈[T ], as defined in (6.1), are continuous func-
tions. If we apply zero control action, then the expected cost is finite because
the cost is quadratic in the primitive random variables and their distributions are
Gaussian. Thus, Assumption 2.2 is satisfied. Since the observation noises are addi-
tive and Gaussian, Assumption 5.1 is satisfied. Furthermore, due to the Gaussian
nature of observation noise, we also conclude that ϕi

t is strictly positive at all points
in its domain for all i ∈ [N ] and t ∈ [T ] (see the proof of Lemma 5.1).

The cost function c is continuous. Since pit is continuous andRi
t is positive definite,

the function ‖ui
t−pit(ω0,u

1:N
1:t−1,y

1:N
1:t−1,y

i
t)‖2Ri

t
lies in the class IC(Ω0×U1:N

1:t−1×Y1:N
1:t−1×

Yi
t , U i

t ) for all i ∈ [N ] and t ∈ [T ]. The statement is then simply a consequence of
Theorem 5.8.

We have thus identified conditions under which an LQG team problem admits an
optimal solution. In the next section, we consider a number of well-studied LQG team
problems from the literature and establish the existence of team-optimal strategies.
Existence of optimal strategies in some of the team problems formulated in the next
section is established here for the first time.

7. Examples. In this section, we present some examples of LQG teams with
the “no observation sharing” information structure. In all the examples, Theorem 6.1
leads to the conclusion that team-optimal strategies exist. Except for scalar Witsen-
hausen’s counterexample and the Gaussian test channel, existence of optimal strate-
gies was not known for any of the LQG teams considered in this section.

7.1. One-agent finite horizon (static output feedback) LQG problem.
Consider a linear system in which all primitive random variables are Gaussian and
mutually independent of each other. The agent has a stagewise additive quadratic
cost function. The information available to the controller at time t is Yt, where
Yt = HtXt +Wt for some matrix Ht of appropriate dimensions, that is, we have a
static output feedback problem. The total cost to the controller is

c(x1:T+1,u1:T ) =

T∑
t=1

(
xT
t+1Qxt+1 + uT

tRut

)
, Q ≥ 0, R > 0.

Since this is an LQG problem with no sharing of observation, it satisfies both hy-
potheses of Theorem 6.1. Using Theorem 6.1, we conclude that an optimal static
output feedback controller exists. This solution, however, need not be linear [3].

4In most cases of interest, {pit}i∈[N],t∈[T ] are linear maps, which is the reason why we have called

this class of teams LQG, realizing that, in general, with pit’s nonlinear, c is not going to be quadratic
in the ui

t’s.
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7.2. The Gaussian test channel. The Gaussian test channel consists of an
encoder and a decoder. The source observes a zero-mean Gaussian random variable
X1 with variance σ2

1 , which is encoded by the encoder (agent 1), and the encoded
symbol U1 is sent across a noisy channel to a decoder. The additive noise W2 on the
channel is assumed to be a zero mean Gaussian random variable with variance σ2

w.
The decoder (agent 2) observes the corrupted message Y2 and estimates the realization
of the random variable X1 available at the source. The decoder’s estimate is denoted
by U2.

The information structure of the encoder is I11 = {X1} and of the decoder is
I22 = {Y2}. Thus, this is an example of a team with asymmetric information. Note
that the observation of agent 2 satisfies the observation equation (6.1). Lemma 5.1
implies that this dynamic team problem admits a static reduction. The cost function
of the team of encoder and decoder is5 c(x1, u1, u2) = λu2

1 + (u2 − x1)
2, where λ > 0.

One can check that the cost function of the team is of the form in (6.3). It
is well known that the optimal encoding and decoding strategies are linear in their
arguments, despite the fact that the information structure is nonnested. The only
known proof of this result (and therefore of the existence of a solution to this team
problem) is an indirect one that uses information theoretic concepts; see, for example,
[5]. We now have here another proof of the existence of team-optimal strategies for
the Gaussian test channel as a consequence of Theorem 6.1. The existence result also
holds for the more general two-agent LQG problem introduced in [5], which subsumes
the Gaussian test channel and Witsenhausen’s counterexample as special cases. For
such extensions, see also [4].

Fig. 1. A figure depicting the unified setup of the Gaussian test channel and Witsenhausen’s
counterexample from [5].

7.3. Multidimensional Gaussian test channel and Witsenhausen’s coun-
terexample. Consider the setup depicted in Figure 1, with a difference that all
random vectors take values in finite dimensional Euclidean spaces of appropriate di-
mensions. Furthermore, we assume thatW2 has a strictly positive-definite covariance,
and the entries in W2 can be correlated. Consider the cost function of the team as

c(x1,u1,u2) = λ‖u1‖2 + ‖u2 −Hx1‖2, λ > 0,

where H is a matrix of appropriate dimensions.

It has been shown that under some specific assumptions on the covariance ma-
trix of the noise variable W2, optimal encoding and decoding schemes exist in the
multidimensional Gaussian test channel, again using information theoretic tools; see
[37, section 11.2.3] and references therein for a review of such results. In particular,
if certain “matching conditions” hold, that is, if the rate distortion achieving tran-
sition kernel is matched with the channel capacity achieving source distribution (see

5For the Gaussian test channel, this corresponds to the “soft-constrained” version; the standard
version has a second moment (hard) constraint on u1. One can show, however, that existence of an
optimal solution to one implies existence to the other and vice versa.
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[15] and Remark 11.2.1 in [37] in the context of Gaussian systems), then optimal
encoding-decoding strategies will exist.

As in the scalar case, the multidimensional Gaussian test channel admits static
reduction, and the cost function has the same form as in (6.3). Theorem 6.1 im-
plies that optimal encoding-decoding strategies exist even if X1, U1, and U2 take
values in different Euclidean spaces. Thus, a large class of multidimensional Gaussian
test channel problems admits optimal solutions. Similar arguments prove that team-
optimal solution exists for vector Witsenhausen’s counterexample, which includes the
one studied in [16].

7.4. A Gaussian relay channel. Consider now the Gaussian relay channel,
depicted in Figure 2, that was studied in [24] and [39]. It comprises an encoder, a
certain number of relays, and a decoder. This problem was formulated in [24] where
the authors have shown that nonlinear strategies outperform linear strategies when
there are two or more relays. Zaidi et al. studied this problem in [39], and they
showed that, in fact, even with one relay, quantization-based strategies outperform
linear strategies of the agents. Thus, linear strategies of encoder and decoder are
optimal only in the case of the Gaussian test channel discussed earlier, but not in the
case of the Gaussian relay channel.

Fig. 2. A figure depicting the arrangement of encoder, relays, and decoder in the Gaussian
relay channel. Agent 1 is the encoder, and agent N is the decoder, while the agents from 2 to N − 1
are relays in the figure.

For a concrete formulation of the problem, assume that there are N − 2 relays
and all state, action, noise, and observation spaces are the real line. The encoder
observes a noise corrupted version of a zero-mean Gaussian random variable, X1,
with variance σ2

1 . With the observation noise of the encoder denoted by W1, the
observation of the encoder is Y1 := X1 +W1. The encoder’s information is I1 = {Y1}
and the action of the encoder is U1. For i ∈ {2, . . . , N − 1}, the ith relay receives a
noise corrupted version of the transmitted signal, denoted by Yi := Ui−1 + Wi, and
Ii = {Yi}. The ith relay outputs Ui. Finally, the decoder receives YN and outputs UN ,
which is an estimate of the realization of the random variable X1. The noise variables
Wi, i ∈ [N ], are assumed to be pairwise independent, mean-zero Gaussian random
variables with some specified variances, and independent of the random variable X1.
Since the observations of the agents 2, . . . , N−1 satisfy the observation equation (6.1),
we conclude that the dynamic team problem admits a static reduction using Lemma
5.1. The cost function of the team is c(x1, u1:N) = (uN − x1)

2 +
∑N−1

i=1 λiu
2
i , where

λi > 0 for all i ∈ [N ]. It is known for this problem that for any number of relays,
nonlinear strategies outperform linear ones. However, it was not known until now
whether there existed optimal strategies for the agents.

Since this is an LQG team with no observation sharing information structure
and the cost function of the team is of the form in (6.3), we conclude that optimal
encoding, decoding, and relay strategies exist by the result of Theorem 6.1.

8. Conclusion. In this paper, we have identified a set of sufficient conditions on
a stochastic team problem with “no observation sharing” information structure that
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guarantee existence of an optimal solution. In particular, in a static team problem,
if the cost function is continuous and has a certain structure, and the observation
channels satisfy certain technical conditions, then there exists an optimal solution.

We used Witsenhausen’s static reduction technique to obtain a similar result for
a class of dynamic teams with no sharing of observations among the agents. Further-
more, we proved that LQG teams with no sharing of observations admit team-optimal
solutions under some technical conditions on the cost functions. As a consequence
of one of the main results of the paper, we also showed that several dynamic LQG
team problems from the literature admit team-optimal solutions. The approach de-
veloped in the paper and the specific results obtained settle for good a number of open
questions on the existence of optimal strategies in dynamic teams. Furthermore, the
results of this paper can be applied to optimal real-time coding/decoding problems to
prove the existence of optimal strategies, where it was not been known earlier whether
optimal policies exist, and the few special cases where such results exist have relied
on strict information theoretic source-channel matching conditions.

As for future work, one goal is to obtain approximately optimal policies and
numerical techniques to make such optimization problems tractable. Another goal is
to obtain explicit analytical solutions for some classes of dynamic teams. Obtaining
conditions under which a team-optimal solution exists in a team with “observation
sharing” information structure is also an important area for further research. Finally,
informational aspects of noncooperative games is a further relevant area of study.

Appendix A. Proof of Lemma 3.2. Since g is uniformly continuous, we can
assume that for every ε > 0, there exists a δ > 0 such that for all a0 ∈ A, c0 ∈ C
and a ∈ A, c ∈ C satisfying dA(a, a0) < δ, dC(c, c0) < δ, we have supb∈B |g(a,b, c)−
g(a0,b, c0)| < 2ε. Let M := supa∈A

∫
h(η,ν)dν < ∞. Consider any probability

measure μ ∈ ℘(Y × B). Then, we get

|fμ(a, c) − fμ(a0, c0)|
=

∣∣∣∣
∫
Y×B

g(a,b, c)μ(db|y)η(a,y)ν(dy) −
∫
Y×B

g(a0,b, c0)μ(db|y)η(a0 ,y)ν(dy)
∣∣∣∣ ,

≤
∫
Y×B

∣∣∣g(a,b, c)η(a,y) − g(a0,b, c0)η(a0,y)
∣∣∣μ(db|y)ν(dy),

≤
∫
Y×B

(
g(a0,b, c0)

∣∣∣η(a,y) − η(a0,y)
∣∣∣+ ∣∣∣g(a,b, c)− g(a0,b, c0)

∣∣∣η(a,y))
μ(db|y)ν(dy),

≤ ‖g‖∞Mε+

∫
Y×B

∣∣∣g(a,b, c) − g(a0,b, c0)
∣∣∣μ(db|y)η(a0,y)ν(dy),

< (‖g‖∞M + 2)ε.

Also notice that {fμ(·, ·)}μ∈℘(Y×B) is bounded by ‖g‖∞, which completes the
proof.

Appendix B. Proof of Lemma 3.4. We mimic the steps of the proof of Lemma
3.2 to prove this statement. First, notice that {fμ1:N (·, ·)}μi∈℘(Yi×Bi) is uniformly
bounded by ‖g‖∞. Now, we prove that this family of functions is equicontinuous.

Let us define η, M , and ν as

η(a,y1:N ) :=

N∏
i=1

ηi(a,yi), M = max
i∈[N ]

sup
a∈A

∫
Yi

hidνi, ν(dy1:N ) =

N∏
i=1

νi(dyi).
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First, note that for any a ∈ A and i ∈ [N ],∫
Yi

ηi(a,yi)νi(dyi) =

∫
Yi

P
{
dyi|a} = 1.(B.1)

Let ε > 0. Let δi > 0 be such that for any dA(a, a0) < δi, we have |ηi(a,yi) −
ηi(a0,y

i)| < ε hi(a0,y
i). Pick δ = mini∈[N ] δ

i. Fix a0 ∈ A. Now, for a ∈ A such that
dA(a, a0) < δ, note the following:∣∣η(a,y1:N )− η(a0,y

1:N )
∣∣

≤
N∑
j=1

⎛
⎝j−1∏

i=1

ηi(a0,y
i)
∣∣∣ (ηj(a,yj)− ηj(a0,y

j)
) ∣∣∣ N∏

i=j+1

ηi(a,yi)

⎞
⎠

≤ ε

⎛
⎝ N∑

j=1

⎛
⎝j−1∏

i=1

ηi(a0,y
i)

N∏
i=j+1

ηi(a,yi)

⎞
⎠ hj(a0,y

j)

⎞
⎠ ,

where terms with
∏0

i=1 and
∏N

i=N+1 are replaced by 1. Use the expression to get∣∣∣∣∣
∫
B1:N×Y1:N

g(a,b1:N , c)

(
N∏
i=1

μi(dbi|yi)

)(
η(a,y1:N )− η(a0,y

1:N )
)
ν(dy1:N )

∣∣∣∣∣
< ε‖g‖∞

N∑
j=1

∫
Y1:N

⎛
⎝j−1∏

i=1

(ηi(a0,y
i)dνi)

N∏
i=j+1

(ηi(a,yi)dνi)

⎞
⎠ hj(a0,y

j)dνj

≤ ε‖g‖∞NM,(B.2)

where we also used (B.1). Since g is uniformly continuous, for every ε > 0 there exists
a δ > 0 such that for all a0 ∈ A, c0 ∈ C, and a ∈ A, c ∈ C satisfying dA(a, a0) < δ,
dC(c, c0) < δ, we have supb1:N∈B1:N |g(a,b1:N , c) − g(a0,b

1:N , c0)| < 2ε. Using this
inequality and (B.2), one can show that

|fμ1:N (a, c) − fμ1:N (a0, c0)| < (‖g‖∞NM + 2)ε,

which establishes the result.

Appendix C. Proof of Lemma 3.5. In order to prove the lemma, we first
need the following result.

Lemma C.1. Let A be a Polish space. Let {hn : A → R}n∈N be a convergent
sequence of continuous and uniformly bounded functions, and let h0 : A → R be
a continuous function such that for any compact subset A ⊂ A, supa∈A |hn(a) −
h0(a)| → 0 as n → ∞. Let {μn}n∈N∪{0} ⊂ ℘(A) be a weak* convergent sequence of

measures such that μn
w∗
⇀ μ0 as n → ∞. Then,

lim
n→∞

∫
A
hndμn =

∫
A
h0dμ0 and lim

n→∞

∣∣∣∣
∫
A
hndμn −

∫
A
hndμ0

∣∣∣∣ = 0.

Proof. Since {μn}n∈N is a weak* convergent sequence, it is tight, which further
implies that for any ε > 0, there exists a compact set Aε ⊂ A such that μn(A

c
ε) < ε

for every n ∈ N∪{0}. Fix ε > 0. Since hn converges uniformly to h0 over the compact
set Aε, there exists Nε,1 ∈ N such that

|hn(a) − h0(a)| < ε for all a ∈ Aε and n ≥ Nε,1.
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Let M be the uniform bound on the sequence of functions {hn}n∈N. Then, ‖h0‖∞ ≤
M . Thus, for any n ≥ Nε,1, we get∣∣∣∣
∫
A
hndμn −

∫
A
h0dμn

∣∣∣∣ ≤
∫
Aε

|hn(a)− h0(a)|dμn(a) +

∫
A�

ε

|hn(a) − h0(a)|dμn(a)

< (1 + 2M)ε.(C.1)

By the definition of weak* convergence of measures, there exists Nε,2 ∈ N such that∣∣∣∣
∫
A
h0dμn −

∫
A
h0dμ0

∣∣∣∣ < ε for all n ≥ Nε,2.

Take Nε = max{Nε,1, Nε,2}. Now, for n > Nε, we have∣∣∣∣
∫
A
hndμn −

∫
A
h0dμ0

∣∣∣∣ ≤
∣∣∣∣
∫
A
hndμn −

∫
A
h0dμn

∣∣∣∣+
∣∣∣∣
∫
A
h0dμn −

∫
A
h0dμ0

∣∣∣∣
< 2(1 +M)ε.(C.2)

Now, consider the following inequalities for n ≥ Nε:∣∣∣∣
∫
A
hndμn −

∫
A
hndμ0

∣∣∣∣ ≤
∣∣∣∣
∫
A
hndμn −

∫
A
h0dμ0

∣∣∣∣+
∣∣∣∣
∫
A
h0dμ0 −

∫
A
hndμ0

∣∣∣∣
< 2(1 +M)ε+ (1 + 2M)ε = (3 + 4M)ε,

where the first inequality is just the triangle inequality on the real line, whereas the
second inequality follows from (C.1) and (C.2).

Now, we turn our attention to the proof of Lemma 3.5. By Lemma 3.4, we know
that {fn} is a sequence of uniformly equicontinuous and uniformly bounded functions.
In this step, we show that there exists a subsequence {fnk

}k∈N and f0 ∈ Cb(A × C)
such that fnk

converges to f0 uniformly over any compact set in A× C.
Since A × C is σ-compact, there exists a countable collection of compact sets

Kn ⊂ A × C such that A × C = ∪n∈NKn. Let Lm = ∪m
k=1Kk. By the Arzela–Ascoli

theorem [1], for every m ∈ N there exists a convergent subsequence {fnm
k
}k∈N and a

continuous function fm
0 : Lm → R such that sup(a,c)∈Lm

|fnm
k
(a, c)−fm

0 (a, c)| → 0 as

k → ∞. We can take {nm+1
k }k∈N to be a subsequence of {nm

k }k∈N for every m ∈ N.
Now, since Lm ⊂ Lm+1, we conclude that fm

0 agrees with fm+1
0 on set Lm for every

m ∈ N. Using Cantor’s diagonalization argument, we get a subsequence {fnk
}k∈N

and a continuous function f0 such that fnk
→ f0, where the convergence is uniform

over any compact set in A × C. Furthermore, since fn is uniformly bounded, f0 is
also bounded. We now use Lemma C.1 to establish the statement of Lemma 3.5.

Appendix D. Proof of Lemma 3.6. First, note that since pullback of a
measure is a continuous operation [2], PrB×C

# μn → PrB×C
# μ0. Pick any g ∈ Ub(A×B×

C) and note that (b, c) �→ ∫
A g(a,b, c)ρ(a,b)ν(da) is a bounded uniformly continuous

function from Corollary 3.3. This gives∫
gdμ0 = lim

n→∞

∫
gdμn = lim

n→∞

∫
B×C

(∫
A
g(a,b, c)ρ(a,b)ν(da)

)
PrB×C

# μn(db, dc)

=

∫
B×C

(∫
A
g(a,b, c)ρ(a,b)ν(da)

)
PrB×C

# μ0(db, dc),

where we used disintegration of measures. This completes the proof of the lemma.
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Appendix E. Proof of Theorem 3.7. Let g ∈ Ub(X × Y1:N × U1:N ), and
define a functional J̃ as

J̃(λ1:N ) :=

∫
g(x,y1:N ,u1:N)

(
N∏
i=1

λi(dui|yi)

)
P
{
dx, dy1:N

}
,

where λi ∈ ℘(U i×Yi×X ). We proceed with the proof in two steps. In the first step, we
show that there exists a subsequence {nk}k∈N such that limk→∞ J̃(λ1:N

nk
) = J̃(λ1:N

0 ).

Then, we show that limn→∞ J̃(λ1:N
n ) = J̃(λ1:N

0 ) using the first step.
Step 1. Consider the expressions

∣∣∣∣
∫

g(x,y1:N ,u1:N )

(
N∏
i=1

λi
n(du

i|yi)

)
P
{
dx, dy1:N

}

−
∫

g(x,y1:N ,u1:N )

(
N∏
i=1

λi
0(du

i|yi)

)
P
{
dx, dy1:N

} ∣∣∣∣
=

∣∣∣∣
N∑
j=1

∫
g(x,y1:N ,u1:N )

(
j−1∏
i=1

λi
0(du

i|yi)

)⎛
⎝ N∏

i=j+1

λi
n(du

i|yi)

⎞
⎠

(
λj
n(du

j |yj)− λj
0(du

j |yj)
)
P
{
dx, dy1:N

} ∣∣∣∣
≤

N∑
j=1

∣∣∣∣
∫

g(x,y1:N ,u1:N )

(
j−1∏
i=1

λi
0(du

i|yi)ηi(x,yi)νYi(dyi)

)
,

(E.1)⎛
⎝ N∏

i=j+1

λi
n(du

i|yi)ηi(x,yi)νYi(dyi)

⎞
⎠(λj

n(du
j , dyj , dx)− λj

0(du
j , dyj , dx)

)∣∣∣∣,
where the integration is taken over the space X ×Y1:N × U1:N . Replace the product
terms

∏0
i=1 and

∏N
i=N+1 by 1 in those expressions. In the statements of Lemma 3.2

and its corollary and Lemma 3.4, take B = U i × Yi for an appropriate index i, and
replace A by X and C by appropriate product spaces.

Applying Corollary 3.3, we conclude that the function

∫
U1:j−1×Y1:j−1

g(x,y1:N ,u1:N )

(
j−1∏
i=1

λi
0(du

i|yi)ηi(x,yi)νYi(dyi)

)

is uniformly continuous in x, yj:N , and uj:N . Next, we use Lemma 3.4 to conclude
that the sequence of functions{∫

U−j×Y−j

g(x,y1:N ,u1:N)

j−1∏
i=1

λi
0(du

i|yi)ηi(x,yi)νYi(dyi)

⎛
⎝ N∏

i=j+1

λi
n(du

i|yi)ηi(x,yi)νYi(dyi)

⎞
⎠}

n∈N
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is uniformly equicontinuous and bounded on X × Yj × Uj for every j ∈ [N ]. Then,
there exists a subsequence {nl}l∈N by Lemma 3.5 for j = 1 such that as l → ∞,

∣∣∣∣
∫ (

g(x,y1:N ,u1:N )

(
N∏
i=2

λi
nl
(dui|yi)ηi(x,yi)νYi(dyi)

))

(
λ1
nl
(du1, dy1, dx)− λ1

0(du
1, dyi, dx)

) ∣∣∣∣→ 0.

Along the sequence {nl}l∈N, there exists a further subsequence {nlm}m∈N for
j = 2 such that the second term in the summation in (E.2) goes to zero as k → ∞.
Continue this process for j = 3, . . . , N to arrive at a subsequence {nk}k∈N such
that each component of the sum in (E.2) converges to 0 as k → ∞. Thus, we get
limk→∞ J̃(λ1:N

nk
) = J̃(λ1:N

0 ).

Step 2. We now claim that limn→∞ J̃(λ1:N
n ) = J̃(λ1:N

0 ), which we prove by con-
tradiction. Suppose that limn→∞ J̃(λ1:N

n ) does not exist or is not equal to J̃(λ1:N
0 ).

In this case, there exists an ε0 > 0 and a subsequence {nm}m∈N such that |J̃(λ1:N
nm

)−
J̃(λ1:N

0 )| > ε0 for all m ∈ N. From Step 1 of the proof, we know that there exists
a further subsequence {nmk

}k∈N such that limk→∞ J̃(λ1:N
nmk

) = J̃(λ1:N
0 ), which is a

contradiction. Thus, limn→∞ J̃(λ1:N
n ) = J̃(λ1:N

0 ).
We now arrive at the result of the theorem by [29, Theorem 9.1.5, p. 372].

Appendix F. Proof of Lemma 3.10. First, note that the information con-
straints of the limits λ1

0 and λ2
0 are satisfied due to Assumption 3.3 and Lemma 3.6.

To establish the result, we follow the same steps as in the proof of Theorem 3.7 in
Appendix E above with some minor modifications. Let g ∈ Ub(X × Y1:2 × U1:2).
Consider the following expressions:

∣∣∣∣
∫

g(x,y1:2,u1:2)

(
2∏

i=1

λi
n(du

i|yi)

)
P
{
dx, dy1:2

}

−
∫

g(x,y1:2,u1:2)

(
2∏

i=1

λi
0(du

i|yi)

)
P
{
dx, dy1:2

} ∣∣∣∣(F.1)

≤
∣∣∣∣
∫

g(x,y1:2,u1:2)λ2
n(du

2|y2)
(
λ1
n(du

1|y1)− λ1
0(du

1|y1)
)
P
{
dx, dy1:2

} ∣∣∣∣
+

∣∣∣∣
∫

g(x,y1:2,u1:2)λ1
0(du

1|y1)
(
λ2
n(du

2|y2)− λ2
0(du

2|y2)
)
P
{
dx, dy1:2

} ∣∣∣∣,
where the integration is taken over the space X ×Y1:2×U1:2. We can now mimic Step
2 of the proof of Theorem 3.7 in Appendix E to complete the proof of the lemma.

Appendix G. Proof of Lemma 4.3. First, we recall a general version of
Markov’s inequality.

Lemma G.1 (generalized Markov’s inequality). Let φ : A → R be a nonnegative
measurable function, and let A ⊂ A be a Borel measurable set such that infa∈A φ(a) >
0. Then, P {A} ≤ E [φ1A] /(infa∈A φ(a)).

Proof. Note that (infa∈A φ(a)) 1A(a) ≤ φ(a)1A(a) for all a ∈ A. Taking expec-
tations on both sides leads us to the result.

We want to show that the set of measures in M is tight. Toward this end, we
fix ε > 0 and show that there exist compact sets Kε ⊂ A and Lε ⊂ B such that
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PrA×B
# μ(Kε ×Lε) = μ(Kε ×Lε × C) > 1− 2ε for all μ ∈ M. This proves that the set

of measures M is tight.
Since the set of measures N is tight, there exists a compact set Kε ⊂ A such that

ζ(K�
ε ) < ε for all ζ ∈ N . Pick M ∈ R

+ sufficiently large such that M > k/ε. We
carry out the analysis for the two cases separately.

1. Assume that φ satisfies the first condition in Definition 4.2. Given M and Kε,
let Lε ⊂ B be the compact set such that inf(a,b,c)∈(Kε×L�

ε×C) φ(a,b, c) ≥ M .

Now note that μ(K�
ε × B × C) < ε for all Borel sets B ⊂ B. Let E =

(Kε × Lε)
� × C and note that E = (Kε × L�

ε × C) ⋃ (K�
ε × B × C).

Define E1 = Kε × L�
ε × C and E2 = (K�

ε × B × C). It is easy to verify that
E1

⋂
E2 = ∅. We use generalized Markov’s inequality (Lemma G.1) to get

μ(Kε × L�
ε × C) = μ(E1) ≤ E [φ1E1 ]

infx∈E1 φ(x)
≤ k

M
< ε

for all μ ∈ M, where 1E1 is the indicator function over the set E1. By the
additivity property of probability measures, we get μ(E) = μ(E1)+μ(E2) < 2ε.

2. Now suppose that φ satisfies the second assumption. For every a ∈ Kε, let
Oa ⊂ A be the open neighborhood of a ∈ Kε and La ⊂ B be the compact
set in B such that inf(a,b,c)∈(Oa×L�

a×C) φ(a,b, c) ≥ M . Notice that {Oa}a∈Kε

is an open cover for Kε. One can now use the definition of compactness and
arguments as in part 1 with some modifications to prove that part 1 holds.

Note that Kε×Lε is a compact set in A×B and its complement has small measure.
Thus, we conclude that the set of probability measures PrA×B

# M is tight.

If φ is lower semicontinuous, then μ �→ ∫
φ dμ is a lower semicontinuous functional

[31, Lemma 4.3]. Thus, we conclude that M is in fact weak* closed, and therefore M
is weak* compact.

Appendix H. Proof of Lemma 5.7. Assumption 2.2 and the structure of the
cost function of the team as defined in (5.3) imply that for any i ∈ [N ] and t ∈ [T ],
we have∫

Ω0×Y1:N
1:t−1×U1:N

1:t−1×Yi
t×Ui

t

c̄it(u
i
t, ω0,u

1:N
1:t−1,y

1:N
1:t−1,y

i
t) dλ

1:N
1:t−1 dλi

t P {dω0} ≤ J(π̃1:N
1:T )

for any choice of λ1:N
1:T ∈ N 1:N

1:T . Also recall from Lemma 5.6 that c̄it is in class IC(Ω0×
U1:N
1:t−1 × Y1:N

1:t−1 × Yi
t ,U i

t ). We now use the result of Lemma 4.3 and the principle of
mathematical induction to prove the result.

Step 1. Consider agent (1, 1). We know that c̄11 is a nonnegative continuous
function in class IC(Ω0 ×Y1

1 ,U1
1 ). Moreover, the measure on Ω0 ×Y1

1 is tight. Using
the result of Lemma 4.3, we get that N 1

1 is a tight set of measures.
Step 2. Using the same argument as in Step 1, we conclude that Mi

1 is a tight
set of measures for all i ∈ [N ].

Step 3. Let us assume that Mi
s is a tight set of measures for all i ∈ [N ] and

1 ≤ s ≤ t− 1. Consider any agent (i, t). We know that c̄it is a nonnegative continuous
function in class IC(Ω0 × U1:N

1:t−1 × Y1:N
1:t−1 × Yi

t ,U i
t ). Moreover, the set of all possible

measures on Ω0 × U1:N
1:t−1 × Y1:N

1:t−1 induced by N 1:N
1:t−1 is tight because Mi

s is tight for
all i ∈ [N ] and 1 ≤ s ≤ t− 1 by the induction hypothesis. Therefore, using the result
of Lemma 4.3, we get that Mi

t is a tight set of measures.
This completes the induction step, and thus Mi

t is tight for all i ∈ [N ] and
t ∈ [T ].
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[4] T. Başar, Variations on the theme of the Witsenhausen counterexample, in Proceedings of the
47th IEEE Conference on Decision and Control, IEEE, Piscataway, NJ, 2008, pp. 1614–
1619.
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